当前位置:育文网>教学文档>教案> 《乘法分配律》教案

《乘法分配律》教案

时间:2023-01-19 11:59:20 振濠 教案 我要投稿

《乘法分配律》教案(通用19篇)

  作为一名优秀的教育工作者,总归要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么优秀的教案是什么样的呢?以下是小编精心整理的《乘法分配律》教案,仅供参考,希望能够帮助到大家。

《乘法分配律》教案(通用19篇)

  《乘法分配律》教案 篇1

  教学目标:

  1、发现、理解和掌握乘法分配律;

  2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;

  3、培养学生观察、归纳、概括等初步的逻辑思维能力。

  4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。

  教学重点:

  乘法分配律的意义及其应用。

  教学难点:

  应用乘法分配律进行简便计算。

  教学过程:

  一、创设情境,激发兴趣:

  (请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?

  生:(齐)高兴激动。

  生1:打个招呼,宋老师好。

  生2:宋老师好!

  师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?

  生:不是,是分别握手。

  生:乘法分配律(小声地)

  (设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)

  二、自主探索,合作交流

  师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。

  1、引入主题图

  (植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?

  (1)阅读理解:让学生充分表达自己知道了什么。

  生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。

  生2:每个小组共有6人。

  (2)分析解答:

  学生汇报自己的解法,引导学生说明不同算法的理由。

  板书:(4+2)X25 4X25+2X25

  2.两个算式的结果怎样?用什么符号连接?生读等式

  板书:(4+2)X25=4X25+2X25

  生读算式(4+2)X25=4X25+2X25

  3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?

  口头列式,得出(58+42)X9=9X58+9X42(生读等式)

  4、观察这两组算式,请你写出一些类似的式子.

  每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)

  投影展示

  生1:(1+2)X3=1X3+2X3

  (3+2)X4=4X3+2X4

  (10+2)X5=10X5+2X5

  (6+4)X5=6X5+4X5

  生2:(4X2)X3=4X3+2X3

  生3:他的算式是错的,括号里应该是两数之和。

  生4:( + )X = X + X

  (a+b)Xc= aXc+ bXc

  aX(b+c) = aXb+ aXc

  师;尝试用文字总结发现的规律

  生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、

  等号两边的算式有什么相同和不同?

  5、集体归纳。

  抓住:两个数和、分别相乘

  小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)

  两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。

  6、讨论记忆乘法分配律的方法。

  师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。

  生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。

  生2:括号外面的'字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。学生的方法很多。

  (设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)

  三、巩固新知,尝试练习

  1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?

  (12+200)X3=□X3+□X3

  15X(40+2)=□X40+□X2

  2、数学游戏:找朋友

  (1)找出得数相等的两个算式,(将算式卡片展示在黑板上)

  (设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)

  提问: 22X7+18 和(22+18) X7 是朋友吗?如果要让它们成为朋友,该怎么改?

  (2)整理卡片,分成两组

  甲组 乙组

  ① 100X31+2X31 ① (100+2)X31

  ② 9X(37+63) ② 9X37+9X63

  ③ (22+18)X7 ③ 22X7+18X7

  分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。

  (设计意图:制造冲突,引出认知矛盾)

  男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)

  小结:能口算,并且能凑整十、整百数,算起来比较简便。

  利用乘法分配律可以使一些计算简便。

  (这一环节进行充分运用,渗透简便运算的意识)

  四、运用规律,内化新知

  (8+4)X 25= 34X72+34X28=

  先观察,说一说算式特点,再尝试计算、 指名板演、全班交流

  (设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)

  五、课堂总结与评价:

  用自己的话说一说什么是乘法分配律?

  (设计意图:培养学生的归纳总结意识和数学语言的表达能力。)

  板书设计:

  乘法分配律

  (4+2)X25 = 4X25+2X25

  (a+b)Xc= aXc+ bXc

  甲组 乙组

  ① 100X31+2X31 ① (100+2)X31

  ② 9X(37+63) ② 9X37+9X63

  ③ (88+12)X7 ③ 88X7+12X7

  《乘法分配律》教案 篇2

  教学说明:

  乘法运算定律的归纳、总结和运用对学生来说是一种能力的提高,它区别于一般计算的学习,需要学生有更强的观察能力和思维能力与之相配合,所以学习的困难会更大,特别是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法分配律的学习与研究,下面就教学安排作简单说明。

  一、 观察与思考:

  通过对例题和生活实例的观察、研究和学习,初步感知乘法分配律,同时培养学生的观察能力和观察习惯,在生活中寻找和学习数学知识。

  二、 讨论与归纳:

  这是比观察与思考更高层次的要求。在观察与思考的基础上,通过学生之间的合作,通过相互讨论、研究、补充、完善,归纳出乘法分配律,从而使学生体验合作的重要性与必要性,体验成功的喜悦,懂得合作,学会合作。

  三、 练习与提高:

  通过两部分内容的练习,进一步熟悉、理解、认识和掌握乘法分配律。

  四、 简便运算:

  完成例2的学习,这一部分内容的思考性比较强,特别是对乘法运算定律的灵活运用学生的困难较大,所以在教学时要区别对待。基本内容部分要求全体学生掌握,也就是这一教学段的前三部分内容,这一教学段的最后一部分内容是为学有余力的学生准备的,让不同的学生有不同的收获,但同时获得成功的体验。

  教学内容:

  乘法分配律 P28-29 例1、例2

  教学目标:

  1、知道乘法分配律的`字母表达式。

  2、懂得可以用乘法分配律把一个数与两个数的和相乘改写成两个积的和。

  3、会用乘法分配律使一些计算简便。

  教学重点:

  理解掌握乘法分配律。

  教学难点:

  乘法分配律的得出及其运用。

  教学安排:

  一、 观察与思考:

  1、 出示例1:

  看下图计算,有多少个小正方体?

  A、用实物演示引出两种算法。

  (5+3)2=16(个) 52+32=16(个)

  B、观察以上两式得到:(5+3)2=52+32

  2、 出示生活实例:

  ①一件上衣30元,一条裤子20元。买4套这样的服装一共需要多少元钱?

  引导学生用两种方法解答,然后通过计算观察得出:

  (30+20)4=200(元) 304+204=200(元)

  即:(30+20)4=304+204

  ②2角硬币和5角硬币各6枚,一共有多少钱?

  请学生同桌说说两种计算方法,然后汇报结果。

  (2+5)6=42(角) 26+56=42(角)

  即:(2+5)6=26+56

  3、 请学生仔细观察上面讨论得到的三组等式之间有什么相同的特点?

