当前位置:育文网>教学文档>教案> 分数乘法教案

分数乘法教案

时间:2022-02-24 06:56:43 教案 我要投稿

分数乘法教案九篇

  作为一名专为他人授业解惑的人民教师,就不得不需要编写教案,编写教案助于积累教学经验,不断提高教学质量。教案要怎么写呢?以下是小编精心整理的分数乘法教案9篇,仅供参考,欢迎大家阅读。

分数乘法教案九篇

分数乘法教案 篇1

  教学内容:

  教材第7-9页“分数乘法”(三)

  教学目标:

  1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;

  2.让学生经历猜想、验证等过程,体验数学研究的方法;

  3.培养逻辑推理能力,渗透一定的数学思维方法。

  教学重难点:

  学生能够熟练的'计算出分数乘以分数的结果。

  教学过程:

  一、创设情境激趣揭题

  1.出示我国古代哲学著作的情景。

  2.出示复习题

  3×2/5 4/5×2

  3.顺势导入新课:分数乘法(三)

  二、扶放结合探究新知

  1.画图引导学生理解1/2*1/2的算例。

  2.出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。

  3.出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:

  分子乘分子,分母乘分母。

  三、反馈矫正落实双基

  1.出示教材第8页试一试1-3题。

  2.引导学生发现规律。

  四、小结评价布置预习

  1.引导学生进行课堂小结。

  2.布置预习:教材10-11页练习一。

  板书设计:

  分数乘法(三)

  意义:求一个数的几分之几是多少?

  计算法则:分子乘分子作分子,分母乘分母作分母。

分数乘法教案 篇2

  教学内容:

  教科书15页,例2及做一做 ,练习四8─10题。

  教学目的:

  (1)、会画线段图分析分数乘法两步应用题的数量关系。

  (2)、掌握分数两步连乘应用题解答方法,并能正确解答。

  (3)、进一步培养学生初步的逻辑思维能力。

  教学重点:分析分数乘法两步应用题的数量关系。

  教学难点:抓住知识关键,正确、灵活判断单位1。

  教学过程:

  (一)、复习引入:

  1、先说说各式的意义,再口算出得数。

  ╳ ╳

  2、指出下面含有分数的句子中,把谁看作单位1。

  (1)乙数是甲数的 。(甲数)

  (2)乙数的 相当于甲数。(乙数)

  (3)大鸡只数的 等于小鸡的只数。(大鸡)

  (4)大鸡的只数相当于小鸡的 。(小鸡)

  (二)、探究新知:

  1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  (1)审题:

  全体默读,再指名读,说出已知条件和问题。

  师生边讨论边画出线段图。

  先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

  然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

  小亮

  18元

  ?元

  ?元

  小华

  小新

  (2)分析数量关系:

  引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

  也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

  (3)确定每一步的算法,列出算式。

  怎么求小华的钱数?

  根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的` 是多少,用乘法计算。

  板书:18╳ =15(元)

  怎么求小华的钱数?

  根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

  板书:15╳ =10(元)

  把上面的分步算式列成综合算式:

  板书:18╳ ╳ =10(元)

  (4)检验写答:

  答:小新储蓄了10元。

  2、做一做。

  学生独立画出线段图,教师巡视指导。

  3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

  (三)、课堂练习:

  独立完成练习四的第8、9、10题。

  板书设计:

  例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  小亮

  18元

  ?元

  ?元

  小华

  小新

  18╳ =15(元)

  15╳ =10(元)

  18╳ ╳ =10(元)

  答:小新储蓄了10元。

分数乘法教案 篇3

  本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。

  分数与整数相乘

  用乘法求几个相同分数的和(例1)

  用乘法求整数的几分之几是多少(例2)

  求一个数的几分之几是多少的实际问题(例3) 练习八

  分数乘分数

  分数乘分数(例4、例5)

  分数连乘(例6) 练习九

  倒数

  倒数的意义,求倒数的方法(例7) 练习十

  整理与练习

  教材在编排上有以下特点。

  第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

  乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

  第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。

  先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

  整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。

  分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

  第三,编排倒数知识,为分数除法作准备。

  分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  一、 例1着重教学分数与整数相乘的算法。

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。

  例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。

  例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。

  二、 例2着重教学用乘法求一个数的几分之几是多少。

  10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

  在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:

  首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。

  然后是讲述新知识。教材说:求10朵的'1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

  沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。

  练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

  例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

  三、 例3用分数乘法解决实际问题。

  例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

  解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

  比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。

  第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。

  四、 例4、例5构建分数乘法的计算法则。

  分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。

  构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。

  例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

  例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。

  两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

  第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。

  五、 例6教学分数连乘的算法和技巧。

  例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。

  例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。

  六、 例7教学倒数的知识。

  倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。

  教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。

  求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。

  第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。

分数乘法教案 篇4

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点、难点:学生能够熟练的.计算整数乘以分数

  教学方法:师生共同归纳和推理

  教学准备:教学参考书、教科书

  教学过程:

  一、复习导入:

  教师出示教学板书,请学生计算下列分数加减运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。

  二、讲授新课

  同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

  学生同桌之间讨论,教师提问学生回答问题。

  教师板书例题,让学生想一想如何计算?

  学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?

  教师提问学生说一说自己是怎样计算的?

  (学生1:3×==;学生2:3×====……)

  教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

  三、巩固练习:

  做课本2页涂一涂,算一算,2个的和是多少?

  让学生熟练计算,教师及时纠正学生错误的计算方法。

  做课本试一试1、2题。

  四、课堂小结:

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  3×==3×====

  分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)

  教学反思:

分数乘法教案 篇5

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的`孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数乘法教案 篇6

  本课题教时数:1本教时为第1教时备课日期9月17日

  教学目标

  进一步掌握分数数据的一般应用题的解题方法;进一步掌握分数乘法应用题的'数量关系和解题思路,能正确解答分数乘法应用题。

  教学重难点

  进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭题

  二基本联系

  三、合练习

  四、堂小结

  五、作业

  这节课,我们复习分数乘法应用题,通过复习,我们要进一步掌握分数乘法应用题的数量关系和解题思路,能正确解答分数乘法应用题。

  1、提问:解答分数应用题的关键是什么?

  2、根据条件找单位1,说说数量关系式

  (题目见幻灯课件)

  3、解答应用题

  例1、从甲地到乙地公路长180千米,一辆汽车已经行了全程的,已经行了多少千米?

  问:这道题可以怎样想?为什么用乘法算?

  1、对比练习

  做复习题第9题

  问:这两题有什么相同的地方和不同的地方?

  在解法上有什么相同的地方?

  2、做复习第10题

  让学生说说是怎么想的?

  追问:第一步要求什么?把哪个数量看作单位1第二步求什么?又是把哪个数量看作单位1?

  3、做复习第11题

  4、做复习第12题

  讨论:有什么办法知道哪一辆车离中点近一些?

  这堂课复习了什么内容?分数乘法应用题的解题关键是什么?基本数量关系是怎样的?连续求一个数的几分之几的分数连乘应用题要怎样解答?

  复习第7、8题

  课后感受

  要让学生学会想到有困难时可借助线段图帮助理解。

  授课日期9月23日

分数乘法教案 篇7

  教学目标

  1.进一步掌握分数乘法应用题的数量关系.

  2.学会用一个数乘分数的意义解答两步分数乘法应用题.

  教学重点

  1.掌握两步分数应用题的解题思路和方法.

  2.画线段图分析应用题的能力.

  教学难点

  分析两次单位“1”的不同之处.

  教学过程

  一、复习、质疑、引新

  (一)指出下面分率句中的单位“1” .

  1.乙是甲的

  2.小红的身高是小明的

  3.参加合唱队的同学占全班同学的

  4.乙的 相当于甲

  5.1个篮球的价钱是一个排球价钱的 倍

  (二)口头分析并列式解答

  1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?

  2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?

  (三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.

  (出示课题——分数应用题)

  二、探索、悟理

  (一)出示组编的例题

  例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?

  1.思考讨论

  (1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?

