当前位置:育文网>教学文档>教案> 数学初二教案

数学初二教案

时间:2023-10-27 11:12:34 晓怡 教案 我要投稿

数学初二教案(精选20篇)

  作为一位杰出的教职工,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。我们应该怎么写教案呢?下面是小编帮大家整理的数学初二教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学初二教案(精选20篇)

  数学初二教案 1

  一、复习引入

  1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

  (1)2x2=4 (2)(x-2)2=7

  提问1 这种解法的(理论)依据是什么?

  提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)

  2.面对这种局限性,怎么办?(使用配方法,把一般形式的`二次方程配方成能够“直接开平方”的形式.)

  (学生活动)用配方法解方程 2x2+3=7x

  (老师点评)略

  总结用配方法解一元二次方程的步骤(学生总结,老师点评).

  (1)先将已知方程化为一般形式;

  (2)化二次项系数为1;

  (3)常数项移到右边;

  (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

  (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

  二、探索新知

  用配方法解方程:

  (1)ax2-7x+3=0 (2)ax2+bx+3=0

  如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

  问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

  分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

  解:移项,得:ax2+bx=-c

  二次项系数化为1,得x2+bax=-ca

  配方,得:x2+bax+(b2a)2=-ca+(b2a)2

  即(x+b2a)2=b2-4ac4a2

  ∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

  ∴(x+b2a)2=(b2-4ac2a)2

  直接开平方,得:x+b2a=±b2-4ac2a

  即x=-b±b2-4ac2a

  ∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

  由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

  (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

  (2)这个式子叫做一元二次方程的求根公式.

  (3)利用求根公式解一元二次方程的方法叫公式法.

  公式的理解

  (4)由求根公式可知,一元二次方程最多有两个实数根.

  例1 用公式法解下列方程:

  (1)2x2-x-1=0 (2)x2+1.5=-3x

  (3)x2-2x+12=0 (4)4x2-3x+2=0

  分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

  补:(5)(x-2)(3x-5)=0

  三、巩固练习

  教材第12页 练习1.(1)(3)(5)或(2)(4)(6).

  四、课堂小结

  本节课应掌握:

  (1)求根公式的概念及其推导过程;

  (2)公式法的概念;

  (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。

  (4)初步了解一元二次方程根的情况。

  五、作业布置

  教材第17页习题4

  数学初二教案 2

  一、教学目标

  1.了解分式、有理式的概念。

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

  二、重点、难点

  1.重点:理解分式有意义的条件,分式的值为零的条件。

  2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

  3。认知难点与突破方法

  难点是能熟练地求出分式有意义的条件,分式的值为零的条件。突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。

  三、例、习题的意图分析

  本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。

  1.本节进一步提出P4[思考]让学生自己依次填出:。为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

  可以发现,这些式子都像分数一样都是(即A÷B)的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

  P5[归纳]顺理成章地给出了分式的定义。分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的`联系与区别。

  希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。

  2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

  3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值。还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础。

  4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零。这两个条件得到的解集的公共部分才是这一类题目的解。

  四、课堂引入

  1.让学生填写P4[思考],学生自己依次填出:

  2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程。

  设江水的流速为x千米/时。

  数学初二教案 3

  教学目的

  通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

  重点、难点

  1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

  2.难点:找出能表示整个题意的等量关系。

  教学过程

  一、复习

  1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

  本利和=本金×利息×年数+本金

  2.商品利润等有关知识。

  利润=售价—成本; =商品利润率

  二、新授

  问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

  利息—利息税=48。6

  可设小明爸爸前年存了x元,那么二年后共得利息为

  2.43%×X×2,利息税为2.43%X×2×20%

  根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

  问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

  2.43%x·2.80%=48.6

  解方程,得x=1250

  例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

  大家想一想这15元的利润是怎么来的?

  标价的80%(即售价)-成本=15

  若设这种服装每件的成本是x元,那么

  每件服装的'标价为:(1+40%)x

  每件服装的实际售价为:(1+40%)x·80%

  每件服装的利润为:(1+40%)x·80%—x

  由等量关系,列出方程:

  (1+40%)x·80%—x=15

  解方程,得x=125

  答:每件服装的成本是125元。

  三、巩固练习

  教科书第15页,练习1、2。

  四、小结

  当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

  五、作业

  教科书第16页,习题6.3.1,第4、5题。

  数学初二教案 4

  一、教学目标:

  1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。

  2了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。

  二、教学重、难点:

  理解中心对称图形的概念及其基本性质。

  三、教学过程:

  (一)创设问题情境

  1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。

  【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。

  (课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)

  师重复以上活动

  2次后提问:

  (1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?

