- 相关推荐
《有理数》数学教案
作为一位兢兢业业的人民教师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?以下是小编为大家整理的《有理数》数学教案,希望对大家有所帮助。
《有理数》数学教案1
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
重点、难点分析
重点:是依据有理数的加法法则熟练进行有理数的加法运算。
难点:是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
知识结构
教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.有理数的`加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律a+b=b+a中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
《有理数》数学教案2
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、 教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的`具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。
教后反思事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
活动内容:
(1)1。计算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。计算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?
(4)计算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.
教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
《有理数》数学教案3
教学目标:
1.经历具体情境,发现并提出数学问题;
2.借助生活实例认识负数;
3.会判断一个数是正数还是负数.
重 点:负数的认识
难 点:负数引入的必要性
教学设计:
1.情景创设
情景(1): 课本第14页的四个画面
操作指导:可以以幻灯片的形成依此呈现
2.探索活动
根据课本画面提供的信息,通过一些有趣的问题,引导学生观察和思考.如: 你注意过天气预报吗?在课本中的天气预报电视画面里,哪个城市气温最低?
这几幅图中有小学里没有学过的数吗?你在其他的地方是否还见过这样的数?
天气预报电视画面上的'"-3℃"表示什么意思?你能说出其它图中带有"-"号的数表示的意思吗?
3.情境创设
情境(2): 让学生举一些现实生活中比零小的数的例子,感受现实生活中存在着小学里没有学过的"新数"---负数
4.探索活动
① 探讨情境中各负数的合理理解
② 理解正数、负数的概念
5.例题教学
课本第15页 例1 该例可以卡片的形式出示,让学生回答
6.课堂练习
课本第15页 "练一练"
7.小结
各小组互相讨论、总结,得到本节课的重要内容:负数引入的必要性,正、负数的概念 ( 理解负数的实质是"比0小" ).
8.布置作业
①.课本第17页习题 2.1第1、2题
②.学生调查:生活中负数运用的调查(可以小组的方式调查)
③.阅读:负数的发展史
《有理数》数学教案4
三维目标
一、知识与技能
掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
二、过程与方法
通过例题学习,发展学生观察、归纳、猜想、推理等能力。
三、情感态度与价值观
体验获得成功的感受、增加学习自信心。
教学重、难点与关键
1.重点:能正确地进行有理数的.加、减、乘、除、乘方的混合运算。
2.难点:灵活应用运算律,使计算简单、准确。
3.关键:明确题目中各个符号的意义,正确运用运算法则。
四、课堂引入
1.我们已经学习了哪几种有理数的运算?
2.有理数的乘方法则是什么?
五、新授
下面的算式里有哪几种运算?
3+5022(-)-1 ①
这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?
有理数的混合运算,应按以下运算顺序进行:
1.先乘方,再乘除,最后加减;
2.同级运算,从左往右进行;
3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如上面①式
3+5022(-)-1
=3+504(-)-1
=3+50(-)-1
=3--1
=-
例3:计算:(1)2(-3)3-4(-3)+15;
(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。
分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。
解:(1)原式=2(-27)-(-12)+15
=-54+12+15
=-27
(2)原式=-8+(-3)(16+2)-9(-2)
=-8+(-3)18-(-4.5)
=-8-54+4.5=-57.5
例4:观察下面三行数:
-2,4,-8,16,-32,64,①
0,6,-6,18,-30,66, ②
-1,2,-4,8,-16,32, ③
(1)第①行数按什么规律排列?
(2)第②、③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。
《有理数》数学教案5
教学目的:
1。知识目标 使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。
2.能力目标 通过本节教学,培养学生的想象能力、理论联系实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;
3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
教学设计
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
重点
正、负数的意义,
难点
负数的意义及0的内涵。
教学方法:
鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
教学过程的设计,分为四部分。
一、创设情境,引入负数;
二、联系对比,突出重点;
三、课堂练习,及时反馈;
四、总结提高,渗透德育。
在引入部分,我通过介绍数的产生与发展,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。
随之提问:同学们小学都学过哪些数?
为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。
那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?
为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果,采取形象化教学。
(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?
通过创设问题情境,激发学生的求知欲望让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。
以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?
