当前位置:育文网>教学文档>教案> 因式分解教案

因式分解教案

时间:2022-02-19 08:29:37 教案 我要投稿

【精华】因式分解教案3篇

  作为一名人民教师,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?下面是小编帮大家整理的因式分解教案3篇,仅供参考,欢迎大家阅读。

【精华】因式分解教案3篇

因式分解教案 篇1

  第十五章 整式的乘除与因式分解

  根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的`项和次数.

  15.1.2 整式的加减

  (3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高练习:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

  2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

  试化简:│a│-│a+b│+│c-a│+│b+c│

  小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

  作 业:课本P14习题1.3:1(2)、(3)、(6),2。

  《课堂感悟与探究》

因式分解教案 篇2

  教学设计思想:

  本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  教学目标

  知识与技能:

  会用平方差公式对多项式进行因式分解;

  会用完全平方公式对多项式进行因式分解;

  能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;

  提高全面地观察问题、分析问题和逆向思维的`能力。

  过程与方法:

  经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

  情感态度价值观:

  通过学习进一步理解数学知识间有着密切的联系。

  教学重点和难点

  重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

  难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式

  关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

因式分解教案 篇3

  教学目标:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

  2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

  3、通过对公式的探究,深刻理解公式的.应用,并会熟练应用公式解决问题。

  4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

  教学重点:

  应用平方差公式分解因式.

  教学难点:

  灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

  教学过程:

  一、复习准备 导入新课

  1、什么是因式分解?判断下列变形过程,哪个是因式分解?

  ①(x+2)(x-2)= ②

  ③

  2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

  x2+2x

  a2b-ab

  3、根据乘法公式进行计算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 学习新知

  (一) 猜一猜:你能将下面的多项式分解因式吗?

  (1)= (2)= (3)=

  (二)想一想,议一议: 观察下面的公式:

  =(a+b)(a—b)(

  这个公式左边的多项式有什么特征:_____________________________________

  公式右边是__________________________________________________________

  这个公式你能用语言来描述吗? _______________________________________

  (三)练一练:

  1、下列多项式能否用平方差公式来分解因式?为什么?

  ① ② ③ ④

  2、你能把下列的数或式写成幂的形式吗?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

  (四)做一做:

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)试一试:

  例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

  (1) x4- y4 (2) a3b- ab

  (六)想一想:

  某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

【因式分解教案】相关文章:

因式分解教案04-02

因式分解复习教案09-06

精选因式分解教案三篇02-01

因式分解教案三篇02-04

因式分解教案(15篇)04-02

【精选】因式分解教案三篇02-17

精选因式分解教案3篇02-07

【精选】因式分解教案4篇02-09

因式分解教案8篇01-03

初中数学因式分解教案12-13