  (2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)

  (反思:创设问题情境主要在于下面几点理由:

  (1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。

  (2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。

  (3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)

  2.教师揭示谜底。

  利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转

  180O后和原来牌面一样。

  3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:

  (1)只有一张扑克牌图案颠倒后和原来牌面一样。

  (2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。

  (反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的`发现思维的火花。)

  (二)学生分组讨论、思考探究:

  1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?

  生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。

  2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用 “

  Z+Z”演示其旋转过程。)3

  .有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?

  (对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、 “动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)

  (三)教师明晰,建立模型

  1,给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  2.对比轴对称图形与中心对称图形:(列出表格,加深印象)

  轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转1880O对折后与原图形重合

  旋转后与原图形重合

  (四)解释、应用与拓广

  1.教师用“Z+Z

  智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。

  (利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)

  2.探究中心对称图形的性质

  板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

  3.师问:怎样找出一个中心对称图形的对称中心?

  (两组对应点连结所成线段的交点)

  4平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?

  学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?

  5逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?

  学生讨论回答。

  6你还能找出哪些多边形是中心对称图形?

  (反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)

  (五)拓展与延伸

  1中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?

  2.正六边形的对称中心怎样确定?

  (六)魔术表演:

  1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?

  2.学生小组活动:

  以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。

  (新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)

  四、案例小结

  《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。

  现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。

  数学初二教案 5

  教学目标

  1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。

  2、理解一元二次方程的定义,能识别一元二次方程。

  3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。

  重点难点

  重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。

  难点:把实际问题转化为一元二次方程的模型。

  教学过程

  (一)创设情境

  前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。

  1、展示课本P.2问题一

  引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。

  (35-2x)2=900①

  2、展示课本P.2问题二

  引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?

  通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程

  2t+×0.01t2=3t②

  3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:

  4x2-140x+32③

  0.01t2-2t=0④

  (二)探究新知

  1、观察上述方程③和④,启发学生归纳得出:

  如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的.方程叫作一元二次方程,它的一般形式是:

  ax2+bx+c=0,(a,b,c是已知数且a≠0),

  其中a,b,c分别叫作二次项系数、一次项系数、常数项。

  2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。

  (三)讲解例题

  例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。

  [解]去括号,得3x2+5x-12=x2+4x+4,

  化简,得2x2+x-16=0。

  二次项系数是2,一次项系数是1,常数项是-16。

  点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。

  例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

  (1)2x+3=5x-2;(2)x2=25;

  (3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

  [解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

  点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。

  (四)应用新知

  课本P.4,练习第3题,

  (五)课堂小结

  1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。

  2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。

  3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。

  (六)思考与拓展

  当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?

  当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

  布置作业

  课本习题1.1中A组第1,2,3题。

  教学后记:

  【1.2.1因式分解法、直接开平方法(1)】

  教学目标

  1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。

  2、会用因式分解法解某些一元二次方程。

  3、进一步让学生体会“降次”化归的思想。

  重点难点

  重点:,掌握用因式分解法解某些一元二次方程。

  难点:用因式分解法将一元二次方程转化为一元一次方程。

  教学过程

  (一)复习引入1、提问:

  (1)解一元二次方程的基本思路是什么?

  (2)现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?

  2、用两种方法解方程:9(1-3x)2=25

  (二)创设情境

  说明:可用因式分解法或直接开平方法解此方程。解得x1=,,x2=-。

  1、说一说:因式分解法适用于解什么形式的一元二次方程。

  归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。

  2、想一想:展示课本1.1节问题二中的方程0.01t2-2t=0,这个方程能用因式分解法解吗?

  (三)探究新知

  引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。

  把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0

  解得tl=0,t2=200。

  t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。

  (四)讲解例题

  1、展示课本P.8例3。

  按课本方式引导学生用因式分解法解一元二次方程。

  2、让学生讨论P.9“说一说”栏目中的问题。

  要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。

  3、展示课本P.9例4。

  让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。

  (五)应用新知

  课本P.10,练习。

  (六)课堂小结

  1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。

  2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。

  (七)思考与拓展

  用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。

  (1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。

  [解](1)原方程可变形为2(3x-2)+(3x-2)(x+1)=0,

  (3x-2)(x+3)=0,3x-2=0,或x+3=0,

  所以xl=,x2=-3

  (2)去括号、整理得x2+2x-3=12,x2+2x-15=0,

  (x+5)(x-3)=0,x+5=0或x-3=0,

  所以x1=-5,x2=3

  先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。

  数学初二教案 6

  教学目的:

  1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

  2、会求二次根式的代数的值;

  3、进一步提高学生的综合运算能力。

  教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

  教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

  教学过程:

  一、二次根式的混合运算

  例1 计算:

  分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

  (2)题是含乘方、加、减和除法的.混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

  练习1:P206 / 8--① P207 / 1①②

  例2 计算

  问:计算思路是什么?