使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。
既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。
接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。
从温度计上观察0°C以上的温度用正数表示,0°C以下的'温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。
以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。
在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。
为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:
(1)意义相反 (2)同一种量
并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。
由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。
"+""-"作为性质符号有着更深层的涵义:
"+"表示与问题中给出意义的相同意义,
"-"表示与问题中给出意义的相反意义,
如:前进+5米,表示真正前进5米,
前进-5米,表示后退5米,
那么,后退-5米就表示前进5米。并通过课本例2加以巩固。
为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:
图中所示是一个零件的剖面图。用φ30±0。07表示轴直径的误差范围,说明±0。07的意义。
因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程当中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0。07表示比30mm大0。07mm,-0。07表示比30mm小0。07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。
接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程当中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。
在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程当中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。
在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。
通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。
《有理数》数学教案6
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
会把所给的各数填入它所属于的集合里
教学方法:
问题引导法
学习方法:
自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的.题目。
1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{},负整数集合{},填完了吗?
(2)将上面的数填入下面两个集合:整数集合{},分数集合{},填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.xxxxxxxxxxx、xxxx、xxxxxxx统称为整数,
2.xxxxxxx和xxxxxxxxx统称为分数
3.xxxxxxxxxx统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:;正整数:、负整数:、正分数:、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:xxxxx、xxxxxx和xxxxxxx,分数可分为:xxxxxxx和xxxxxxxxx.有理数按符号不同可分为正有理数,xxxxxxx和xxxxxxxx.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{…}负数集合:{…}
正整数集合:{…}负分数集合:{…}
4.下列说法正确的是()
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D.0既不是正数也不是负数
5、下列说法正确的有()
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
《有理数》数学教案7
教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:
通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。难点:对负数的意义的理解。
教学过程:
一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶3千米和向西行驶2千米
温度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米;3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的.量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:P18练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;2、分别举出几个正数与负数(最少6个)。3、P20习题2.1:1题。
《有理数》数学教案8
教学目标
1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3。三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4。通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5。本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
重点:
是否能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
难点:
理解有理数的乘法法则。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1。有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2。两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。
3。基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4。几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。
5。小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6。如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
有理数的乘法(第一课时)
教学目标
1。使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2。通过有理数的乘法运算,培养学生的运算能力;
3。通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的.理解。
课堂教学过程设计
一、从学生原有认知结构提出问题
1。计算(—2)+(—2)+(—2)。
2。有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3。有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[
4。根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数。
这是一条很重要的结论,应用此结论,3×(—2)=?(—3)×(—2)=?(学生答)
把3×(—2)和①式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“6”的相反数“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“—6”的相反数“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0。
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。
因此,在进行有理数乘法时,需要时时强调:先定符号后定值。
三、运用举例,变式练习
例某一物体温度每小时上升a度,现在温度是0度。
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=—3,t=2;
②a=3,t=—2;④a=—3,t=—2;
教师引导学生检验一下(2)中各结果是否合乎实际。
课堂练习
1。口答:
(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
(7)(—6)×0;(8)0×(—6);
2。口答:
(1)1×(—5);(2)(—1)×(—5);(3)+(—5);
(4)—(—5);(5)1×a;(6)(—1)×a。
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以—1都等于它的相反数。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同时教师强调指出,a可以是正数,也可以是负数或0;—a未必是负数,也可以是正数或0。
3。填空:
(1)1×(—6)=______;(2)1+(—6)=_______;
(3)(—1)×6=________;(4)(—1)+6=______;
(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判断下列方程的解是正数还是负数或0:
(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。
五、作业
1。计算:
(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
(3)如果a>0时,那么a____________2a;
(4)如果a<0时,那么a__________2a。
探究活动
问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“—1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成—1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1)。而7个杯口全部朝下时,7个数的乘积等于—1,这是不可能的。
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。
《有理数》数学教案9
教学目标
1. 会把有理数的加减法混合运算统一为加法运算;
2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想.
教学重点
把有理数的加减法混合运算统一为加法运算.
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.
教学过程
根据有理数的减法法则,有理数的'加减速混合运算可以统一为加法运算.
1.完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).
归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________.
展示交流
1.把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________.
2. 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________.
3.将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________.