  (前后两式是相等的、先算和再算积与先算积再算和是一样的)

  这就是今天我们重点要研究的乘法分配律。板书课题:乘法分配率

  二、 讨论与归纳:

  1、 出示问题,读读想想。

  A、 以上三组算式分别先算什么?再算什么?

  B、 它们之间有什么联系?

  先小组讨论,再派代表汇报交流。

  得出乘法分配律的正确说法。

  看书,齐读乘法分配律。

  2、 质疑。

  为什么乘法分配律说:两个数的和与一个数相乘而不是两个数的和去乘以一个数。?

  (两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)

  3、 用字母表示乘法分配律。

  (A+B)C=AC+BC

  三、 练习:

  1、 根据乘法分配律填上适当的数或运算符号。

  (8+6)3=8○3○6○3

  (25+9)40= 40+ 40

  (56+ )3=56 +8

  2、 判断:

  13(4+8)=134+8 ( )

  13(4+8)=138+48 ( )

  13(4+8)=134+138 ( )

  四、 简便运算:

  1、 出示例2:(125+70)8

  请同桌两人右边的按运算顺序算,左边的用乘法分配律先去掉括号再算。

  算好后同桌观察讨论:怎样算比较好?为什么?

  教师总结:用乘法分配律能使一些计算简便。

  2、 选择题:

  1624+8424的简便算法是( )。

  A、(16+24)84 B、(16+84)24 C、(1684)24

  3、 用简便方法计算下列各题(先同桌讨论,再独立完成)。(有的不会做的学生可以不做)

  (25+9)8 29175+2529 48128-2848 7599+75

  4、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)

  41□+5923 □□+6328

  五、 小结:

  1、 乘法分配律及字母表达式。

  2、 运用乘法分配律应注意什么?

  ①运算符号 ②分配合理

  《乘法分配律》教案 篇3

  教材分析:

  乘法分配率是进行简便计算的一个难点,由于学生没有足够相关的生活经验和类似的认识,因此比较难于把握。故把重点放在引导学生探索问题,通过学生互动,发现规律,提出设想,验证结论,最后灵活运用结论解决问题。

  学情分析

  由于平时进行课堂教学改革,学生学习数学的热情比较高,一部分学生还喜欢发表自己的见解,借以带动全班的学习,所以我决定创设情景,调动学生自主学习,通过操作、交流突破难点。

  学习目标:

  1.动手“做”数学;

  2.充分发挥“兵”帮“兵”的作用;

  3.组织学生解决问题。

  设计理念:

  根据课程改革的目标,实现以人为本的现代教学观,切实改进课堂教学,改变传统牵着学生走的教学行为。

  学生是按照自己的思维方式去认识世界的,因此要组织好学生的活动,让学生通过探索,自己去发现问题,提出问题,从而解决问题,真正落实学生的主体地位。在教学中,教师能根据学生的情况善导,体现学生会学,并使学生学会科学的学习方法,提高学习质量,强化学习兴趣,不断发展和完善自己。

  教学媒体设计:

  1.自制多媒体课件,主要是与课题相关的练习(以“小灵通”、摘取“智慧果”的形式激发兴趣,并配备音乐调节情绪,同时利用Powerpoint制作板书设计加大课堂密度)。

  2. 实物投影仪;学生准备2厘米和3厘米的小棒各2捆。

  教学过程,设计及分析:

  一、创设故事情景

  教授将手指蘸入煤油和蜜糖的杯子里,用嘴尝得津津有味,但学生跟着做却无一不上当,因为教授伸进的是食指,吸的是中指,以此说明观察的重要性,告诫学生注意下面的操作要认真观察,这其实也是一种思维品质。

  二、导入

  1.用2厘米和3厘米的小棒各两根,围成一些图形,说一说你用哪些简便的方法算出小棒的总长度,从中发现什么。

  学生:(3+2)X2=3X2+2X2

  师:你们是怎样发现的?

  学生:①通过计算,知道结果是一样的;②无论怎样摆,都是4根小棒,所以总长度是不变的。

  (通过学生的摆和说,引导他们向乘法分配率的表达形式逼近)

  2.用2厘米和3厘米的小棒各3根,进行类似上面的操作。

  学生:这样摆比较有规律,很容易看出小棒的总长度,并且可以知道(3+2)X3=3X3+2X3)。

  (让学生把有规律的摆法投影出来)

  3.用2厘米和3厘米的小棒各4根,仿照上面再操作。

  要求:在学生摆拢以后,以小组为单位进行参观和评价。让学生把有规律的做法进行实物投影,并介绍想法和发现。

  学生:

  3X4+2X4=(3+2)X4 (8+2)X2=8X2+2X2

  7X2+3X2=(7+3)X2 (3+2)X4=3X4+2X4

  (6+4)X2=6X2+4X2

  分析:通过参观,知道有各种各样的摆法;通过评价,知道我们能创造数学,

  发现规律,能灵活地运用知识解决问题,并进一步向乘法分配率逼近。

  4.猜想:你能说出类似的例子吗?

  (学生自由说,教师把有代表性的`写在黑板上。)

  如:(12+72)X8=12X8+72X8 25X84+75X84=(25+75)X84

  5.小组讨论。

  (1) 根据以上算式的特征进行讨论,讨论后以小组的形式发表见解;

  (2) 师生共同归纳各种见解:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。

  教师:

  这就是乘法分配率。

  板书课题:

  乘法分配率。

  分析:综观传统的教学方法,教师还是牵着学生走,所以乘法分配率是强加给学生的,故学生就容易出错,更谈不上灵活运用了。根据学生的年龄特点和心理特点,教学应该从直观思维入手,而以抽象思维结束,因此,我就采用了“操作──探究──发现”的教学模式进行教学了。

  三、新授

  1.自学书本;

  2.质疑,提出新见解;

  3.师生共同解决问题。(充分发挥学生互助作用,以点带动全班的学习。)

  4.教师:用公式怎样表示乘法分配率?谈谈你的看法。

  (要求学生正确读出公式,引出乘法分配率可以进行简便计算。)

  5.形成性练习:用简便方法计算下面各题。

  35X37+65X37 102X45 38X99+38

  要求:学生想办法,学生说思路,学生评,学生互助并加以改正。

  四、小结

  (学生以谈体会的形式进行,包括方法、感觉、情感和态度方面)

  五、拓展性练习

  计算下面各题:12X25 63X25-59X25 38X101-38

  说明:这些题目学生是可以用多种方法计算的,目的是训练发散性思维,提高灵活解决问题的能力。在学法上充分发挥“兵”帮“兵”的指导作用。

  六、反馈生活中的数学

  师:这节课我们学习了乘法分配率,在日常生活中我们也经常运用乘法分配率解决一些问题,你能举出例子吗?