  答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

  二、求代数式的值。 注意两点:

  (1)如果已知条件为含二次根式的式子,先把它化简;

  (2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

  例3 已知,求的值。

  分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

  例4 已知,求的值。

  观察代数式的特点,请说出求这个代数式的值的思路。

  答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

  三、小结

  1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

  2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

  3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

  四、作业

  P206 / 7 P206 / 8---②③

  数学初二教案 7

  一、教学目标

  1、使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。

  2、通过本节课的教学,向学生渗透“转化”的数学思想方法;

  3、通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。

  二、重点、难点、疑点及解决办法

  1、教学重点:可化为一元二次方程的分式方程的解法。

  2、教学难点:解分式方程,学生不容易理解为什么必须进行检验。

  3、教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性。

  4、解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解。(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤。(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。

  三、教学步骤

  (一)教学过程

  1、复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程中产生增根的原因。

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同。

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。

  2、例题讲解

  例1解方程。

  分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正。

  解:两边都乘以,得

  去括号,得

  整理,得

  解这个方程,得

  检验:把代入,所以是原方程的根。

  ∴原方程的根是。

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学生容易犯的类型错误应加以强调,如在第一步中。需强调方程两边同时乘以最简公分母。另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调。

  例2解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的`降幂排列,所以将方程的分母作一转化,化为按字母终行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母。

  解:方程两边都乘以,约去分母,得

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根。

  ∴原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较。

  例3解方程。

  分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分和互为倒数,由此可设,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值。

  解:设,那么,于是原方程变形为

  两边都乘以y,得

  解得

  当时,去分母,得

  解得;

  当时,去分母整理,得,

  检验:把分别代入原方程的分母,各分母均不等于0。

  ∴原方程的根是,

  此题在解题过程中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。

  巩固练习:教材P49中1、2引导学笔答。

  (二)总结、扩展

  对于小结,教师应引导学生做出。

  本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。

  本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。

  此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。

  四、布置作业

  1、教材P50中A1、2、3。

  2、教材P51中B1、2

  五、板书设计

  探究活动1

  解方程:

  分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

  设,则原方程变为

  ∴

  ∴或无解

  ∴

  经检验:是原方程的解

  探究活动2

  有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积。

  解:设桶的容积为升,第一次用水补满后,浓度为,第二次倒出的农药数为4。升,两次共倒出的农药总量(8+4· )占原来农药,故

  整理,(舍去)

  答:桶的容积为40升。

  数学初二教案 8

  教学目的:

  1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。

  2、结合学生的实际情况,让学生填写算式。

  3、在教学中渗透数的顺序,并进行社会秩序教育。

  4、学会与人合作,体会计算的多样化,发展学生思维。

  教学重点:掌握20以内数的顺序。

  教学难点:初步建立数的概念

  教学准备:每组一个数位计数器及40-50根小棒等。

  教学方法:抓问题,用多种游戏,把抽象的数位具体化。

  教学步骤:

  一、创设情景,寻找关键问题

  1、数学课研究数学问题,一些小棒会有什么数学问题。

  (每张桌子发40-50根小棒,玩小棒时间为3-5分钟)

  2、你发现了什么数学问题。

  (目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)

  3、游戏,看谁的手小巧。

  老师报数,学生用棒子表示,讨论:快的同学的诀窍。

  出示:十根可以捆一捆。

  再进行游戏,让学生习惯中把1捆当作10根用。

  4、完成:

  ()个一()个十

  试一试,在计数器拔出10

  个位只有几颗珠子,怎么办?(10个一是1个10)

  在个位拔上一颗珠子,表示1个十,也表示10个一。

  二、自主合作,解决数位顺序。

  在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。

  1、11-20各数在计数器上怎么表示呢?

