当前位置:育文网>教学文档>教案> 数学三角形的内角教案

数学三角形的内角教案

时间:2022-03-15 12:02:42 教案 我要投稿

数学三角形的内角教案

  作为一位无私奉献的人民教师,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?下面是小编帮大家整理的数学三角形的内角教案,欢迎阅读与收藏。

数学三角形的内角教案

数学三角形的内角教案1

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:三角形内角和定理及其推论。

  教学难点:三角形内角和定理的证明

  教学用具:直尺、微机

  教学方法:互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个 什么角?

  问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?

  问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。

  4、变式训练,巩固提高

  根据例4 的度数的求法,思考如下问题:

  (3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?

  (4)当MN绕着点D旋转过程中, 会有怎样的变化?

  提示:变化1 当直线MN与AC、BC的.交点仍在线段AC、BC上时, =

  变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,

  变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, =

  变化4当直线MN与AC、BC的交点在C点时, =

  经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。

  5、小结

  通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。

  6、布置作业

  a、书面作业P43#3

  b、上交作业P42#16、17

数学三角形的内角教案2

  【设计理念】

  新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

  【教材内容】

  新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的'度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

  2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

  3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】

  验证“三角形的内角和是180°”。

  【教(学)具准备】

  多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习旧知 引出课题

  1、你已经知道有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  【设计意图:也自然导入新课。】

  二、提出问题 引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎么猜的?

  【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

  三、操作验证 形成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设: ①量算法 ②剪拼法 ③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

  6、形成结论:任意三角形的内角和是180 °。

  【设计意图:

  《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】

  四、应用结论 解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  今天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:用今天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测: 三角形的内角和是180°?

  验证: 量 拼

  结论: 任意三角形的内角和是180°

数学三角形的内角教案3

  教学内容:

  义务教育课程标准实验教科书xx版小学数学四年级下册第42~46页

  教学目标:

  1、通过量、剪、拼、折等数学活动,让学生亲自实践操作,发现规律,主动推导并得出三角形内角和是180的结论,会应用这一规律进行计算。

  2、在操作、验证三角形内角和的过程中,体验解决问题方法的多样性,发展空间观念,提高初步的逻辑思维能力。

  教学过程:

  一、创设情境,导入新课

  1、谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?

  2、我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?我们一起去看看吧!

  播放课件

  详细内容说明:一个大的直角三角形说:我的个头大,我的内角和一定比你们大。一个钝角三角形说:我有一个钝角,我的内角和才是最大的。一个小的锐角三角形很委屈的样子说:是这样吗?(它们在争论谁的内角和大。)

  你知道什么是三角形的内角和吗?

  通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

  3、故事中到底谁说得对呢?今天我们就来研究三角形的内角和。

  【设计意图】从学生的心理、兴趣和意愿为出发点,利用故事的形式提出疑问,激发学生的学习兴趣,提高学生探索的积极性。

  二、自主探究、发现规律

  1、探究三角形内角和的特点

  (1)量一量

  师:你认为怎样能知道三角形的内角和?

  生:把三角形的三个内角分别量出来,再用加法算出三角形的内角和。

  学生活动(小组合作———每组准备三种不同的三角形)量角,求和,完成第43页的表格。

  学生交流汇报测量结果。

  师:从刚才的交流中,你发现了什么?

  生:不管是锐角三角形、直角三角形还是钝角三角形,内角和都是180。

  (在量的过程中,由于误差,有的学生可能算出内角和在180左右,这时教师要相机诱导:在测量的过程中出现一些误差是正常的.,因为同学们画的角不够标准,量角器的不同,还有本身测量的原因都可能导致误差。)

  师:看来量一量会出现误差,那么你还有其它的更科学的办法进行验证吗?

  (2)拼一拼

  学生分小组活动,教师参与学生的活动,并给予必要的指导。

  学生展示交流,师:从大家的交流中,我们发现都可以把三角形的三个内角拼成一个平角,证明三角形内角和是180 。

  (3)折一折

  小组活动,学生交流

  生1:将正方形(或长方形)纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形(或长方形)的四个直角的和是360,所以三角形的内角和就是它的一半,是180。

  生2:直角三角形的两个锐角可以折成一个直角,也就是说,在直角三角形中,两个锐角的和是90,因此三角形内角和就是180。

  2、归纳

  师:通过刚才的活动,我们得出了什么结论?

