当前位置:育文网>教学文档>教案> 有理数减法教案

有理数减法教案

时间:2024-09-26 21:29:48 教案 我要投稿

有理数减法教案(精选17篇)

  作为一名人民教师,就难以避免地要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。快来参考教案是怎么写的吧!下面是小编帮大家整理的有理数减法教案,希望对大家有所帮助。

有理数减法教案(精选17篇)

  有理数减法教案 1

  一、教学目标

  ㈠知识与技能

  1.理解掌握有理数的减法法则

  2.会进行有理数的减法运算

  ㈡过程与方法

  1.通过把减法运算转化为加法运算,向学生渗透转化思想

  2.通过有理数减法法则的推导,发展学生的逻辑思维能力

  3.通过有理数的'减法运算,培养学生的运算能力

  ㈢情感态度与价值感

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想

  二、学法引导

  1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2.学生学法:探索新知归纳结论练习巩固

  三、重、难点与关键

  1.重点:有理数减法法则和运算

  2.难点:有理数减法法则的推导

  3.关键:正确完成减法到加法的转化

  四、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  五、教学过程

  ㈠创设情境,引入新课

  1、计算(口答)

  (1)-3+(-7)

  (2)-10+3;

  (3)10+(-3)

  2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?

  引导学生观察:

  生:3℃比-3℃高6℃

  师:能不能列出算式计算呢?

  生:3-(-3)

  师:如何计算呢?

  总结:这就是我们今天要学的内容.(引入新课,板书课题)

  ㈡探索新知,讲授新课

  1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?

  生:6+(-3)=3

  师:很好!由此可知3-(-3)=6

  师:计算:3+(+3)得多少呢?

  生:3+(+3)=6

  师:让学生观察两式结果,由此得到

  3-(-3)=3+(+3)

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

  生:可以

  师:是如何转化的呢?

  生:减去一个负数(-3),等于加上它的相反数(+3)

  2、换几个数再试一试,计算下列各式:

  ⑴0-(-3)=0+(+3)=

  ⑵-5-(-3)=-5+(+3)=

  ⑶9-8=9+(-8)=

  引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?

  归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。

  (投影显示或板书)有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  用式子表示为:a-b=a+(-b)

  强调注意:减法在运算时有2个要素发生了变化

  1、减加

  2、数相反数

  3、例题讲解:(出示投影)

  有理数减法教案 2

  教学目标:

  1、知识与技能:

  (1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

  (2)能熟练进行有理数的减法法则。

  2、过程与方法

  通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

  重点、难点

  1、重点:有理数减法法则及其应用。

  2、难点:有理数减法法则的应用符号的改变。

  教学过程:

  一、创设情景,导入新课

  1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=

  —3+(+5)=

  2、-(-2)= -[-(+23)]=,+[-(-2)]=

  3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?

  导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)

  二、合作交流,解读探究

  1、(-2)-(-10)=8=(-2)+8

  2、珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?

  3、通过以上列式,你能发现减法运算与加法运算的关系吗?

  (学生分组讨论,大胆发言,总结有理数的减法法则)

  减去一个数等于加上这个数的相反数

  教师提问、启发:

  (1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?

  (2)法则中的“加上这个数的.相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?

  (3)你能用字母表示有理数减法法则吗?

  三、应用迁移,巩固提高

  1、P.24例1 计算:

  (1) 0-(-3.18)(2)(-10)-(-6)(3)-

  解:(1)0-(-3.18)=0+3.18=3.18

  (2)(-10)-(-6)=(-10)+6=-4

  (3)-=+=1

  2、课内练习:P.241、2、3

  3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。

  四、总结反思

  (1) 有理数减法法则:减去一个数,等于加上这个数的相反数。

  (2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。

  五、作业

  P.27习题1.4A组1、2、5、6

  备选题

  填空:比2小-9的数是 。

  а比а+2小 。

  若а小于0,е是非负数,则2а-3е 0。

  有理数减法教案 3

  教学目标:

  1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

  2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

  3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

  教学重点

  能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

  教学难点

  准确、熟练地进行加减混合运算

  教学过程

  一、课前预习

  1、有理数的.加法法则是什么?

  2、有理数的减法法则是什么?

  3、有理数的加法有什么运算律?具体内容是什么?