  问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。

  (这儿注意11-20的.表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)

  2、

  1个十,1个一是1110+1=11

  10和11,十位上是1,没有变,个位由0变成1,就是11。

  3、15、19、20的数位可重点检查。

  (20的数位可由10-20,也可19-20来描述。)

  4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。

  5、练习:(口算)

  10+910+810+710+610+5

  10+410+39+108+107+10

  6+105+104+103+10

  三、实践应用,实现知识延伸

  1、寻找粗心丢失的数。

  游戏报数。(报数时丢一些中间数)

  2、开火车顺数

  游戏:数数(顺数和倒数)

  3、拔珠游戏(师生――生生)

  报数13,拔13并写出13,同时说13的含义,还可画珠。

  4、p691-6自己完成。

  四、课外实践,拓展知识应用。

  1、完成10-20各数数位图及小棒图。

  2、和父母互说10-20各数组成。

  课后评析:

  数学初二教案 9

  一、学生知识状况分析

  学生的知识技能基础:七年级时,学生已经学习了一元一次方程及其应用。本章中,学生又学习了二元一次方程、二元一次方程组、列二元一次方程组解应用题等,能熟练地解二元一次方程组,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。

  学生的活动经验基础:在相关知识的学习过程中,学生已经经历了一些编题活动,同时也具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的合作学习经验,具备了一定的合作与交流的能力。

  二、教学任务分析

  ● 地位和作用:本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的'应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:

  1.归纳出用二元一次方程组解决实际问题的一般步骤.

  2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型.

  3.在解决问题过程中,学会借助图表分析问题,感受化归思想。

  4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的意志和勇气.

  本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。

  ●教学准备

  FLAH播放器;若FLASH不能播放,请按绝对路径重新插入后播放.

  三、教学过程分析

  本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。

  第一环节 知识回顾

  1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.

  2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.

  3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.

  4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:

  1000a+b.

  设计意图:通过复习,为本节课的继续学习做好铺垫。

  实际效果:提问学生,教师加以点评,这样经过知识的回顾,学生基本能熟练地用代数式表示有关数字问题。

  第二环节 情境引入

  1.Flash动画,情景展示。

  小明星期天开车出去兜风,他在公路上匀速行驶,根据动画中的情景,你能确定他在12:00看到的里程碑上的数吗?

  12:00是一个两位数,它的两个数字之和为7;

  13:00十位与个位数字与12:00所看到的正好颠倒了;

  14:00比12:00时看到的两位数中间多了个0.

  5.5应用二元一次方程组——里程碑上的数同步练习含答案

  小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数.小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9. ”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这 个两 位数恰 好也比原来的两位数大9.”

  那么,你能回答以下问题吗?

  (1)他们取 出的两张卡片上的数 字分别是几?

  (2)第一次,他们拼出的两位数是多少?

  (3)第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!

  数学初二教案 10

  教学目标

  知识与技能目标

  1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

  2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

  3.逐步掌握说理的基本方法。

  过程与方法目标

  1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

  2.鼓励学生用多种方法进行说理。

  情感与态度目标

  1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

  2.培养学生合作学习,增强学生的自我评价意识。

  教材分析

  教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

  教学重点:平行四边形的判别方法。

  教学难点:利用平行四边形的判别方法进行正确的说理。

  学情分析

  初二学生对平面图形的`认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

  教学流程

  一、创设情境,引入新课

  师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

  学生活动:学生按小组进行探索。

  数学初二教案 11

  教学目的

  通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

  重点、难点

  1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

  2.难点:找出能表示整个题意的等量关系。

  教学过程

  一、复习

  1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

  本利和=本金×利息×年数+本金

  2.商品利润等有关知识。

  利润=售价—成本; =商品利润率

  二、新授

  问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的`计算器,问小明爸爸前年存了多少元?

  利息—利息税=48。6

  可设小明爸爸前年存了x元,那么二年后共得利息为

  2.43%×X×2,利息税为2.43%X×2×20%

  根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

  问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

  2.43%x·2.80%=48.6

  解方程,得x=1250

  例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

  大家想一想这15元的利润是怎么来的?

  标价的80%(即售价)-成本=15

  若设这种服装每件的成本是x元,那么

  每件服装的标价为:(1+40%)x

  每件服装的实际售价为:(1+40%)x·80%

  每件服装的利润为:(1+40%)x·80%—x

  由等量关系,列出方程:

  (1+40%)x·80%—x=15

  解方程,得x=125

  答:每件服装的成本是125元。

  三、巩固练习

  教科书第15页,练习1、2。

  四、小结

  当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

  五、作业

  教科书第16页,习题6、3、1,第4、5题。

  数学初二教案 12

  教学目标

  知识与技能

  1、学习什么是三元一次方程和三元一次方程组. (2)会解简单的三元一次方程组.