  生:三角形的内角和等于180。

  3、师谈话:三个三角形争论的问题现在能解决了吗?你现在想对这三个三角形说点什么?

  学生畅所欲言,对得出的规律做系统的整理。

  【设计意图】动手实践,自主探索,亲身体验,是学习数学的重要方式。学生分组合作,量一量、拼一拼、折一折,通过多种感官参与比较、分析从而自主探索得出结论,得到的不仅是三角形内角和的知识,也使学生学到了怎样由已知探索未知的思维方式与方法,培养了他们主动探索的精神。

  三、灵活运用,巩固练习

  师:好,大家已经发现了三角形内角和是180这一规律,你能应用这个规律解决一些实际的问题吗?

  1、判断

  钝角三角形比锐角三角形的内角和大。 ( )

  锐角三角形的两个内角和小于90。 ( )

  一个三角形最少有两个锐角。 ( )

  一个钝角三角形最少有一个钝角。 ( )

  学生判断并说出理由。

  2、自主练习第6题

  练习时,先让学生独立填空,再说说自己是怎么想的,然后用量角器验证计算的结果。

  小结:以后如果遇到求一个三角形内未知角的度数时,我们可以用计算的方法算一算,简单又精确。

  3、游戏: 选度数,组三角形

  (课件显示如下)

  请选出三个角的度数来组成一个三角形

  10 18 15 150 130 72

  20 50 70 35 75

  52 56 54 58 60

  学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,并说出理由。

  [设计意图]用已学到的新知解决实际数学问题,认识学数学的价值,再次体验成功,增强学习数学的兴趣。尤其是第三个练习,依据学生的年龄特征和认知水平,设计探索性和开放性的问题,注重拓宽学生的思维活动空间。

  四、课堂总结、深化认识

  谈话:这节课你学会了什么?解决了什么问题?是怎样解决的?

  【设计意图】不仅从知识方面进行总结,还引导学生回顾发现问题、提出问题、解决问题的过程,关注学生学习过程中的情感体验。既让学生习得一种学习方法,又培养了学习兴趣。

  课后反思:

  本节课学生以小组为单位进行合作学习,从自己的已有经验出发,积极地进行操作、测量、计算,并对自己的结论进行思考、分析。在充分发挥学生主体作用,放手让学生开展探究的同时,教师也恰到好处的发挥了引导作用。整个探究过程学生是自主的、有积极性的,在获得数学结论的同时学习了科学探究的方法,为今后的学习打下了坚实的基础。

数学三角形的内角教案4

  教学目标

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:检验三角形的内角和是180°。

  教学难点:引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:问题情境与

  教师活动:学生活动媒体应用设计意图

  目标达成

  导入新课

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的.内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

  3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3.学生测量

  4.汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  环节

  三、应用所学,解决问题。

  1、基础练习(课本第68页做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。()

  (2)三角形的内角和可能是180度。()

  (3)一个三角形中最多只能有一个直角。()

  (4)三角形的三个内角分别可能是30度,60度,70度。()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

  四、总结:这节课你有什么收获?

数学三角形的内角教案5

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的`内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

数学三角形的内角教案6

  教学目标

  通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

  教学重难点

  三角形的内角和

  课前准备

  电脑课件、学具卡片

  教学活动

  一、计算三角尺三个内角的和。

  出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

  引导学生说出90度、60度、30度。

  出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

  提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

  学生计算后指名回答。

  师:三角尺三个角的和是180度。

  二、自主探索,解决问题

  提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上

  任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

  学生小组活动,教师了解学生情况,个别同学加以辅导。

  全班交流:让学生分别说出三个角的度数以及它们的和。

  提问:你发现了什么?

  :任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

  三、试一试

  要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

  教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

  计算的结果为准。

  四、巩固提高

  完成想想做做的题目。

  第1题

  学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

  第2题

  指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的.和是180度。

  第3题

  通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

  第4、5、6

  引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

数学三角形的内角教案7

  一、学生知识状况分析

  学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

  活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.

  二、教学任务分析

  上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:

  知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

  (2)灵活运用三角形内角和定理解决相关问题。

  数学能力:用多种方法证明三角形定理,培养一题多解的能力。

  情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.

  三、教学过程分析

  本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结

  第一环节:情境引入

  活动内容:(1)用折纸的方法验证三角形内角和定理.