  4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  例1、计算 (1)14-(-12)+(-25)-17

  (2)2+5-8

  (3)7-(-4)+(-5)

  (4)-7.2+4.7-(-8.9)+(-6)

  (5) - +(- )-(- )-(+ )

  例2.计算:

  (1) -3-5+4 (2)-26+43-24+13-46

  例3、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 —— [ 数据代入时,注意括号的运用]

  (2) (3)(4)

  例4、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?

  (2)这小组这一天共走了多少千米

  三、学习小结

  这节课你学会了哪几种运算?

  四、随堂练习

  1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)

  (2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ )

  (4) -7.52+ -1.48

  (5)21-12+33+12-67

  (6)-3.2+5.8-8.6+12

  2 计算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (3)-2.7-[3-(-0.6+1.3)]

  有理数减法教案 4

  教学目标

  1. 会把有理数的加减法混合运算统一为加法运算;

  2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;

  3.进一步感悟“转化”的思想.

  教学重点

  把有理数的加减法混合运算统一为加法运算.

  教学难点

  省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.

  教学过程

  根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.

  完成下列计算:

  (1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4)

  (2)省略负数前面的加号和( )后的形式是______________________;

  读作____________________ 或 _______________________.

  展示交流

  1.把下列运算统一成加法运算:

  (1)(-12)+(-5)-(-8)-(+9)=_____________________________;

  (2)(-9)-(+5)-(-15)-(+9)=_____________________________;

  (3) 2+5-8=_________________________________;

  (4) 14-(-12)+(-25)-17=_____________________________________.

  2. 将下列有理数加法运算中,加号省略:

  (1)12+(-8)=________________;

  (2)(-12)+(-8)=_________________________________;

  (3)(-9)+(-5)+(+15)+(-20)= ____________________________.

  3.将下列运算先统一成加法,再省略加号:

  (-15)-(+63)-(-35)-(+24)+(-12)=_________________________

  =_________________________.

  4. 仿照本P37例6,完成下列计算:

  (1) -4-5+6 ;

  (2) -23+41-24+12-46.

  5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的.什么方向?与驻地的距离是多少?

  盘点收获

  个案补充

  课堂反馈

  1.计算:

  2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?

  迁移创新

  一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?

  课堂作业

  本P39 习题2 .5第6题(1)、 (3)、(5), 第7题

  有理数减法教案 5

  一、 教材结构与内容简析

  在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:

  (1)渗透由特殊到一般的辩证唯物主义思想

  (2)培养学生严谨的思维品质。

  二、 教学目标

  根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的.运算能力。

  三、教学建议

  (一)重点、难点分析

  本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.

  (二)教法建议

  1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。

  备注:教学过程我主要说第一小节---去括号

  (三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点

  本节课的教学设计环节:

  教学环节 教学活动设计 设计说明

  前提诊测,复习提问1、如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的本身;2、绝对值检测:随机出五六道小题即可 复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”

  提出问题,创设情景 把以下数相加、相减

  1、+4,-5,+3,-6,-7,3,-2.5

  2、-3.2,-2.6,+5,+6,-4 在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)

  尝试指导,实施目标 从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)

  题型训练,巩固目标1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)

  3、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6);

  +(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);

  -(-7)+(-2.3)-(-5.1)+(-3) 此处要反复练习,并使学生明白去括号后的是省略加号的和式。

  鼓励学生积极发言,增进师生、生生之间的交流、互动.

  形成性测试,检测目标

  1、做书18、20、23、24页练习题(只去括号)

  2、利用书上习题1.3复习巩固1、2题的双数题进检测 把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

  归纳总结,纳入知识系统+(),去掉括号后所得结果仍是括号内的数;-(),去掉括号后所得结果是括号内数的相反数。 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

  有理数减法教案 6

  学习目标:

  1、理解加减法统一成加法运算的意义。

  2、会将有理数的加减混合运算转化为有理数的加法运算。

  3、培养学习数学的兴趣,增强学习数学的信心。

  学习重点、难点:

  有理数加减法统一成加法运算

  教学方法:

  讲练相结合

  教学过程

  一、学前准备

  1、一架飞机作特技表演,起飞后的高度变化如下表:

  高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米

  记作 +4.5千米 3.2千米 +1.1千米 1.4千米

  请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。

  2、你是怎么算出来的,方法是

  二、探究新知

  1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!