4. 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46.
5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .
《有理数》数学教案10
教学目的:
经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:
有理数的加法法则
教学难点:
异号两数相加的法则
教学教程:
一、复习提问:
1、如果向东走5米记作+5米,那么向
西走3米记作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1)向东走5米,再向东走3米,一共向东走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向东走了多少米?
-5-3(-3)+(-5)=-8
(3)先向东走5米,再向西走3米,两次一共向东走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向东走3米,两次一共向东走了多少米?
-5+3(-5)+(+3)=-2
下面再看两种特殊情况:
(5)向东走5米,再向西走5米,两次一共向东走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
-5(-5)+0=-5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+8
(-5)+(-3)=-8
异号两数相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零
3、一个数与零相加,仍得这个数
例如:
(-4)+(-5)(同号两数相加)
解:=-()(取相同的符号)
=-9(并把绝对值相加)
(-2)+(+6)(绝对值不等的`异号两数相加)
解:=+()(取绝对值较大的符号)
=+4(用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”号填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
第40页1、2
《有理数》数学教案11
教学目标:
1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)能熟练进行有理数的减法法则。
2、过程与方法
通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点
1、重点:有理数减法法则及其应用。
2、难点:有理数减法法则的应用符号的改变。
教学过程:
一、创设情景,导入新课
1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?
导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)
二、合作交流,解读探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?
3、通过以上列式,你能发现减法运算与加法运算的关系吗?
(学生分组讨论,大胆发言,总结有理数的减法法则)
减去一个数等于加上这个数的相反数
教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的`相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?
三、应用迁移,巩固提高
1、P.24例1 计算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、课内练习:P.241、2、3
3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。
四、总结反思
(1) 有理数减法法则:减去一个数,等于加上这个数的相反数。
(2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。
五、作业
P.27习题1.4A组1、2、5、6
备选题
填空:比2小-9的数是 。
а比а+2小 。
若а小于0,е是非负数,则2а-3е 0。
《有理数》数学教案12
一、知识与技能
(1)正确理解乘方、幂、指数、底数等概念。
(2)会进行有理数乘方的运算。
二、过程与方法
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
三、情感态度与价值观
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键
1.重点:正确理解乘方的意义,掌握乘方运算法则。
2.难点:正确理解乘方、底数、指数的概念,并合理运算。
3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。
四、课堂引入
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的'符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
五、新授
边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.
aa简记作a2,读作a的平方(或二次方)。
aaa简记作a3,读作a的立方(或三次方)。
一般地,几个相同的因数a相乘,记作an.即aaa. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
《有理数》数学教案13
一、教学目标
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;
2.培养学生观察、归纳、概括及运算能力
3 使学生掌握多个有理数相乘的积的符号法则;
二、教学重点和难点
重点:有理数乘法的运算.
难点:有理数乘法中的符号法则.
三.教学手段
现代课堂教学手段
四.教学方法
启发式教学
五、教学过程
(一)、研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解①32=6
答:上升了6厘米.
问题2 水库的'水位平均每小时上升-3厘米,2小时上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)
把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.
把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.
《有理数》数学教案14
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的'意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
《有理数》数学教案15
教学目标
1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数.
这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)
把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的`相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0.
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.
因此,在进行有理数乘法时,需要时时强调:先定符号后定值.
三、运用举例,变式练习
例1 计算:
例2 某一物体温度每小时上升a度,现在温度是0度.
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教师引导学生检验一下(2)中各结果是否合乎实际.
课堂练习
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.
3.当a,b是下列各数值时,填写空格中计算的积与和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。
5.判断下列方程的解是正数还是负数或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.
五、作业
1.计算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0。001); (5)-4。8×(-1。25); (6)-4。5×(-0。32).
2.计算:
3.填空(用“>”或“<”号连接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0时,那么a ____________2a;
(4)如果a<0时,那么a __________2a.
探究活动
问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.
【《有理数》数学教案】相关文章:
有理数说课稿11-20
《有理数》说课稿11-20
有理数教案03-02
有理数的加法教案11-26
有理数的乘法教案06-20
有理数减法教案03-21
有理数的减法教案01-23
有理数加法说课稿07-12
有理数的乘方的教案08-26