  (同位互说,或者小组商量,再发言。)

  七、布置作业

  1.基础题:第66页第4、7题。

  2.思考题:第66页插图。

  《乘法分配律》教案 篇4

  教学内容:

  人教社教材四年级下册P26页例7

  教学目标:

  1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

  2、会应用乘法分配律,使某些运算简便。

  3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

  教学重点:

  让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

  教学难点:

  理解和掌握乘法分配律的推导过程。

  教学设计思路:

  1、通过买衣服的`情境转入乘法分配律。

  2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。

  3、会用乘法分配律进行简单的计算。

  教学过程

  一、创设情境,生成问题

  1、生活引入,激发兴趣

  今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

  出示:两件上衣(价格分别是100元、80元)

  两条裤子(价格分别是70元、50元)

  2、提出问题,独立思考

  出示:

  (1)一共有几种搭配方法?

  (2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

  二、探索交流,建构规律

  1、生选择搭配方案并计算。

  2、组内研讨,并出示:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

  3、汇报交流:

  (1)探讨第一种方案。

  师:哪一个同学想先来给项老师推荐他的方案?

  (预设学生回答:

  A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱X套数=总价。列式为:(100 70)X5

  B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100X5 70X5)

  (2)探讨第二种方案。

  (3)探讨第三种方案。

  (4)探讨第四种方案。

  教师板书:

  一套 X套数 = 5件上衣 5条裤子

  (150 100)X 5 = 150X5 100X5

  (150 70)X 5 = 150X5 70X5

  (100 100)X 5 = 100X5 100X5

  (100 70)X 5 = 100X5 70X5

  4、生列举例子。

  (1)出示:活动要求

  A、写出三个这个的算式。

  B、交流:你怎么来说明你写的算式左右两边是相等的?

  (2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。

  5、用字母表示乘法分配律。

  问:谁能用一个算式表示全班所有同学的算式?

  6、学生归纳概括:乘法分配律的意义。

  三、巩固应用,训练提升

  1、在□里填上适当的数。

  (15 20)X12=□X12 □X12

  25X(4 9)=□X4 □X9

  8X(10 5)=□X□ □X□

  30X24=30X□ 30X□

  2、把左右两边相等的算式用线连接起来。

  48X12 52X12 15X18 26X18

  (15 18)X26 25X40 25X4

  25X(40 4) (48 52)X12

  14X(45-5) 11X4 25X4

  (11X25)X4 14X45-14X5

  四、全课小结

  今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

  《乘法分配律》教案 篇5

  一、教学目标:

  (一)知识目标。

  1、过探索活动,进一步体会探索的过程和探索方法。

  2、通过探索活动,发现乘法分配律,并用字母进行表示。

  (二)能力目标。

  1、学习过程中,培养学生的探索意识和探索精神。

  2、探索、交流过程中,培养学生发现问题、提出问题的能力。

  3、培养学生观察、比较、抽象、概括能力。

  (三)德育目标。

  体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。

  二、教学重点:

  理解乘法分配律。

  三、教学难点:

  乘法分配律的应用。

  四、教学方法:

  1、猜测法。

  2、验证法。

  五、教具准备:

  课件。

  六、教学过程:

  (一)导课。

  应用乘法结合律进行简算。

  2745= 8(725) = 3425=

  (二)学习新课。

  1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?

  2、学生汇报:有的说100块,有的说90块。

  3、详细汇报

  生1:我将瓷砖分成两部分,两部分的'和就是瓷砖的总块数。列式是69+49=90(块)

  生2 :我也发现有90块,因为有10行瓷砖,每行9块。

  生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。

  4、请大家观察这些例子的左右两边,有什么特点?

  生1:从左到右是相同因数乘不同因数的和。

  生2:从右到左是相同因数分别乘不同的因数,再将它们的积加起来。

  5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C

  表示三个数,你能写出乘法结合律吗?

  6、(A+B)C=AC+BC叫乘法的分配律。

  (三)巩固练习。

  1、填一填。

  35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )

  2、拓展练习。

  运用学的规律,将计算过程变得简便些。

  201950= 632547=

  (四)全课总结。

  这节课,你学到了那些知识?会用乘法分配律简便运算吗?

  (五)布置作业。

  第49页练一练第2、3题。

  《乘法分配律》教案 篇6

  教材简析:

  能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。

  教学目标:

  1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。

  2、让学生学习应用估算的方法判断计算结果的合理性。

  3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。

  教学过程:

  一、讲解学生作业错得较多的题目

  1、99X37+37=37X(□○□)

  指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37X1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的`是“99+1”

  2、把左右两边相等的算式用线连起来

  11X58+49X11 12X77+8X77

  (12+8)X77 36X25+4X25

  (58+12)X14 27X21+27X29

  27X(21+29) 11X(58+49)

  (36X4)X25 58X14+12

  先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?

  (1)(58+12)X14应该等于分别乘14,但“58X14+12”中的12没有乘14,所以是不相等的。

  (2)(36X4)X25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36X25+4X25连线。

  二、学习例题

  1、出示例题图

  说说例题的信息和问题,说说相关的数量关系式。

  2、列式并估算等:32X102≈3200(元)

  说说估算的方法:把102看成100,32乘100等于3200,32X102的积应该略大于3200。

  还可以怎么算?(用竖式算)

  3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?

  (加上2件),这2件是多少元呢?总共是多少元?

  怎么把这个过程完整地用算式表达出来呢?

  板书:32X102

  =32X(100+2)

  =32X100+32X2

  =3200+64

  =3264(元)

  指出:利用乘法分配律,我们可以把这类题目进行简便计算。

  学生完成书上的例题剩下部分。

  4、完成试一试:用简便方法计算46X12+54X12

  观察算式特点,并完成简便计算。交流:=(46+54)X12

  =100X12

  =1200

  比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?

  (有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)

  三、完成想想做做

  1、在□里填上合适的数,在○里填上运算符号(题略)

  学生独立完成,再校对。

  2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)

  学生说出口算的过程,体会也是运用了乘法分配律。

  3、读第5、6题,观察数据的特点,说说怎么算才更简便?