  2、掌握解三元一次方程组过程中化三元为二元和一元的化归思想.

  过程与方法

  通过三元一次方程组的解法练习,培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.培养学生的计算能力、训练解题技巧.

  情感态度与价值观

  让学生通过自己的探索、尝试、比较等活动去发现一些规律,体会一些数学思想,从而激发学生的求知欲望和学习兴趣.

  教学重点

  使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.

  教学难点:

  针对方程组的特点,选择最好的解法.

  教学过程

  一、复习

  解二元一次方程组的思路是什么?有几种方法?

  二、引入新课

  甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.

  例题展示

  1.三元一次方程及三元一次方程组

  (1)三元一次方程:含有三个未知数,并且含未知数的.项的次数都是1的方程叫做三元一次方程.

  (2)三元一次方程组:

  ①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组。

  同步练习含答案解析

  1.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买(  )

  A.11支B.9支C.7支D.4支

  【考点】三元一次方程组的应用.

  【专题】压轴题.

  【分析】购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,可知钢笔有12支,可设甲种钢笔有x支、乙种钢笔有y支、丙三种钢笔有z支,可列方程,得到整数解即可.

  数学初二教案 13

  一、教学目标

  1.掌握矩形的定义,知道矩形与平行四边形的关系.

  2.掌握矩形的性质定理.

  3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

  4.通过性质的学习,体会矩形的应用美.

  二、教法设计

  观察、启发、总结、提高,类比探讨,讨论分析,启发式.

  三、重点、难点及解决办法

  1.教学重点:矩形的性质及其推论.

  2.教学难点:矩形的本质属性及性质定理的综合应用.

  四、课时安排

  1课时

  五、教具学具准备

  教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

  六、师生互动活动设计

  教具演示、创设情境,观察猜想,推理论证

  七、教学步骤

  【复习提问】

  什么叫平行四边形?它和四边形有什么区别?

  【引入新课】

  我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形, 堂课我们就来研究一种特殊的平行四边形矩形(写出课题).

  【讲解新课】

  制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

  矩形的性质:

  既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

  继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

  矩形性质定理1:矩形的四个角都是直角.

  矩形性质定理2:矩形对角线相等.

  由矩形性质定理2我们可以得到

  推论:直角三角形斜边上的'中线等于斜边的一半.

  (这实际上是 △的一个重要性质,即 △斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

  例1 已知如图1 矩形 的两条对角线相交于点, , ,求矩形对角线的长.(按教材的格式)

  (强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

  【总结、扩展】

  1.小结:(用投影打出)

  (1)矩形、平行四边形、四边形从属关系如图.

  (2)矩形性质.

  1.具有平行四边形的所有性质.

  2.特有性质:四个角都是直角,对角线相等.

  3.思考题:已知如图, 是矩形 对角线交点, 平分 , ,求 的度数

  八、布置作业

  教材P158中2、5,P195中7.

  九、板书设计

  十、随堂练习

  教材P146中1、2、3、4

  数学初二教案 14

  教学内容:平移的妙用

  教学目标:

  一、知识与能力目标

  1、要求学生掌握平移的基本特征

  2、能在理解平移性质的基础上巧妙运用的平移的知识来解决日常生活中的数学问题。

  二 、过程与方法目标:

  1、引导学生概括平移的基本特征。

  2、引导学生平移实例中的图形,探索运用平移知识解决实际问题。

  3、引导学生亲自动手尝试对平移的再探索,发现平移的妙用!

  三、情感与态度目标:

  1、 通过学生自己观察发现,培养学生对数学的兴趣。

  2、通过学生亲自操作并解决问题,让学生了解学习探索中的艰辛与成功的乐趣。从而帮助他们树立学习数学的正确态度。

  3、让学生在生活中观察应用例子,从而让他们体会到数学中的图形美。

  教学重点、难点及教学突破

  重点:平移特征---------平移中的不变量

  难点:对图形进行理解和平移

  教学突破:从实例入手,让学生思考小学解答方法,从而引导学生观察:能否进行平移。引导学生进行平移,从而让学生多平移角度来解决问题;引导学生再探索,让学生的妙用得到升发。

  教学准备:学生复习平移特征,准备纸笔和画图工具。

  教师用小黑板准备例题。

  教师活动

  学生活动

  活动说明

  一、复习平移的概念及特征;

  教师:同学们,本期11.1学习了平移,同学们想想:什么叫平移?平移的二要素是什么?平移的'特征是什么?