  2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。

  3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 。再把加号记在脑子里,省略不写

  如:(—20)+(+3)—(—5)—(+7) 有加法也有减法

  =(—20)+(+3)+(+5)+(—7) 先把减法转化为加法

  = —20+3+5—7 再把加号记在脑子里,省略不写

  可以读作:负20、正3、正5、负7的 或者负20加3加5减7。

  4、师生完整写出解题过程

  三、解决问题

  1、解决引例中的问题,再比较前面的`方法,你的感觉是

  2、例题:计算—4.4—(—4 )—(+2 )+(—2 )+12.4

  3、练习:计算 1)(7)(+5)+(4)(10)

  三、巩固

  小结:说说这节课的收获

  四、作业

  1、P255

  2、P26第8题、14题

  有理数减法教案 7

  知识与技能

  理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。

  过程与方法

  经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。

  情感态度与价值观

  体会数学与现实生活的联系,提高学生学习数学的兴趣。

  教学重点、难点与关键

  1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。

  2.难点:省略括号和加号的`加法算式的运算方法。

  3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式。

  教具准备

  投影仪。

  教学过程

  一、复习提问,引入新课

  1.叙述有理数的加法、减法法则。

  2.计算。

  (1)(-8)+(-6);

  (2)(-8)-(-6);

  (3)8-(-6);

  (4)(-8)-6;

  (5)5-14.

  二、新授

  我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算。

  例6:计算:(-20)+(+3)-(-5)-(+7)。

  分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。

  解:(-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7)

  =[(-20)+(-7)]+[(+3)+(+5)]

  =-27+(+8)

  =-19

  把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。

  归纳:加减混合运算可以统一为加法运算。

  用式子表示为a+b-c=a+b+(-c)。

  式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.

  这个式子读作负20、正3、正5、负7的和或读作负20加3加5减7。

  例6的运算过程也可简写为:

  (-20)+(+3)-(-5)-(+7)

  =(-20)+(+3)+(+5)+(-7) (加减法统一为加法)

  =-20+3+5-7 (省略式子中的括号和括号前面的加号)

  =-20-7+3+5 (加法交换律交换时,要连同符号一起交换)

  =-19 (异号两数相减)

  三、巩固练习

  课本第24页练习。

  (1)题是已写成省略加号的代数和,可运用加法交换律、结合律。

  原式=1+3-4-0.5=0-0.5=-0.5

  (2)题运用加减混合运算律,同号结合。

  原式=-2.4-4.6+3.5+3.5=-7+7=0

  (3)题先把加减混合运算统一为加法运算。

  原式=(-7)+(-5)+(-4)+(+10)

  =-7-5-4+10 (省略括号和加号)

  =-16+10

  =-6

  四、课堂小结

  有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。

  五、作业布置

  课本第25页第26页习题1.3第5、6、13题。

  有理数减法教案 8

  知识与能力:

  1.使学生理解有理数的加减法法可以互相转化。

  2.使学生熟练地进行有理数的加减混合运算。

  过程与方法:

  1.体会有理数的加减法法可以互相转化的思想。

  2.培养学生的运算能力。

  情感态度与价值观:

  培养学生认真、仔细的良好学习态度。

  重点

  准确迅速地进行有理数的加减混合运算。

  教材提示:

  本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。

  教学过程

  一、自主学习

  (一)、阅读教材23-24页。

  (二)、导学练习

  [活动1]:学生课前自主完成。

  1.减法法则: ,用字母表示为:

  2.计算(1)1-5=

  (2)8-11=

  (3)6-9=

  (4)9-(-9)=

  [活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。

  1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?

  2、一20十3十(十5)十(一7)(读作 __ 的.和 )

  3、 计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。

  4、 计算在做有理数运算时,易出 符号错误。

  计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)

  =(一9)十(十1) =一8

  (2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22

  以上两个小题均有错误,指出错在哪里,并改正。 [学法指导:有理数混合运算,只有将减法按规则统一成加法后,才能省略加号,而减号不能省略。在有理数加减混合运算中,当我们把减法转化为加法时,为了书写简便,常常省略加号和括号。]

  5、分别指出下列两个式子的读法,表示那些数的和,并计算:

  8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。

  (三)、自学疑难摘要:

  自主学习小组长检查等级 等,组长签字

  二、合作探究

  计算:

  1、-5+3-2 +6+7-8-9;

  2、-0.5-(-3 )+2.75-(+7 )

  [学法指导:在完成以上计算题时,一定要注意当把 减号变为加号时,减数必须变为原数的相反数,再利用加法法则进行计算。在进行有理数的加减运算时,当减法转 化为加法后,可以用加法交换律和加法结合律,这样可以使运算简便。]

  [小组活动:

  1.在进行小组交流时,各位组长一定要注意每一位组员,看他们是否掌握了减法法则,特别是交流一下如何把减数变为原来的相反数。

  2.特别小心在省略加号时是否正确。

  3.组长注意自己小组到黑板上交流的任务,安排好展示的人员,督促大家掌握本节课的学习任务。]

  三、展示提升

  1、每个同学自主完成二中的练习后先在小组内交流讨论。

  2、每个组根据分配的任务把自己组的结论板 书到黑板上准备展示。

  3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

  四、反馈与检测

  1.计算:(1)(-41)-(-18)-(+39)-(-72) (2)

  2.活动与探究:23. 1 ―3 +5―7 +9―11++97―99= 。

  [学法指导:这个环节的处理方式是第1题在课堂上完成,第2题在课外由组长主持,进行探究活动,进而对所学知识加以巩固。]

  有理数减法教案 9

  教学目标

  知识与技能:

  熟记有理数的减法法则,能熟练进行有理数减法运算。

  过程与方法:

  1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;

  2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。

  情感态度价值观:

  4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。

  教学重、难点

  重点:有理数减法法则和运算

  难点及突破:有理数减法法则的推导

  教学用具

  多媒体

  教学过程设计

  一、导入

  我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?

  生:减法

  师:今天我们一起来学习有理数的'减法!

  二、一起研究

  下表是1月28日天气预报中部分城市的和最低气温统计表

  城市/°C最低气温/°C

  昆明92

  杭州6-2

  北京-2-12

  温差怎么表示?(温差=-最低气温)

  1.那么怎么表示这一天的温差呢?学生填表回答

  城市表示温差的算式观察到的温差/°C

  昆明9-27

  杭州

  北京

  结论:昆明的温差可表示成9-2=7°C

  杭州的温差可表示成6-(-2)=8°C

  北京的温差可表示成-2-(-12)=10°C

  2.现在我们来看这样一组算式,填空:

  9+________=7; 6+______=8; -2+_______=10.

  3.比较:9-2=7 9+(-2)=7

  6-(-2)=8 6+2=8

  -2-(-12)=10 -2+(+12)=10

  思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。

  怎样把加法转化为减法运算?

  法则:减去一个数,等于加上这个数的相反数。

  4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?

  例1(略)

  注意:减法转化为加法时,减数一定要改变符号

  例2 (略)

  三、练习:

  P28 1、2

  四、小结

  1.理解有理数减法运算的法则。

  2.熟悉有理数减法运算的两个步骤

  3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。

  五、板书设计

  1.6 有理数减法

  1.减法法则:减去一个数,等于加上这个数的相反数

  a-b=a+(-b)

  有理数减法教案 10

  教学目标

  1、 经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题 ,培养抽 象概括能力和口头表达能力。

  教学重点

  运用有理数减法法则做有理数减法运算。

  教学难点

  有理数减法法则的得出。

  教具 学具

  多媒体、教材 、计算器

  教学方法

  研讨法、讲练结合

  教学过程

  一、 引入新课:

  师:下面列出的是连续四周的最高和最低气温:

  第1周 第二周 第三周 第四周

  最高气温 +6℃ 0℃ +4℃ -2℃

  最低气温 +2℃ -5℃ -2℃ - 5℃

  周温差

  求每 周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0 -(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程

  二、 有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3 、自己设计一些有理数的减法,用计算器检验一下你 归纳的减法法则是否正确。

  举例: (-5)+( )=-2

  得出 (-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而 (-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  三、 法则的'应用:

  例1:先做笔算,再 用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  解:(1 )原式= -34+(-56)+(+28)

  =-90+(+28)

  = -62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  四、 练习反馈:

  书P411、2、 3

  师:巡视个别指导,订正答案。

  五、小结

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  作业书P50、515、6(作业本上)

  板书

  25有理数的减法(一)

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。 例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  有理数减法教案 11