  实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

  (1) (2) (3) (4)

  试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

  (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

  试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

  活动目的:

  对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

  教学效果:

  说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

  第二环节:探索新知

  活动内容:

  ① 用严谨的证明来论证三角形内 角和定理.

  ② 看哪个同学想的方法最多?

  方法一:过A点作DE∥BC

  ∵DE∥BC

  DAB=B,EAC=C(两直线平行,内错角相等)

  ∵DAB+BAC+EAC=180

  BAC+ C=180(等量代换)

  方法二:作BC的延长线CD,过点C作射线CE∥BA.

  ∵CE∥BA

  ECD(两直线平行,同位角相等)

  ACE(两直线平行,内错角相等)

  ∵BCA+ACE+ECD=180

  B+ACB=180(等量代换)

  活动目的.:

  用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。

  教学效果:

  添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的.

  第三环节:反馈练习

  活动内容:

  (1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

  (2)△ABC中 ,C=90,A=30,B=?

  (3)A=50,C,则△ABC中B=?

  (4)三角形的三个内角中,只能有____个直角或____个钝角.

  (5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

  (6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?

  (7)已知:△ABC中,B=2A。

  (a)求B的度数;

  (b)若BD是AC边上的高,求 DBC的度数?

  活动目的:

  通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

  教学效果:

  学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。

  第四环节:课堂小结

  活动内容:

  ① 证明三角形内角和定理有哪几种方法?

  ② 辅助线的作法技巧.

  ③ 三 角形内角和定理的简单应用.

  活动目的:

  复习巩固本课知识,提高学生的掌握程度.

  教学效果:

  学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.

  课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题

  四、教学反思

  三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

  (1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。

  (2) 充分展示学生的个性,体现学生是学习的主人这一主题。

  (3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

数学三角形的内角教案8

  教学内容:

  p.28、29

  教材简析:

  本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

  教学目标:

  1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

  2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

  3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

  教学准备:

  三角板,量角器、点子图、自制的三种三角形纸片等。

  教学过程:

  一、提出猜想

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

  看了这2个算式你有什么猜想?

  (三角形的三个角加起来等于180度)

  二、验证猜想

  1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2、折、拼:学生用自己事先剪好的图形,折一折。

  指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的.角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

  3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

  在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

  4、试一试

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,结果相同吗?

  三、完成想想做做

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

  3、用一张正方形纸折一折,填一填。

  4、说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  四、布置作业

  第4、5题

数学三角形的内角教案9

  一、教材分析

  “三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下基础。本节课首先让学生对三角形的特点进行复习,随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探索三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探索过程。

  二、学情分析

  有的学生可能从各种渠道已经对“三角形内角和是180°”有所了解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深刻。经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

  1。知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。

  2。能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的计算机操作。

  三、教学方法

  渗透猜想——验证——结论——应用——拓展

  教学目标:

  1、通过直观操作的方法,探索并发现三角形三个内角和等于180度,在实践活动中,体验探索的过程和方法

  2、能应用三角形内角和的性质解决一些简单的问题。

  教学重点:

  经历三角形的内角和是180°这一知识的形成、发展和应用的全过程,会应用三角形的内角和解决实际问题;

  教学难点:

  是探索和验证性质的过程。

  四、教具学具

  三角板、量角器、剪刀、白纸

  五、教学过程

  (一)、激趣导入,揭示课题

  1、师:同学们,猜猜它是谁?

  形状似座山,稳定性能坚,三竿首尾连,学问不简单(打一几何图形)三角形(板书)我们已经认识了什么是三角形,谁能说出三角形有什么特点?生回答。(互相补充)(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

  2、现在,我们来玩一个跟三角形的角有关的游戏。只要大家说出三角形任意两个角的度数,老师就能猜出第三个角,你们相信吗?

  要求每个4人小组拿出本组预先准备的学具袋。(内含四个不同的三角形,包括直角、锐角和钝角三角形至少各一个,且要求大小不一。)

  3、活动——量一量:每人任意拿出一个自己带来的三角形,用量角器量出三角形中三个角的度数,并写在三角形中。(独立完成,非小组合作。)

  然后分别请几个学生报出不同三角形的两个角的度数,教师当即说出第三个角的度数。(事先向学生说明误差仅为3、4度左右。)

  你们知道老师是怎么猜出来的吗?