  四、探索思考题

  99X99+199○100X100

  观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?

  在交流过程中完成板书

  99X99+199

  =99X99+99X1+100

  =99X(99+1)+100

  =99X100+100X1

  =100X(99+1)

  =100X100

  学生自己尝试完成算式:999X999+1999的探索过程

  发现规律,直接完成算式:9999X9999+19999=( )X( )

  五、布置作业

  p.57第2、4、5、6题

  《乘法分配律》教案 篇7

  教学目标:

  1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

  2、能够运用乘法分配律进行简便运算。

  3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

  4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

  教学重、难点:

  理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

  教学过程:

  一、情境导入:

  出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?

  二、探究发现,归纳总结。

  (一)借助图形,感知模型。

  1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?

  请把想象的图画出来。交流学生作品后,出示

  60米 30米

  20米 《乘法分配律》教学设计

  原面积 增加的部分

  2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

  评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)X 20=1800,60X 20+30X 20=1800,你有什么发现?师相机板书等号。

  (二)借助图形,抽象模型。

  1、出示几何图形:用两种方法解决问题。

  60米 ( )米

  20米 《乘法分配律》教学设计

  原面积 增加的部分

  刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?

  2、交流:你想增加几米?怎样算?结论是什么?

  师相机板书。

  引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

  3、出示图3,要求:

  先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。

  4、交流:你是怎么猜测和验证的.?结论是什么?

  教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)Xc=aXc+bXc

  讨论:这个规律在数学上叫——?(板书课题——乘法分配律)

  (三)借助图形,逆用模型。

  1、出示计算题:

  (50+6)X25、8X(25+125)、102X45学生独立计算,汇报反馈交流。

  引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

  2、46X25+54X25、98X20+98X80

  请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

  (四)借助图形,拓展模型。

  1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?

  你们能解决这个问题吗?试着算一算。

  反馈交流:说说你们是怎么解决的?

  我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

  2、20X60-20X30=600与(60-30)X20=600我们发现,它们之间存在着什么样的关系呢?

  谁能用字母来表示这个新规律呢?

  师板书:(a-b)Xc=aXc-bXc

  《乘法分配律》教案 篇8

  设计说明

  教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:

  1.游戏激趣,设置悬念。

  在游戏中学习,体现了玩中学,做中学的'理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。

  2.观察、比较,举例验证猜想。

  在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。

  3.多角度练习,强化认识和理解。

  小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。

  课前准备

  教师准备多媒体课件

  教学过程

  ⊙游戏激趣

  1.比赛热身。

  师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。

  师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。

  (1)9X37+9X63 (2)9X(37+63)

  2.评出胜负。

  师:做完的同学请举手,汇报计算过程。

  师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?

  预设

  生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9X37+9X63=9X(37+63)。

  师:同学们说得非常好,尤其是XX,我们就先将他的这个发现命名为XX猜想。

  设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。

  ⊙引导探究,发现规律

  1.课件出示例7。

  一共有多少名同学参加了这次植树活动?

  (1)需要知道哪些条件?请在情境图里找一找。(出示情境图)

  (2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)

  (3)小组讨论,尝试用不同的方法解决问题并板书。

  引导各小组汇报解题方法,并说明这样解题的理由。

  解法一(4+2)X25

  =6X25

  =150(名)

  (4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)

  解法二4X25+2X25

  =100+50

  =150(名)

  (4X25是求25个小组一共有多少名同学负责挖坑、种树,2X25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)

  2.观察算式,探究发现。(见课堂活动卡)

  (1)小组合作,讨论探究。

  ①两道算式有什么相同点?

  ②两道算式有什么不同点?

  ③两道算式有什么联系?

  《乘法分配律》教案 篇9

  学情分析:

  乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114X21=” 不论是第一种“114X20=2280,114X1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

  教学目标:

  1.理解并掌握乘法分配律并会用字母表示。

  2.能够运用乘法分配律进行简便计算。

  3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

  4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学过程:

  一、情景激趣,提出猜想

  1.情景

  暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

  出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

  (设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

  ①整理条件、问题

  从这段资料中你知道了那些信息?王老师遇到了哪些问题?

  ②学生列式,抽生回答: (18+23)X8, 18X8+23X8

  ③交流算式的意义

  第一个算式先算什么?再算什么?第二个算式呢?

  ④计算:(发现两个算式结果相等)

  ⑤观察、分析算式特点

  咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

  现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

  ⑥全班交流,引导学生从下面几个方面进行思考

  A.涉及到得运算及顺序:都包含了+、X这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

  B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

  C.计算结果:结果相等。

  (设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

  2.提出猜想

  真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

  怎样才能知道像这样的算式都有这样的规律?

  引导学生想到用举例的方法进行验证。

  师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

  (设计意图:对一个人而言,记忆一个知识、规律并不是最重要的.,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

  二、举例验证,证明合理性

  1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

  2.分组举例

  两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

  3.交流:谁愿意把你举的例子和大家一起分享?

  A.这个式子符合要求吗?

  B.这些式子都有一个共同的规律,这个共同的规律是什么?

  教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

  (设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

  三、概括归纳,建立模型

  1.个性概括

  这样的式子你们还能写吗?能写完吗?

  强调这样的例子还有很多很多,是写不完的。

  你能用一个式子将所有的像这样的式子都概括出来吗?

  学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

  2.统一认识

  教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

  (a+b)Xc=aXc+bXc

  给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

  3.进一步认识

  这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

  齐读式子。

  (设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

  四、巩固应用,深化认识

  1.哪些算式与72X35相等

  72X30+72X5

  72X35 72X30+5

  70X35+2X35

  70X35+2

  问:为什么相等?

  (设计意图:让学生理解乘法分配律的本质意义)

  2.你会填吗?

  (10+7)X6= X6+ X6

  8X(125+9)=8X +8X

  7X48+7X52= X( + )

  问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

  (设计意图:学生进一步深刻理解乘法分配律)

  3. 7X48+7X52 7X(48+52)

  这两个式子你想选择哪个进行计算?为什么?

  如果只给你第一个式子,你会想办法让你的计算变得简便吗?

  小结:利用乘法分配律有时候可以使计算变得更简便。

  (设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

  4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

  ①34X72+34X28(订正时问:为什么不直接算)

  (80+4)X25

  订正时问:把(80+4)X25写成80X25+4X25依据是什么?

  如果不用好不好算?