  一、 教学目标:

  知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

  过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。

  情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  二、教学重点:

  运用有理数的减法法则,熟练进行减法运算。

  三、教学难点:

  理解有理数减法法则。

  四、教 材分析:

  本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

  五、教学方法:

  师生互动法

  六、教具:

  幻灯片

  七、课时:

  1课时

  八、教学过程:

  1、计算(口答):

  (1) 1+(-2)

  (2) -10+(+3)

  (3) +10+(-3)

  2、出示幻灯片二:

  这是11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

  教师引导观察

  教师总结:这就是我们今天要学习的内容(引入新课,板书课题)

  1、师:谁能把10-3=7这个式子中的.性质符号补出来呢?

  (+10)-(+3)=7

  再计算:(+10)+(-3),师让学生观察两式结果,由此得到:

  (+10)-(+3)=(+10)+(-3)

  观察减法是否可以转化为加法 计算呢?是如何转化的呢?

  (教师发挥主导作用,注意学生的参与意识)

  2、再看一题:

  计算:(-10)-(-3)

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?

  问题:计算:(-10)+(+3)

  教师引导,学生观察上述两题结果,由此得到

  (-10)-(-3)=(-10)+(+3)

  教师进一步引导学生观察式子,你能得到什么结论呢?

  教师总结:由以上两式可以看出减法运算可以转化成加法运算。

  教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?

  教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。

  强调法则:

  (1)减法转化为加法,减数要变成相反数

  (2)法则适用于任何两个有理数相减

  (3)用字母表示一般形式为a-b=a+(-b)

  3 、例题讲解:

  出示幻灯片三(例1和例2)

  例1计算:

  (1)6-(-8)

  (2)(-2)-3

  (3)(-2.8)-(-1.7)

  (4)0-4

  (5)5+(-3)-(-2)

  (6)(-5)-(-2.4)+(-1)

  教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤

  (1)转化

  (2)进行加法运算。

  例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?

  师巡视指导,最后师生讲评两个学生的解题过程。

  课后练习1、2

  教师巡视指导

  师组织学生自己编题

  1、 谈谈本节课你有哪些收获和体会?

  2、本节课涉及的数学思想和数学方法是什么

  课堂检测(包括基础题和能力提高题)

  1、-9-(-11)

  2、3-15

  3、-37-12

  4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?

  学生思考后抢答,尽量照顾不同层次的学生参与的积极性。

  学生观察思考如何计算

  学生观察思考

  互相讨论

  学生口述解题过程

  由两个学生板演,其他学生在练习本上做

  第1小题学生抢答

  第2小题找两个 学生板演。

  学生回答

  学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

  综合考查学以致用

  既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础

  创设问题情境,激发学生的认知兴趣。

  让学生通过尝试,自己认识减法可以转化为加法计算。

  学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力

  可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力

  可以照顾不层次的学生,调动学生学习积极性。

  通过练习让学生进一步巩固新知,体验知识的应用性。

  能增强学生学习的主动性和参与意识。

  学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

  锻炼学生综合运用知识,独立解题的能力

  板书设计:

  2.6有 理数的减法

  有理数减法法则:

  (+10)-(+3)=(+10)+(-3)

  ( -10)-(-3)=(-10)+(+3)

  减去一个数等于加上这个数的相反数. 例1:

  例2:

  练习:

  教学反思:

  本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。

  有理数减法教案 12

  教学目标

  1.理解有理数减法法则, 能熟练进行减法运算.

  2.会将减法转化为加法,进行加减混合运算,体会化归思想.

  重点

  有理数的减法法则的理解,将有理数减法运算转化为加法运算.

  难点

  有理数的减法法则的理解,将有理数减法运算转化为加法运算.

  教学方法

  讲授

  教学过程

  1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)

  2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?

  探索新知:

  (一) 有理数的减法法则的探索

  1.我们不妨看一个简单的问题: (-8)-(-3)=?

  也就是求一个数“?”,使 (?)+(-3)=-8

  根据有理数加法运算,有 (-5)+(-3)= -8

  所以 (-8)-(-3)= -5 ①

  2.这样做减法太繁了,让我们再想一想有其他方法吗?

  试一试

  做一个填空:(-8)+( )= -5

  容易得到 (-8)+(+3 )= -5 ②

  思考: 比较 ①、②两式,我们有什么发现吗?