  到底它们之间有什么样的秘密呢?我们今天这节课就要来揭开这个秘密。

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  拿出两个三角板,问:它们是什么三角形?(直角三角形)

  请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。这两个三角形都是直角三角形,并且是特殊的三角形。

  【设计意图】

  三角板是学生非常熟悉的学习用具,度数也是非常清楚,通过计算学生熟悉的三角板内角和来验证这个结论,学生也容易接受。

  2、探究一般三角形内角和

  (1)猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2)操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明?(可以先量出每个内角的.度数,再加起来。)

  那就请小组共同计算吧!将学生采用分组的方法分成锐角三角形组、直角三角形组、钝角三角形组、等腰三角形组,各组在白纸上任意画三角形,并量出每个内角的度数,计算三角形内角和。由组长统计记录员记录各组的内角和情况。

  (3)小组汇报结果。

  请各小组汇报探究结果。提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  【设计意图】

  学生任意画的三角形,有大的、有小的,有各种类型的,不论是什么样的三角形,学生都亲自动手动笔算出内角和。这个探索过程简单学生又容易接受。

  3、操作验证

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?(先小组讨论,再汇报方法)

  (2)学生操作,教师巡视指导。

  (3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,证实三角形内角和确实是180°,测量计算有误差。

  【设计意图】

  学生通过亲自动手操作,将三角形的三个内角剪拼成一个平角,形象、直观地说明了“三角形内角和是180度”这个结论。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°。)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°)这两道题都有两种答案,到底哪个对?为什么?(学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  在三角形中,已知∠1=85°,∠2=65°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到方法。

  六、课堂总结

  通过这节课的学习,你有哪些收获?

数学三角形的内角教案10

  设计说明

  在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去探究、发现新知识的奥妙,从而让学生在动手操作、积极探究的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角板上每个角的度数都比较熟悉,从这里入手,先让学生算出每块三角板上三个内角的和是180°,进而引发学生猜想:其他三角形的内角和也是180°吗?接着引导学生小组合作,任意画出不同类型的三角形,通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差)。再引导学生通过剪拼的方法发现各类三角形的三个内角都可以拼成一个平角。然后利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列的活动潜移默化地向学生渗透了转化的数学思想,为后面的学习奠定了必要的基础。最后安排了三个层次的练习,逐层加深。在练习的过程中,既激发了学生主动解题的积极性,拓展了学生的思维,又兼顾到了智力水平发展较快的学生。

  课前准备

  教师准备 多媒体课件

  学生准备 三角板

  教学过程

  ⊙复习导入

  师:请同学们回忆一下,我们以前学过哪些平面图形?(长方形、正方形、平行四边形、三角形等)

  师:这些是我们早已认识的平面图形,那么你们知道长方形有什么特征吗?(学生汇报:长方形的对边相等,有四个角,且四个角都是直角)

  师:这四个角一共是多少度?(360°)

  师:你是怎么算的?(90°×4=360°)

  师:请看大屏幕。(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角(课件分别显示出三个角的弧线),我们把三角形里面的`这三个角叫做三角形的内角。

  师:通过刚才的回忆,同学们知道长方形四个内角的和是360°,那么三角形的内角和又是多少呢?这节课我们就来探究三角形的内角和。(板书课题)

  设计意图:通过复习学过的平面图形,唤醒学生的认知。借助长方形四个角都是直角的特征,学生通过计算很容易知道长方形的内角和是360°,从而质疑三角形的内角和是多少。这样以问题情境开始,既丰富了学生的感官认识,又激发了学生的探究欲望。

  ⊙探究新知

  1.探究特殊三角形的内角和。

  师:(课件出示一块三角板)大家熟悉这块三角板吗?请拿出形状与这块一样的三角板,并和同桌互相说一说各个角的度数。(课件出示由三角板抽象出的三角形)

  师:这个三角形三个角的度数和是多少?(180°)你是怎样知道的?(90°+45°+45°=180°)

  明确:把三角形三个内角的度数合起来就叫做三角形的内角和。

  师:(课件出示由另一块三角板抽象出的三角形)这个三角形的内角和是多少度?(90°+60°+30°=180°)

  师:从刚才两个三角形内角和的计算中你发现了什么?(这两个三角形的内角和都是180°,且这两个三角形都是直角三角形)

  2.探究一般三角形的内角和。

  (1)刚才我们探究了直角三角形的内角和是180°,那么其他任意三角形的内角和又是多少度呢?请大家猜一猜。(大多数学生认为也是180°)

  (2)操作、验证一般三角形的内角和是180°。

  师:刚才大多数同学认为三角形的内角和是180°,但也有几个同学不敢肯定,那么我们用什么方法来验证这个猜想是否正确呢?