  1. 学生思考后,教师抽学生回答

  学生:图形的平行移动叫平移

  平移的二要素是:方向和距离

  平移的特征:

  平移后的图形与原来的图形的对应线段平行且相等,对应角相等,图形的形状与大小都没有发生变化

  如图:线段AB以如图所示的方向平移2cm.

  通过复习平移的概念及特征,让学生更进一步加深对平移理解,为后面的探索作准备

  数学初二教案 15

  教学目标

  1、理解用配方法解一元二次方程的基本步骤。

  2、会用配方法解二次项系数为1的一元二次方程。

  3、进一步体会化归的思想方法。

  重点难点

  重点:会用配方法解一元二次方程.

  难点:使一元二次方程中含未知数的项在一个完全平方式里。

  教学过程

  (一)复习引入

  1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.

  2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

  (二)创设情境

  现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?

  怎样解这类方程:2x2-4x-6=0

  (三)探究新知

  让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的.方法来解。让学生进一步体会化归的思想。

  (四)讲解例题

  1、展示课本P.14例8,按课本方式讲解。

  2、引导学生完成课本P.14例9的填空。

  3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

  (五)应用新知

  课本P.15,练习。

  (六)课堂小结

  1、用配方法解一元二次方程的基本步骤是什么?

  2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

  3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

  4、按图1—l的框图小结前面所学解

  一元二次方程的算法。

  (七)思考与拓展

  不解方程,只通过配方判定下列方程解的

  情况。

  (1)4x2+4x+1=0;(2)x2-2x-5=0;

  (3)–x2+2x-5=0;

  [解]把各方程分别配方得

  (1)(x+)2=0;

  (2)(x-1)2=6;

  (3)(x-1)2=-4

  由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

  点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

  数学初二教案 16

  教学目标

  知识与技能

  1.能运用列表分析法分析数量关系;

  2.能熟练地列二元一次方程组解决简单的实际问题。

  3.掌握运用列二元一次方程组解决实际问题的技能。

  过程与方法

  经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效的数学模型,培养学习数学应用能力。

  情感态度与价值观

  1.通过问题的解决进一步认识数学与现实世界的密切联系。

  2.通过对问题的解决,培养学生的必要的经济意识,增强他们节约成本、有效合理利用资源的意识。

  教学重点

  1.初步体会列方程组解决实际问题的步骤.

  2.学会用图表分析较复杂的数量关系问题。

  5.4应用二元一次方程组——增收节支知识点

  一、学生知识状况分析

  1.学生的知识技能基础

  在此以前,学生学习了二元一次方程和二元一次方程组,学习了列二元一次方程组解应用题的一部分内容,能熟练地进行二元一次方程组的运算,已初步具备了用方程组刻画实际问题的经验和基础,能正确地分析和理解题意,寻求题中的各种数量关系,具备了继续学习本节内容的知识和能力。在小学的学习中,学生也学习了通过列表的方法帮助我们理清数量关系的有关知识,在此基础上学习本节内容,学生已经具备了学好本节内容的条件。

  2.学生的活动经验基础

  在相关知识的`学习过程中,学生具备了一些生活经验,知道列方程解应用题的一些规律、特点和方法,具备了一些解决实际问题的经验和能力。在以前的数学学习中,学生已经经历很多合作学习的过程,具备了一定的合作学习经验,具备了一定的合作与交流的能力。

  二、教学任务分析

  1.地位和作用

  “增收节支”是北师大版八年级数学(上)第七章第四节内容。本节主要通过解决现实问题中有关经济方面的应用问题来学习列二元一次方程组,学会对具体情景中的数学信息作出合理的解释,能运用列表分析法分析出各数量间的关系,有效地解决问题。本节教学内容,是在学生学完前一小节《鸡兔同笼》后紧接的又一节列方程组解应用题的内容。但两者的侧重点不同,《鸡兔同笼》是让学生初步学会通过列二元一次方程组解决一些比较有趣的数学问题和古代数学问题应用问题,等量关系相对简单;而本节的《增收节支》的教学内容重点放在如何运用列表分析法去分析较为复杂的各数量间的关系。