  3.验证:

  (1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?

  3-(-5)=3+ ;

  (2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?

  (-3)-(-5)=(-3)+ ;

  (2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?

  (-3)-5=(-3)+ ;

  (二)有理数的减法法则归纳

  1.说一说:两个有理数减法有多少种不同的情形?

  2.议一议:在各种情形下,如何进行有理数的.减法计算?

  3.试一试:你能归纳出有理数的减法法则吗?

  由此可推出如下有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  字母表示:

  由此可见,有理数的减法运算可以转化为加法运算。

  【思考】:两个有理数相减,差一定比被减数小吗?

  说明:(1)被减数可以小于减数。如: 1-5 ;

  (2)差可以大于被减数,如:(+3)–(-2) ;

  (3)有理数相减,差仍为有理数;

  (4)大数减去小数,差为正数;小数减大数,差为负数;

  (三 )问题:

  问题1. 计算:

  ①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)

  ④(+2)-(+8) ⑤(-4)-16 ⑥

  问题2.(1)-13.75比少多少??

  (2)从-1中减去-与-的和,差是多少?

  (四)课堂反馈:

  求出数轴上两点之间的距离:

  (1)表示数10的点与表示数4的点;

  (2)表示数2的点与表示数-4的点;

  (3)表示数-1的点与表示数-6的点。

  归纳总结:

  1.有理数减法法则

  2.有理数减法运算实质是一个转化过程

  教学反思:

  1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系.

  2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。

  有理数减法教案 13

  一、学生起点分析:

  有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。学生对减法运算并不陌生,但在小学阶段多是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义.

  学生的知识技能基础:本节课是在学习了正负数、相反数、有理数的加法运算之后学习的新内容。

  学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些数学活动,解决了一些简单的实际问题,感受到了有理数运算的必要性与作用,具有了一定合作学习的经验,具备了一定的合作与交流的能力。

  二、学习任务分析

  “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1.知识目标:

  经历探索有理数的减法法则的`过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算.

  2.能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.

  3.情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习.

  为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.

  三、教学过程设计:

  根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  第一环节 引入课题:

  活动内容 多媒体呈现教科书61页图片,提出问题:乌鲁木齐的最高温度为4℃,最低温度为-3℃,这天乌鲁木齐的温差为多少?你是怎么算的?

  活动目的:根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。

  教学要求与效果:由身边的数学问题引入,感受有理数减法运算的现实意义。

  第二环节 新课讲解:

  活动内容:通过对温度计的观察,计算温差,感知有理数减法法则。

  问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗?

  先请同桌两位同学相互讨论交流,然后请2~3个学生发言.

  问题2:如何计算4-(-3)呢?

  先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数· 如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.

  即X+(-3) =4,因为7+(-3) =4,所以4-(-3) =7 减法 加法

  (+4)-(-3)=+7 (+4)+(+3)=+7

  让学生比较上面这两个算式并讨论后得出:

  (+4)-(-3)=(+4)+(+3)

  再给出以下算式:

  减法 加法

  (+5)-(+2)=+3 (+5)+(-2)=+3

  继续让学生比较上面这两个算式并讨论后得出:

  (+5)-(+2)=(+5)+(-2)

  问题3:请同学们想一想,4十?=7?

  请学生回答,教师板书:4+(+3) = 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:

  4-(-3)=4+(+3)

  这时教师问:你发现这个等式有什么特点?

  学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:

  (1)把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?

  (2)计算9-8,9+(一8),15一7,15+(一7),你发现了什么?

  请小组代表全班汇报,教师在此基础上归纳:

  有理数减法法则:减去一个数,等于加上这个数的相反数.

  问题4:你能够用字母把法则表示出来吗?

  a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性实际运算时会更加方便)

  强调运用法则时:被减数不变,减号变加号,减数变成其相反数

  减数变号(减法=加法)

  活动目的:《标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用.

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程.