  ①小组合作,探究验证方法。

  师:请每位同学先独立思考,然后把你的想法在小组内交流,看一看哪个小组想出的方法最多。

  ②交流汇报。

  预设

  组1:我们小组用量角器把三角形的三个内角的度数分别量出来,再加起来看一看是不是等于180°。

  组2:我们小组猜想三角形的内角和是180°,而平角的度数也是180°,如果三角形的三个内角刚好能拼成一个平角,那么就说明三角形的内角和是180°。所以我们小组把三角形的三个内角剪下来,拼一拼,看一看能不能拼成一个平角。

  ③动手操作,验证猜想。

  师:请同学们选择一种你喜欢的方法来验证我们刚才的猜想,验证完,将你的结论在小组内交流。(出示课堂活动卡,教师巡视,参与各小组的验证活动,并给予适当的指导)

  师小结:大家刚才量出来的结果或拼出来的结果都在180°左右,其实三角形的内角和就是180°,因为在测量或操作的过程中会产生误差,所以数据会有一些偏差。

  3.得出结论。

  师:根据上面的验证,我们可以得出一个怎样的结论?(三角形的内角和是180°,教师板书:三角形的内角和是180°)

  设计意图:学生通过操作、思考、反馈等过程,真正经历了有效的探究活动,先由直角三角形算出其内角和,再用猜想、操作、验证等方法推导出一般三角形的内角和,最后归纳得出所有三角形的内角和都是180°。在这个过程中,学生不仅体会到了数学学习中归纳的思想方法,还感受到了数学与生活的密切联系。

数学三角形的内角教案11

  【教学内容】:

  人教版义务教育课程标准试验教科书数学四年级下册第67页。

  【设计理念】

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

  【学习目标】

  1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

  2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

  3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  【教学重点】

  探索和发现“三角形的内角和是180°”。

  【教学难点】

  运用三角形的内角和解决实际问题。

  【教学准备】

  教师:多媒体课件、剪好的不同类型的三角形。

  学生:量角器、剪刀、剪好的不同类型的三角形。

  【教学过程】

  一、创设情景,引出问题

  1、猜谜语。

  师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

  师:打一几何图形。猜猜看!

  学生猜谜语。

  根据学生的回答,课件出示谜底。

  师:真是三角形,同学们的反应真快!

  2、复习三角形的内容。

  其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

  指名学生回答。

  (当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

  3、引出课题。

  师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

  (板书课题:三角形的内角和)

  二、探究新知

  1、讨论、交流验证知识的方法。

  师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

  学生汇报:①用量的方法;②用拼的方法;③用折的方法......

  2、操作验证。

  师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

  选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

  3、学生汇报。

  师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

  学生汇报,教师适时板书。

  ①用量的方法:

  指名学生汇报度量的结果,教师板书。(指两名学生汇报)

  教师白板演示测量方法,并计算和板书出结果。

  教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

  师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

  ②用拼的方法

  a、学生汇报拼的方法并上台演示。

  我这里也有一个钝角三角形,请两名同学上台演示。

  b、请大家四人小组合作,用他的方法验证其它三角形。

  c、展示学生作品。

  d、师课件展示。

  师:我们用量、拼得到了180度,还有什么方法?

  ③用折的方法

  师:还想向同学们请同学们看一看他是怎么折的'(课件演示)。

  师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

  教师根据学生板书:(任意)三角形的内角和是180度。

  ④数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

  三、巩固练习

  数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

  1、课件出示:我是小判官(对的打“√”错的“×”。)

  强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

  教师:为什么不是360°?学生回答。

  2、接下来我要奖励你们一个游戏:《帮角找朋友》

  3、求未知角的度数。

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  ①课件出示第一个三角形,学生尝试独立完成,教师巡视。

  教师:刚才,我们利用了三角形的什么?

  ②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

  a、我三边相等;b、我是等腰三角形,我的顶角是96°。c、我有一个锐角是40°。

  教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

  四、拓展延伸

  师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

  接着让学生尝试求5边形和6边形的内角和。

  小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

  五、课堂总结。

  师:这节课你有什么收获?