  2.教学目标

  ①能运用列表分析法分析数量关系,熟练地列二元一次方程组解决简单的实际问题,掌握运用列二元一次方程组解决实际问题的技能。

  ②经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效的数学模型,培养学习数学应用能力。

  ③通过问题的解决进一步认识数学与现实世界的密切联系,通过对问题的解决,培养学生的必要的经济意识,增强他们节约成本、有效合理利用资源的意识。

  三、教学方法

  1.教学方法:“问题情境—建立模型—应用与拓展”

  2.课前准备:

  教具:教材,课件,电脑(视频播放器)

  学具:教材,练习本

  四、教学流程

  本课设计了六个教学环节:第一环节:创设情境,导入新课;第二环节:新课讲解;第三环节:练习提高、合作学习;第四环节:问题解决,拓展提升;第五环节:学习反思;第六环节:布置作业

  第一环节:创设情境,导入新课

  创设问题情景,引导学生思考,导入课题

  你想过吗?

  提出问题:同学们你知道你的生活有哪些必要开支吗?

  引发问题:经济生活在我们生活中多么重要!你想运用数学知识使你的生活更加合理优化,生活的更加幸福惬意吗?那么你能帮帮解决下面的实际经济问题吗?

  教学进程:教师演示幻灯片,学生回答问题

  1.开商店

  小明想开一家时尚G点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50﹪的利润定价,裤子按40﹪的利润定价。由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他?

  5.4就用二元一次方程组——增收节支同步练习

  硫酸厂接到一批订单,急需一批浓度为60%的硫酸1200吨.厂长高兴地叫来生产科长告诉他快去准备.可生产科长一听就发愁了,说:“我们还有一大批浓度70%和浓度55%的硫酸,却没有浓度60%的硫酸,如果现在生产恐怕时间来不及了.”厂长一听就火:“我们已经订了合同,又收了人家的钱,如果到期交不了货,还得赔违约金,搞不好,这个月连工资都发不了,快去想想办法.”

  生产科长愁眉苦脸回到车间.技术员小张忙过来询问发生了什么事.听科长一说,小张想了想,又拿出纸笔算了算,高兴地说:“科长,我们可以用现有的两种硫酸去配制呀!”“对呀,怎么我没想到呢?快来,我们仔细算一算.”

  那么你知道这两种硫酸各需多少吨,才能配制成浓度为60%的硫酸120 0吨吗?

  数学初二教案 17

  教学目标:

  了解数的算术平方根及平方根的概念,并会用符号表示;理解平方与开方之间是互为逆运算的关系,会用计算器求一些正数的算术平方根

  教学重点:

  了解数的算术平方根及平方根的概念,会求某些非负数的平方根,会用根号表示一个数的平方根

  教学难点:

  对大小的估算及如何理解是非负数以及被开方数是非负数;正确区分算术平方根与平方根

  过程

  一、创设情景,导入新课

  请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?

  这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)

  二、合作交流,解读探究

  讨论:

  1、什么样的运算是平方运算?

  2、你还记得1~20之间整数的平方吗?

  自主探索:让学生独立看书,自学教材

  总结:一般地,如果一个正数的平方为,即,那么正数叫做的算术平方根,记为,读作根号,其中叫做被开方数。另外:0的算术平方根是0

  探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形

  把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。

  设大正方形的边长为,则;由算术平方根的意义,即大正方形的边长为。讨论:有多大呢?

  思考:你能举些象这样的无限不循环小数吗?

  三、应用迁移,巩固提高

  例1求下列各数的算术平方根

  ⑴100

  ⑵ ⑶0.0001

  ⑷0

  点拨:由一个数的算术平方根的`定义出发来解决问题

  思考:-4有算术平方根吗?

  备选例题:要使代数式有意义,则的取值范围是()

  A. B. C. D.

  四、总结反思,拓展升华

  小结:

  1、算术平方根的定义和性质;

  2、用计算器求一个正数的算术平方根

  五、课堂跟踪反馈

  1、非负数的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____

  2、一个自然数的算术平方根为,那么与这个自然数相邻的下一个自然数的算术平方根是_______

  3、的算术平方根是_____,的算术平方根____

  4、若是49的算术平方根,则=()

  A. 7 B. -7 C. 49 D.-49

  5、若,则的算术平方根是()

  A. 49 B. 53 C.7 D .

  6、若,求的值。

  7、若是的整数部分,是的小数部分,试确定、的值。

  数学初二教案 18

  一、教学目的:

  1.掌握菱形概念,知道菱形与平行四边形的关系.

  2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

  3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  二、重点、难点

  1.教学重点:菱形的性质1、2.