  (80+20)X25

  问:这道题与(80+4)X25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

  教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

  ②21X25 75X99+75

  小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

  (设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

  五、全课小结

  孩子们,你们今天收获了什么?

  当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

  板书设计

  乘法分配律

  (18+23)X8 (18+23)X8=18X8+23X8 7X48+7X52=7X(48+52)

  =41X8 … … … …

  =328(元) 学生举例 … … … … 34X72+34X28 (20+4)X25

  18X8+23X8 … … … … (80+20)X25

  =144+184 个性概括:… …

  =328(元) (a+b)Xc=aXc+bXc 21X25 75X99+75

  《乘法分配律》教案 篇10

  教学目标

  1.使学生理解乘法分配律的意义.

  2.掌握乘法分配律的应用.

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力.

  教学重点

  乘法分配律的意义及应用.

  教学难点

  乘法分配律的反应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1. 口算

  (27+73)X8 40X9+40X1 14X(10+2) 10X6+10X4

  2. 用简便方法计算.(说明根据什么简算的)

  25X63X4

  3. 师生比赛,看谁算得又对又快.

  20X5+5X80 (1250+125)X8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).

  2.教学例6:

  (1)出示例6:演示课件“乘法分配律”出示例6 下载

  (2)引导学生观察每组的两个算式.

  (3)教师提问:从上面的例子你发现了什么规律?

  (4)学生明确:每组中的两个算式都可以用等号连接.

  教师板书:(18+7)X6=150

  18X6+7X6=150

  (18+7)X6=18X6+7X6

  (5)教师出示:20X(15+9)=480

  20X15+20X9=480

  20X(15+9)=20X15+20X9

  学生分组讨论:每组中算式所表示的意义.

  (6)反馈练习:按题要求,请你说出一个等式.(投影出示)

  (__+__)X__=__+__X

  教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘.

  其次是等号右边两个加数分别同一个数相乘再把两个积相加.

  最后是等号左右两边的两个算式相等.

  3.教师概括运算定律:

  两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)X4=__X4+__X4

  (62+12)X3=__X__+__X__

  教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

  根据练习学生从而得出: (a+b)Xc=aXc+bXc

  使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

  5.教学例7:演示课件“乘法分配律”出示例7 下载

  (1)出示例7:102X43

  启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  引导学生对比:(100+2)X43,102X(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

  教师板书:

  (2)出示9X37+9X63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据乘法分配律,可以把原式改写成什么形式?

  根据学生的回答教师板书:9X37+9X63

  =9X(37+63)

  =9X100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是X、+、X的形式,也就是两个积的`和.

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.

  ③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)X8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?

  三、巩固发展 演示课件“乘法分配律”出示练习 下载

  1. 练习十四第1题.

  根据运算定律在□里填上适当的数.

  (43+25)X2=□X□+□X□

  8X47+8X53=□X(□+□)

  3X6+6X7=□X(□+□)

  8X(7+6)=8X□+□X□

  2.在横线上填上适当的数.

  (1)(24+8)X125=__X__+__X

  (2)25X(20+4)=25X__+25X__

  (3)45X9+ 55X9=(__+__) X__

  (4)8X27+73X8=8X(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

  3.把相等的算式用等号连接起来:

  (1)32X48+32X52 32X(48+52)

  (2)(24+8)X8 24X5+24X8

  (3)20X(l+15) 0X17+20X15

  (4)(40+28)X5 40X5+ 28

  (5)(10X125)X8 10X8+125X8

  (6)4X(30+25) 4X30X4X25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28X(42+29)与下面的( )相等

  ①28X42+28X29 ②(28+42)X(28+29) ③28X42X29

  (2)与aX8-bX8相等的式于是( )

  ①(a+b)X8 ②(a-b)X(8+8) ③(a-b)X8

  (3)与(10+8+9)X5相等的式子是( )

  ①10X5+8X5+9X5 ②10+5X8+5X9 ③10X5+5X8+9

  5.练习十四第4题,投影出示.

  一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?

  四、课堂小结

  今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

  五、布置作业

  练习十四第3题.

  用简便方法计算下面各题.

  (80+8)X25 35X37+65X37

  32X(200+3) 38X29+38

  《乘法分配律》教案 篇11

  教学内容

  教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。

  教学目的:

  使学生理解并掌握乘法分配律,培养学生的分析推理能力。

  教学重难点

  乘法分配律

  教具、学具准备

  教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。

  教学过程:

  一、复习

  教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

  二、新课

  1.教学例6。

  教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

  图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的.算式写在黑板上。

  还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

  (5十3)4 54十34

  教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

  这两个算式的计算结果怎样?

  这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:

  这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

  (5十3)4=54十34

  等号左面的算式是什么意思?(5与3的和乘以4。)

  等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

  教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

  教师:下面我们再看两组算式,先看:(18十7)6 186十76

  左面的算式是什么意思?(18与7的和乘以6。)

  右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)

  算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

  算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)

  教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。

  这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)

  教师:我们再来看两个算式 20(15十9) 20xx十209

  先来计算一下这两个算式各等于多少?

  两个算式都等于多少?

  这两个算式相等,说明20乘以15与9的和等于什么?

  2.进行抽象概括。

  教师指着上面的算式提问:

  仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)

  教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

  再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

  等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。

  教师:如果用 表示三个数,乘法分配律可以写成下面的形式:

  (a+b) c=ac+bc

  等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)

  等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)

  三、巩固练习

  教师在黑板上写算式:(200十3)27,提问:

  1.这个算式中是哪两个数的和乘以哪个数?

  根据乘法分配律,这个算式等于哪两个乘积的和?

  教师在黑板上再写算式:18527十1527,提问:

  这个算式中是哪两个数分别乘以哪一个数?

  根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?

  2.做第64页做一做中的题目。

  先让学生读题,再想一想每个方框里应该填什么数。

  在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?

  根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?