  学生自由发言。

  师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

  同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

  六、作业布置

  完成教材练习十六的第1、3题。

  七、板书设计:

  (任意)三角形的内角和是180°

  ∠1+∠2+∠3=180°

  度量剪拼折拼

数学三角形的内角教案12

  【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

  【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

  【学情分析】:

  学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

  【学习目标

  1、结合具体图形能描述出三角形的内角、内角和的含义。

  2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

  3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  【评价任务设计

  1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

  2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

  3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

  【重难点

  教学重点:探索和发现三角形的内角和是180°。

  教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

  【教学过程】

  一、复习准备。

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

  二、探究新知

  (一)创设情境,生成问题,认识三角形的内角及内角和

  (播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的`。”

  师:动画片看完了,请大家想一想,什么是三角形的内角和?

  师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

  多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

  (达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫

  (二)、引导猜测三角形的内角和是180度

  师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

  预设:学生回答直角三角形。

  师:你为什么这么认为呢?

  生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

  (达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)

  (三)、验证三角形的内角和是180度

  1.确定研究范围

  师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

  师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?

  2.操作验证

  教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

  智慧锦囊:

  (1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

  (2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

  3.汇报交流

  师:谁来汇报你的验证结果?

  (1)测算法

  师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

  (2)剪拼法

  (3)折拼法

  师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

  (4)推算法

  ①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

  师直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

  课件演示

  ②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

  4.总结提炼

  师:孩子们,刚才我们通过“量——————推”的方法分类验证了三角形的内角和是( )度?

  现在可以下结论了吗?

  (板书:三角形三个内角和等于180°。)

  师:那在“三角形的争吵中”谁是对的?

  (达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)

  (四)利用三角形内角和是180解决问题

  1、看图,求出未知角的度数。

  2、书本85页“做一做”

  在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。

  (达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)

  三、目标达成检测方案:

  1、求出三角形各个角的度数。

  2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。

  四、课堂小结,提升认识

  同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?

  师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己

数学三角形的内角教案13

  教学目标:

  1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。

  2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。

  3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。

  教学重点:

  让学生经历“三角形内角和是180度”这一知识的`形成、发展和应用的全过程。

  教学难点:

  三角形内角和的探索与验证。

  教学准备:

  量角器各种类型的三角形(硬的纸板)三角板

  教学过程:

  一、设疑激趣,导入新课

  师:今天老师给大家带来了一位朋友(课件)出示三角形,

  师:对于三角形你有哪些认识与了解。

  生:三角形有锐角三角形、直角三角形、钝角三角形

  生:由三条线段围成的平面图形叫三角形。

  师:介绍内角、内角和

  三角形中每两条边组成的角叫做三角形的内角。

  师:三角形有几个内角。

  生:三个。

  师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?

  生1:我通过直角三角板知道的

  生2:我通过长方形中四个角都是直角,是360度,三角形是长方形的一半,所以是180度

  生3:我预习了,三角形内角和就是180度)

  师:是不是向他们说的一样,所有的三角形内角和都是180度呢?

  二、自主探索,进行验证

  师:你打算怎样验证呢?

  生1用量角器量出每个角的度数,再加一加看看是不是180度生2:把三角形撕下来

  师:怎么撕?象这样撕吗?(作乱撕状),能说的详细些具体些吗?生2:(补充),把三个角撕下来,拼在一起,看能不能拼成一个平角

  生3:把三个角顺次画下来也可以

  生4:拼一拼的方法

  师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证师:CAI多媒体课件展示操作要求:

  合作探究:

  1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证

  2、看那个小组验证的方法新、方法多

  师:在巡视,并进行个别操作指导

  三、交流探索的方法和结果

  孩子们探索的方法可能有三个:

  生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。

  生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个平角,由此得出三角形中三个角的和是180度。

  生3:三是折一折,把三个角折在一起,折在一起成为一个平角,由此得出三角形中三个角的和是180度。

  四、归纳总结,体验成功

  师:孩子们,三角形中三个角的度数和到底是多少度呢?

  生:180度。

  五、拓展应用

  1、基础练习

  2、等边三角形、等腰三角形、直角三角形

  六、课堂小结

  谈一谈自己的学习收获。

【数学三角形的内角教案】相关文章:

数学三角形的内角教案13篇03-15

《三角形内角和》数学教案12-18

《三角形的内角和》教案04-11

三角形内角和教案03-17

三角形内角和教案02-19

《三角形的内角和》教案03-01

三角形内角和教案10篇05-14

三角形内角和教案(15篇)02-20

三角形内角和教案15篇02-20