  教学要求与效果:通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让他们的学习方式,争取让每个学生都在同伴的交流中获益。此处也是让学生验证前面所提的猜想的正确性,用字母把减法法则表示出来,有利于学生的理解和记忆。

  第三环节 巩固练习

  活动内容: 让学生完成课本P63的练习1,巩固有理数减法法则的运用,强化学生对这节课的掌握。例1,例2口答,例3题请2个学生上黑板板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。

  例1 计算 :(1) (-3)-(-5);

  (2) 0 - 7

  例2 计算(1) 7.2 - (-4.8) ;

  (2) (-3 -2 ) - 5

  例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

  活动目的:通过例题教学使学生巩固方法,初步具备解决问题的能力。

  教学要求与效果:讲解时注意让学生复述有理数法减法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。让学生感受8848米这个高度,培养学生的数感。

  第四环节:课堂小结(师生共同完成)

  1.有理数的减法运算法则:

  减去一个数,等于加上这个数的相反数 a-b=a+(-b)

  2.转化的思想方法:

  减法运算转化成加法进行计算

  第五环节:布置课后作业:

  课本习题知识技能的2.3.4和问题解决1,教学目的:通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。

  四、教学设计与反思

  1.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系.

  2.在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际问题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。

  有理数减法教案 14

  【教学目标】

  1.会进行有理数加法运算

  2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算

  3.会将有理数的减法运算转换成加法运算

  4.会进行加减混合运算

  此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体会“化归”的思想方法.

  【教学过程设计建议(第一课时)】

  1.情境创设

  除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:

  第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?

  如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.

  2.探索活动

  (1)需要特别注意的是,算式“( 3) (一2)= 1”

  只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.

  课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.

  与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然后确定输赢球的个数,这是绝对值问题.

  (2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.

  3.例题教学

  例1第(1)小题是求一个正数与一个负数的和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算

  学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。

  【教学过程设计建议(第二课时)】

  1.探索活动

  从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的`验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.

  在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.

  此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.

  2.例题教学

  例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.

  【教学过程设计建议(第三课时)】

  1.情境创设

  小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.

  2.探索活动

  (1)用问题串引导学生展开探索活动,例如:

  小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?

  小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.

  小明与小丽的结论相同,是偶然巧合吗?请举例说明.

  (2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.

  3.例题教学

  例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.

  设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.

  教学中,如有必要可适当补充加、减混合运算的例题、习题.

  4.小结

  除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.

  有理数减法教案 15

  一、学习目标:

  理解掌握有理数的减法法则会将有理数的减法运算转化为加法运算通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  二、学习重点:

  运用有理数的减法法则,熟练进行减法运算。

  三、学习难点:

  减法运算转化为加法运算

  1、课前预习导学

  (1)、有理数的减法法则:减去一个数,等于加上这个数的 .

  (2)、课堂学习研讨2、-3的相反数是 ;在-5, 中,相反数最小的数是 。

  2、计算:

  (1)-4+1= ;

  (2)(+8)+(-3)=

  (3)(-3.4)+(-5.6)= 。

  3、我市某天的最最高气温是4℃,最低气温是—3℃,请问这一天的温差是多少度?你能根据题意列出算式吗?

  4、0比—4多多少?—2比—6多多少?1比—5多多少?—3比2多多少?

  (1)列出算式,并借助数轴写出算式的答案;

  (2)计算:0+(+4)= —2+(+6)= 1+5= —3+(—2)=

  观察(2)的四个算式和(1)的四个算式,你发现了什么规律?把你的发现与你的`小组成员交流一下。在小组内再举出几个例子,验证一下你发现的规律是否正确。

  如:9—8 = ,9+(—8)= —4—5= ,—4+(—5)=

  5、计算下列各题

  (1)8-(-5)

  (2)(-2)-3

  (3)(-6)-0

  解:原式= 8+ 解:原式= -2+ 解:原式= + 0= = =

  (4) 0-6

  (5)(-2)-(-7)

  (6)4-(+7)

  解:原式= 0 + 解:原式= -2 + 解:原式= 4 += = =

  6、课内训练

  (1)(-3)-____=1

  (2)__-7=-2

  (3) -5-__=0

  8、国际空间站测得站外温度的变化范围是-157℃~121℃,站外的最大温差是多少?

  在运算过程中,要同时改变的两个符号,一个是运算符号由“-”变为“+”,一个是减数性质符号,由“正”变为“负”或由“负”变为“正”。同时,我们要注意,被减数的符号是不发生改变的。

  四、课后学习提高

  有理数减法教案 16

  教学目标

  1.理解掌握法则,会将运算转化为加法运算;

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力.