  (2)小新储蓄的是小华的' ,又是什么意思?谁是单位“1”?

  2.汇报思路讲方法

  根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .

  由此基础上试列综合算式:

  (二)巩固练习

  小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?

  1.分析数量关系,独立画图并列式解答.

  2.学生板演.

  (张)

  (张)

  答:小明有40张.

  3.综合算式

  三、归纳、明理

  用连乘解答的题有什么特点?”“解题思路是什么?”

  1.认真读题弄清条件和问题

  2.确定单位“1”找准数量关系

  根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.

  3.列式解答

  板书:抓住分率句,找准单位“1”,

  画图来分析,列式不用急.

  四、训练、深化

  (一)联想练习根据下面的每句话,你能想到什么?

  1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)

  2.修了全长的

  3.现在的售价比原来降低了

  (二)先口头分析数量关系,再列式解答.

  1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?

  2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?

  (三)提高题.

  六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?

  五、课后作业

  (一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?

  (二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的,小勇跑的是小雄的 .小刚和小勇各跑多少千米?

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?

  教案点评:

  解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几,分数乘法应用题,小学数学教案《分数乘法应用题》。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。

  这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法教案 篇8

  教学目标:

  1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。

  2、培养学生认真审题,独立思考的学习习惯。

  3、训练学生分析、解题问题的能力。

  教学过程:

  一、书上第44页上的第12题

  1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。

  从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。

  2、书上第44页上的第13题

  引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。

  二、说说分数的意义,并把数量关系补充完整

  (1)今年的产量比去年增产1/8。

  ×1/8=

  (2)钢笔枝数的2/5相当于圆珠笔的枝数。

  ×2/5=

  (3)花布的米数比白布长1/4。

  ×1/4=

  (4)实际每月比计划节约了1/10。

  ×1/10=

  (引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)

  二、对比练习。

  1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?

  2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?

  3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?

  (1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?

  (2)比较3题有何异相点?

  三、综合练习。

  1、一种商品原价是250元,现价是原价的4/5,现价是多少?

  2、一种商品原价是250元,后来降价了1/5,降价多少?

  3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。

  (1)两天分别修了多少米?

  (2)第二天比第一天多修多少米?

  (3)还剩多少米没修?

  四、作业

  课前思考:

  潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。

  第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的正确率。

  课前思考:

  上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。

  课后反思:

  由于自己在前两节课新授学习时轻视了这单元的`难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。

  第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。

  课后反思:

  通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。

  课后反思:

  今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。

  从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。

分数乘法教案 篇9

  教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .

  教学过程

  一、基训

  A、1、填》、《、=A》B》0

  4/5A/B( )A/B

  4/5B/A( )B/A

  A/54/B( )4/5

  2、一个真分数乘以一个假分数,结果大于真分数,对吗?

  3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?

  B、 1.分数乘以整数的意义是什么?

  2.一个数乘以分数的意义是什么?一个数乘以分数的计算法则是什么?

  3.计算带分数的`乘法应注意些什么?

  4.分数乘法的简便运算可以应用哪些运算定律?

  5.解答分数乘法应用题的关键是什么?

  6.倒数的意义是什么?

  学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相

  关的问题,如运算定律的表达式以及字母可以表示什么数等等。

  二、综合练习

  1.找1。

  甲是乙的35 。乙是甲的35 。

  甲比乙的35 多1。乙比甲的35 少1。

  甲的35 和乙同样多。

  学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:

  2.做口算练习。

  3.求下面各数的倒数。

  2/7 1/9 6 20 0.6

  学生独立解答,教师巡视,发现问题及时纠正。

  4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?

  5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?

  三、小结(略)

  四、补充作业。

【分数乘法教案】相关文章:

分数乘法的教案02-28

分数乘法教案01-17

《分数乘法》教案06-08

关于分数乘法教案05-18

关于分数乘法的教案03-31

精选分数乘法教案六篇01-29

精选分数乘法教案3篇01-28

精选分数乘法教案五篇02-03

精选分数乘法教案8篇01-29

【精选】分数乘法教案三篇01-31