  第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)

  第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)

  四、作业

  练习十四的第1、2题。

  《乘法分配律》教案 篇12

  教材分析 :

  乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  学情分析:

  学生基础较差、有的学生学习习惯不好,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。

  教学目标:

  知识与能力:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的'能力。

  情感、态度与价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学重点:

  理解并掌握乘法分配律——发现问题、提出假设、举例验证、探索出乘法分配律。

  教学难点:

  乘法分配律的推理及应用。

  教学过程:

  一、发现问题

  1.出示情境图,让学生估计墙面上贴了多少块瓷砖。

  2. 用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。

  二、提出假设、举例验证、建立模型

  1、根据上题的规律提出假设

  2、验证提出的假设是否适合其它数据

  观察上题算式的特点,小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。

  全班交流,并用字母表示分配律。

  三、运用乘法分配律的简算。

  1、试一试

  让学生尝试用乘法分配律解决运算中的简算问题。然后进行交流,概括出简算的方法

  (10+7)X6=____X6+_____X6

  8X(125+9)=8X_____+8X_____

  7X48+7X52=______X(_____+_______)

  2、练一练:

  进一步尝试用用乘法分配律解决运算中的简算问题。

  板书设计:

  乘法分配律

  6X9+4X9=90 40X25+4X25=1100

  (6+4)X9=90 (40+4)X25=1100

  乘法分配律:(a+b)Xc=aXc+bXc

  《乘法分配律》教案 篇13

  教学目标

  知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

  能力目标:

  渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

  培养学生观察、比较、抽象、概括等能力。

  培养学生的数感和符号感。

  情感目标:

  让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

  教学重难点

  教学重点:

  引导学生通过观察、比较、抽象、概括出乘法分配律。

  教学难点:

  应用乘法分配律解决实际问题。

  教学工具

  课件

  教学过程

  (一)生活引入,感知规律

  1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

  2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

  3、爸爸和妈妈都爱我,这句话还可以怎样说?

  4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?

  5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

  [策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。

  (二)开放探究,建构规律

  1、情境引入

  讲本学期开学,学校要为一、二、三年级更换桌椅情况:

  (课件播放),提出问题,引发学生思考:

  (1)请仔细观察大屏幕:

  学校为一年级更换3套桌椅共需要多少钱?

  学校为二年级更换5套桌椅共需要多少钱?

  学校为三年级更换6套桌椅共需要多少钱?

  (2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

  (3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

  (4)谁愿意接着汇报?

  2、第一次发现

  (1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

  小结:每一组算式的结果相等。

  (2)我把这两个算式用等号来连接,行吗?为什么?

  板书:(50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  3、第二次发现

  (1)再观察这三组算式,还有什么发现吗?

  (2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?

  (3)每人举出一个例子,写在纸上,然后请同桌帮助验证

  汇报交流:像这样的例子还能举出一些吗?举的完吗?

  4、归纳总结:

  (1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

  (2)请看大屏幕,你们的意思是这样吗?小声读读。

  (3)有什么不懂的词吗?

  5、个性化理解

  (1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

  根据学生回答教师板书:

  (□+○)×☆=□×☆+○×☆

  (甲+乙)×丙=甲×丙+乙×丙

  (a+b)×c=a×c+b×c

  (2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

  (3)对于乘法分配律用字母表示感觉怎么样?

  [策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的`语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。

  (三)激活联系、应用规律。

  1、请你把相等的两个算式连线。

  (8+13)×4 41×(3+27)

  3×(21+6) 7×5 +8

  41×3 +41×27 3×21 +3×6

  7×(5+8) 8×4 +13×4

  (1)你为什么连得这么快?是计算了吗?

  (2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

  2、根据乘法分配律填空:

  (83+17)×3=□×□○□×□

  10×25+4×25=(□○□)×□

  (1)谁愿意展示一下你填写的。有不同意见吗?

  (2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

  (3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

  [策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。

  3、联系旧知、同已有知识建立联系。

  谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

  现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

  [策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。

  (四)课堂小结:

  今天,学习了乘法分配律,你有什么想法?

  (五)板书设计:

  乘法分配律

  (50+60)×3 = 50×3+60×3

  (75+68)×5 = 75×5+68×5

  (80+65)×6 = 80×6+65×6

  ……

  (a+b)×c = a×c+b×c

  《乘法分配律》教案 篇14

  一、教学内容:

  乘法分配律教材第36页的例3

  二、教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、通过观察、分析、比较,培养学生的分析、推理和概括能力。 3、发挥学生主体作用,体验探究学习的快乐。

  三、教学重点:

  指导学生探索乘法的分配律。

  四、教学难点:

  乘法分配律的应用。

  五、教学准备:

  小黑板、口算题、例题、练习题等。

  六、教学策略:

  本节课的学习我主要采取自主探究学习,把问题教 学法,合作教学法,情境教学法等结合运用于教学过程中。使学 生自主、勇敢地体验尝试和实践活动来进行综合学习。

  七、教学过程:

  (一)设疑导入

  同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?( 简便)

  接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

  (二)探究发现

  1.猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)25。)

  这道题算得怎么不如刚才的快啊?(它和前面的题目不一样)

  好,我们来看一下它与前面的题目有什么不同?

  这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  为什么这样算哪?

  你是怎么知道的?你知道什么是乘法分配律吗?

  你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2.验证。

  师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的'和同一个数相乘都可以这样计算?

  (学生计算,并汇报。)

  师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3.结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律乘法分配律。(出示课件,学生齐读分配律的意义。)

  师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)c=ac+bc

  师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经历和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)25这样一个特殊的算式。

  接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想验证结论联想。为学生的可持续学习奠定了基础。

  二、多向互动,注重合作与交流

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对乘法分配律这一运算定律的主动建构。学生对乘法分配律的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓一枝独秀不是春,百花齐放迎春来。

  《乘法分配律》教案 篇15

  【教学内容】

  人教版四年级下册课本36页例3.

  【教材与学情定位】

  本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。

  【设计理念】

  1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。

  2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?

  3、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?

  【教学目标】

  1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。

  2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。

  【教学重点】

  从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。

  【教学难点:】

  1.理解乘法分配律,体会其优越性。

  2.乘法分配律应用中出现的问题如何有效突破。

  【教学过程】

  1、同学们我们前面学习过两位数乘两位数,

  出示:25×14=

  算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。

  (师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)

  过程:25

  ×14

  100 25×4

  25 25×10

  350

  问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)

  师随生动:14分成(10+4)的和乘25

  指25×14表示什么?14个25是多少

  指(10+4)×25表示什么?14个25是多少?

  指10×25+4×25表示什么?14个25是多少?

  可以画等号吗?可以

  那下面这几个算式表示什么?也可以这样写吗?

  【设计意图】

  本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。

  出示15×12= 23×16=

  学生观察:发现都是两位数乘两位数的运算,表示可以。

  师指生描述算式的含义并由学生独立完成算式转换。

  学生通过验证认识到:

  15×12=(10+2)×25=10×15+2×15

  23×16=(10+6)×23=10×23+6×23

  16×25=(10+6)×25=10×25+6×25

  现在还想等吗?