  3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

  教学建议

  (一) 重点、难点分析

  本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

  (二)知识结构

  (三)教法建议

  1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

  4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解掌握法则.

  2.会进行运算.

  (二)能力训练点

  1.通过把减法运算转化为加法运算,向学生渗透转化思想.

  2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

  3.通过运算,培养学生的运算能力.

  (三)德育渗透点

  通过揭示法则,渗透事物间普遍联系、相互转化的.辩证唯物主义思想.

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

  二、学法引导

  1.教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

  2.学生学法:探索新知→归纳结论→练习巩固.

  三、重点、难点、疑点及解决办法

  1.重点:有理数减法法则和运算.

  2.难点:有理数减法法则的推导.

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

  七、教学步骤

  (一)创设情境,引入新课

  1.计算(口答)(1); (2)-3+(-7);

  (3)-10+(+3); (4)+10+(-3).

  2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃.

  师:能不能列出算式计算呢?

  生:10-(-5).

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

  (二)探索新知,讲授新课

  1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7.

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7.

  师:让学生观察两式结果,由此得到

  (+10)-(+3)=+10)+(-3). (1)

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

  生:可以.

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3).

  【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

  2.再看一题,计算(-10)-(-3).

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

  教师给另外一个问题:计算(-10)+(+3).

  生:(-10)+(+3)=-7.

  教师引导、学生观察上述两题结果,由此得到:

  (-10)-(-3)=(-10)+(+3). (2)

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3).

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

  【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

  师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

  学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

  师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

  教师强调法则:

  (1)减法转化为加法,减数要变成相反数

  (2)法则适用于任何两有理数相减

  【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

  3.例题讲解:

  [出示投影1 (例题1、2)]

  例1 计算(1)(-3)-(-5);

  (2)0-7;

  例2 计算(1)7.2-(-4.8);

  例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算。

  例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

  【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

  师:组织学生自己编题,学生回答.

  【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授。

  (三)尝试反馈,巩固练习

  师:下面大家一起看一组题.

  [出示投影2 (计算题1、2)]

  1.计算(口答)

  (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);

  (4)(-4)-9 (5)0-(-5); (6)0-5.

  2.计算

  (1)(-2.5)-5.9; (2)1.9-(-0.6);

  (3)()-; (4)-().

  学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

  【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

  用实物投影显示课本第45页的画面.

  3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

  生答:8848-(-392)=8848+392=9240.

  所以两地高度相差9240米。

  【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际。

  (四)课堂小结

  提问:通过本节课学习你学到了什么?生答:略

  师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施。

  有理数减法教案 17

  〖教学目的〗

  〖知识与技能目标:〗

  理解有理数减法的意义。

  〖过程与方法:〗

  会进行有理数减法运算

  〖情感态度与价值观:〗

  有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.

  〖教学重点、难点:〗

  重点:异号两数相减。难点:异号两数相减。

  〖教学方法:〗

  引导发现法

  〖教具准备:〗

  尺、小黑板。

  〖教学过程:〗

  Ⅰ.复习提问:

  1.叙述有理数加法法则。

  2.两个有理数的和一定大于每一个加数吗?

  3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?

  4.3-10有意义吗?它应当等于多少?

  注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。

  Ⅱ.新课讲解:

  1.由问2、问3讲解有理数减法的意义。

  在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的'本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。

  由实际运算的例子归纳有理微减法法则。

  考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,

  (-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。

  等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。

  2.讲解例题:

  (1)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?

  解:∵15-5=10,∴15℃比5℃高10℃;

  ∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;

  ∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃

  比15℃低20℃。

  (2)教科书例1、例2。

  Ⅲ.做一做

  课堂练习:教科书第82页练习第1~3题。

  Ⅳ.课时小结

  有理数减法的意义。

  Ⅴ.课后作业

  习题2.6A组第1~9题,B组选做。

【有理数减法教案】相关文章:

有理数的减法教案(精选10篇)03-21

有理数加减法教案03-04

有理数加减法教案04-29

有理数的减法教案(通用13篇)03-20

《有理数的减法》教学反思11-14

《有理数的减法》说课稿 6篇12-16

《有理数的减法》说课稿(精选5篇)11-02

《有理数的减法》说课稿(精选11篇)10-18

《有理数的减法》说课稿6篇04-19

有理数的减法说课稿(通用11篇)11-02