  15×12=(10+2)×25=10×15+2×15

  23×14=(10+4)×23=10×23+4×23

  16×25=(10+6)×25=10×25+6×25

  生:相等。

  师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?

  生:等号左边表示10+4的`和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。

  师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)

  【设计意图】

  本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。

  师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?

  生:可以。

  2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律

  (20+3)×37=

  (10+9)×23=

  (32+25)×74=

  学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?

  生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;

  左侧三个数,右侧四个数;

  ……

  小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。

  【设计意图】

  通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。

  师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?

  生一:(10+5)×74=10×74+5×74

  同意的举手,鼓励的掌声送给他

  生二:(10+7)×52=10×52+7×52

  生三:(10+9)×24=10×24+9×24

  生四:(30+2)×52=52×30+52×2

  【设计意图】

  学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。

  师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。

  (16+△)×51=

  (△+■)×○=

  引导出字母形式:

  (a+b)×c=

  师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。

  【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】

  汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍

  小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。

  字母形式:(a+b)×c=a×c +b×c

  也可以写成a×(b+c)=a×b+a×c

  【设计意图】

  本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。

  3、看谁算的又对又快:

  (4+6)×27 ○ 4×27+6×27

  (14+86)×39 ○14×39+86×39

  (100+1)×37○100×37+1×37

  3×62+5×62+2×62=

  集体订正,说学生的做法,怎么做的?怎么想的!

  【设计意图】

  通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!

  4判断:

  (1)(36+27)×5=36×5+27×5 ( )

  (2)(13+79)×12=13+79×12 ( )

  (3)(34+61)×43=34×61+43 ( )

  (4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )

  手势表示,对的举对号,错误的举起十字。

  【设计意图】

  本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。

  5、情景剧:生活中的握手问题:

  两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。

  【设计意图】

  学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。

  全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?

  师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。

  《乘法分配律》教案 篇16

  【教学目标】

  1.理解并掌握乘法分配律的内容和字母表达式,运用乘法分配律进行计算,知道它的一些应用。

  2.经历从现实背景中抽象出乘法分配律的过程,通过计算、观察、举例、验证、概括、说理等活动,积累数学探究活动经验。

  3.体会乘法分配律的现实背景,了解乘法分配律的作用、意义及价值,初步感受转化、归纳等数学思想。

  【教学重点】

  理解、掌握并运用乘法分配律。

  【教学难点】

  从现实背景中抽象概括出乘法分配律。

  【教学过程】

  一、课前谈话,导入新课。

  不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说?(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说?是不是挺有趣的?其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究?

  通过前几节课的探索,我们已经发现了乘法交换律和乘法结合律,这一节课,咱们再继续探索,看看又会发现什么新的规律。(板书:探索与发现(三))

  二、探索交流,发现规律。

  1、初步感知。

  (1)(出示长方形草坪图)课件演示。

  师:我们宝鸡的人民公园最近正在改建,大家看,这是一块草坪,工人叔叔准备在草坪的四周围上栅栏。看图,你发现了哪些数学信息??

  (2)师:求栅栏长多少米?就是求长方形的什么呢?请同学们算一算。(生计算,师巡视)

  (3)师:谁来说说自己的算法?(根据学生回答板书算式A)

  师:像这样算的同学请举手。谁来说说,先算的什么?再算的什么?

  (4)师:有没有不一样的想法?(根据学生回答板书算式B)

  师:这样算的同学请举手。这种算法先算的什么,再算的什么呢?

  (61+39)×2 61×2+39×2

  =100×2 =122+78

  =200(米) =200(块)

  (5)师:这两个算式,解决了同一问题。计算的结果也相等。那么,这两个算式之间可以用什么符号连接?(根据学生回答板书“=”)

  (6)师:这两个算式真有趣,明明是不同的算式,却能得到相等的结果。它们之间一定有什么内在的联系与区别。观察,看看你能发现什么?同桌之间说一说。(生讨论,师巡视)

  (7)师:说说你们的想法。

  (8)师根据学生发言引导学生发现:

  相同点:都使用了乘法和加法 ;

  参与运算的数是相同的;

  意义相同(都算了长方形的2条长与2条宽之和。)

  不同点:运算顺序不同

  左边先算和,再算积;右边先算积,再算和

  2、再次感知。

  你们帮老师解决了一个实际问题,老师奖励给大家一些笑脸,(出示笑脸图,每行有五个黄色笑脸图,三个红色笑脸图,共四行。)

  (图略)

  知道这上面一共有多少个笑脸吗?你能用几种方法解答?

  学生再次各自列式计算,并很快说出两种不同的思考方法和算式,结合学生回答教师接着上题板书如下:

  (5+3)×4=5×4+3×4

  3、概括定律。

  我们现在已经得到了两个等式:

  (61+39)×2=61×2+39×2

  (5+3)×4=5×4+3×4

  从上面的算式中你有没有发现什么规律?

  师:(惊奇地)你们真的发现了这些算式中隐含着的规律,请与你的同桌交流一下,好吗?

  师:从大家的神态和脸部表情中,老师知道你们一定觉得自己发现了什么规律。同学们,你们发现了什么,我能猜到。不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。你们能再举些例子对自己的猜想进行验证吗?

  生在练习本上举例验证。

  师:从同学们举的大量的例子中,可以确定你们的发现是正确的。 还有不同意见吗?

  师:你们发现的这个知识规律,叫做乘法分配律。什么叫乘法分配律?请同桌再交流一下。

  学生积极地与同桌交流着,又踊跃地参加集体交流。

  生1:把括号里的'两个数加起来后乘以一个数,等于把括号里的两个数都去乘以一个数,再把乘出来的积加起来。

  生2:乘法分配律是:左边把两个数加起来乘以乘数,等于括号里的一个加数乘以乘数加上括号里的另一个加数乘以乘数。

  师:你们想表达的是这样的意思吗?(教师出示幻灯:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。)

  师:这叫做乘法分配律。能用字母来表示乘法分配律吗?

  结合学生回答,教师板书:

  (a+b)×c=a×c+b×c

  师:对于乘法分配律,用字母来表示,感觉怎样——(稍等)简洁、明了。这就是数学的美。

  三、应用规律,解决问题。

  1、师:看来你们已经发现了规律,下面根据你们发现的规律,来做一个“找朋友”的游戏。

  小黑板出示:(25+36)×4 ,谁是它的好朋友?

  6×(20+30)

  (a+50)×6

  45×8+55×8

  7×16+7×184

  2、根据运算定律,在□中填上合适的数。

  ①(12+50)×3= □×3+□×3

  ②15×(40 + 23) = 15×□+15×□

  ③78×20+22×20=(□+□)×20

  ④▲×+●×=(□+□)×□

  ⑤66×28 + 66×32 + 66×40=(□+□+□)×66

  3、选择。请用手势表示正确答案的编号。

  与 25×(4×8)相等的算式是( )。

  ①25×4+25×8; ②25×4×25×8; ③25×4×8

  全班学生中有一位选①,三位选②,其余都选③。通过辨析,学生更加清楚乘法分配律的内涵及与乘法结合律的区别。

  (学生独立在作业纸上完成后,集体订正,电脑逐个显示订正后的答案。

  4、选择其中一组题目来计算

  甲组乙组

  ①100×13+2×13 ① 102 ×13

  ②(63+37)×39 ②63×39+37×39

  ③ 9×(46+54) ③ 9×46+ 9× 54

  师:先观察,确定一下你做哪一组。(先选好要做的内容,并说明理由。最后总结出:利用乘法分配律可以使一些计算简便。然后学生独立做题,完成后交流答案。)

  5、实际应用。

  足球比赛的时候,学校为同学们准备了饮料。准备了24箱苹果汁和26箱橘子汁,每箱都是24瓶,你知道一共有多少瓶饮料吗?(学生独立解答,再集体交流。)

  师:每箱饮料36元,付1500元够吗?(学生完成后,交流)

  四、全课总结,布置作业。

  1、通过这节课的学习,你有什么收获和感受?

  2、你觉得自己的表现哪里最好?

  3、老师小结:今天同学们通过自己的探索,发现了乘法分配律,真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

  《乘法分配律》教案 篇17

  教学目标:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  3、会用乘法分配律进行一些简便计算

  重点难点:

  1、 指导探索乘法分配律。

  2、 发现并归纳乘法分配律。

  方法指导:

  通过讲学练相结合,设计相应的`练习题,逐步理解抽象的乘法分配律。

  教学流程:

  一、激趣导入

  (约3分钟)

  创设情境,提出问题

  1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

  2、学生思考:(1)有几种搭配方案

  (2)选择你喜欢的一种方案,并算出总价。

  (学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

  二、自主学习

  (约7分钟)

  (一)组内研讨,确定方案

  1、组内研讨

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说,你推荐的理由。

  (3)说说你推荐的方案,需要花多少钱?你是怎么算的?

  三、合作交流

  (约10分钟)

  1、汇报交流

  师:哪一个同学想先来给老师推荐他的方案?

  师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

  分别列式解答

  师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

  师:这个等式怎么读呢?

  生尝试读等式。

  (预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4

  B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )

  2、研究其它方案

  由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

  教师板书

  一套 4 = 4件上衣 + 4条裤子

  (225+75)4 = 2254 + 754

  (225+125) 4 = 2254 + 1254

  《乘法分配律》教案 篇18

  学情分析:

  学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。

  教学目标:

  知识与能力:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感、态度与价值观:

  在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学重点和难点:

  教学重点:

  理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。

  教学难点:

  乘法分配律的'推理及应用。

  教学过程:

  一、复习引入,质疑猜想

  1、出示口算题:

  师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。

  358+25+7572+493+2825×19×4

  12×125×8168×5×214×2=

  交流:你是怎样想的?

  2、分组计算比赛

  师:下面我们再来一场分组计算比赛,好不好?

  出示:脱式计算

  第二组题目:45×12+55×1234×72+34×28

  第一、三组:(45+55)×12(72+28)×34

  师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。

  二、探究新知,验证猜想

  1、出示:用两种方法计算这两个长方形中一共有多少个小方格?

  8×4+5×4(8+5)×4

  思考:为什么两个算式的结果相同呢?

  左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。

  2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。

  (1)请提一个数学问题(淘气一共打了多少个字?)

  (2)用两种方法解答问题

  (3)思考:为什么两次计算的结果相同呢?

  3、师:仔细观察,像上面这样的等式,你能再列出一组吗?

  在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。

  能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)

  想一想:这里的分配,表示什么意思?(表示分别配对的意思。)

  师:这道等式反过来写,依然成立吗?

  三、巩固新知,应用定律

  1、填一填:

  4×(25+8)=__×___+___×__

  38×37+62×37=___×(___+___)

  502×19+11×502=___×(___+___)

  48×99+48×1=___×(___+___)

  a×b+a×c=___×(___+___)

  2、判断对错:

  8×(125+9)=8×125+9()

  27×8+73×8=27+73×8()

  (12+6)×5=(12×5)×(6×5)()

  (25+9)×4=25×4+9×4()

  3、试一试

  (1)观察(40+4)×25的特点并计算

  (2)观察34×72+34×28的特点并计算

  4、分组计算比赛

  85×16+15×16(40+8)×25

  68×128-68×2834×(100+20)

  四、总结全课

  今天,我们又发现了什么?

  五、课外思考

  其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?

  板书设计:

  《乘法分配律》教案 篇19

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

  2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学过程

  一、创设情境,谈话导入

  谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

  二、自主探究,合作交流

  1、交流算法,初步感知。

  提问:从图中你获得了哪些信息?

  再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师板书,让学生读一读。

  谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5。

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  启发:比较这两个等式,它们有什么相同的地方?

  2、深入体验,丰富感知。

  引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

  要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

  学生举例并组织交流。

  3、揭示规律。

  提问:像这样的等式,写得完吗?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  小结:a加b的.和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

  三、实践运用,巩固内化

  1、“想想做做”第1题。

  谈话:下面我们利用乘法分配律解决一些简单的问题。

  出示“想想做做”第1题,让学生在书上填一填。

  学生完成后,用课件反馈。

  2、“想想做做”第2题。

  你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

  回答第2小题时,让学生说一说理由。

  四、梳理知识,反思总结

  提问:今天这节课,你有什么收获?有什么感受想对大家说?

  五、布置作业

  “想想做做”第4、5题。

  [说明]

  数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。

  教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。

  之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

【《乘法分配律》教案】相关文章:

《乘法分配律》教案09-04

乘法分配律教案09-04

小学乘法分配律教案03-17

《乘法分配律》小学教案03-31

《乘法分配律》教案15篇02-17

乘法分配律教案15篇02-17

乘法分配律教案(15篇)02-17

乘法分配律说课稿03-19

《乘法分配律》说课稿04-09

《乘法分配律》说课稿06-11