  2.教学难点:菱形的性质及菱形知识的综合应用.

  三、课堂引入

  1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

  2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的'一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

  菱形定义:有一组邻边相等的平行四边形叫做菱形.

  【强调】 菱形

  (1)是平行四边形;

  (2)一组邻边相等.

  让学生举一些日常生活中所见到过的菱形的例子.

  四、例习题分析

  例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.

  求证:∠AFD=∠CBE.

  证明:∵四边形ABCD是菱形,

  ∴ CB=CD,CA平分∠BCD.

  ∴∠BCE=∠DCE.又CE=CE,

  ∴△BCE≌△COB(SAS).

  ∴∠CBE=∠CDE.

  ∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

  ∴ ∠AFD=∠CBE.

  例2(教材P108例2)略

  五、随堂练习

  1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.

  2.已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积.

  3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.

  4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.

  六、课后练习

  1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.

  2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.

  数学初二教案 19

  教学目标

  1、等腰三角形的概念、

  2、等腰三角形的性质、

  3、等腰三角形的概念及性质的应用、

  教学重点:

  1、等腰三角形的概念及性质、

  2、等腰三角形性质的应用、

  教学难点:

  等腰三角形三线合一的性质的理解及其应用、

  教学过程

  Ⅰ、提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:

  ①三角形是轴对称图形吗?

  ②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是、

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形、

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形、

  Ⅱ、导入新课:要求学生通过自己的思考来做一个等腰三角形、

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形、

  等腰三角形的定义:有两条边相等的`三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角、

  思考:

  1、等腰三角形是轴对称图形吗?请找出它的对称轴、

  2、等腰三角形的两底角有什么关系?

  3、顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线、

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系、

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高、

  由此可以得到等腰三角形的性质:

  1、等腰三角形的两个底角相等(简写成“等边对等角”)、

  2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)、

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS)、

  所以∠B=∠C、

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD、

  所以BD=CD,∠BDA=∠CDA= ∠BDC=90°、

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

  求:△ABC各角的度数、

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A、

  再由三角形内角和为180°,就可求出△ABC的三个内角、

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷、

  解:因为AB=AC,BD=BC=AD,

  所以∠ABC=∠C=∠BDC、

  ∠A=∠ABD(等边对等角)、

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x、

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°、在△ABC中,∠A=35°,∠ABC=∠C=72°、

  [师]下面我们通过练习来巩固这节课所学的知识、

  Ⅲ、随堂练习:

  1、课本P51练习1、2、3、 2、阅读课本P49~P51,然后小结、

  Ⅳ、课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、

  Ⅴ、作业:课本P56习题12、3第1、2、3、4题、

  板书设计

  12、3、1、1等腰三角形

  一、设计方案作出一个等腰三角形

  二、等腰三角形性质:

  1、等边对等角

  2、三线合一

  数学初二教案 20

  教学目标:

  1、了解什么是比例,能够正确地表示比例关系。

  2、掌握比例的性质,能够灵活地运用比例的性质进行解题。

  3、通过练习,提高解决实际问题的能力。

  教学重点:

  1、比例的概念及表示方法。

  2、比例的性质。

  3、比例的应用。

  教学难点:

  1、比例的应用。

  2、解决实际问题的能力。

  教学过程:

  一、引入(5分钟)

  1、教师出示一张比例图,让学生猜测比例的含义。

  2、学生回答后,教师讲解比例的概念及表示方法。

  二、讲解(15分钟)

  1、教师讲解比例的性质。

  2、教师通过例题让学生掌握比例的应用。

  三、练习(30分钟)

  1、教师出示一些比例题目,让学生在课堂上完成。

  2、学生完成后,教师讲解答案及解题方法。

  四、巩固(10分钟)

  1、教师出示一些实际问题,让学生运用比例的知识进行解决。

  2、学生完成后,教师讲解答案及解题方法。

  五、作业(5分钟)

  1、教师布置相关作业。

  2、学生完成后,交给教师批改。

  教学反思:

  通过本节课的教学,学生们对比例的.概念及表示方法有了更深入的了解,掌握了比例的性质,并通过练习提高了解决实际问题的能力。但是,教学过程中还存在一些问题,比如有些学生对比例的应用还不够熟练,需要加强练习。因此,下一节课需要针对这些问题进行更加深入的讲解和练习。

【数学初二教案】相关文章:

初二数学教案03-02

初二数学上册教案10-12

初二数学勾股定理教案(通用6篇)04-23

初二数学教学总结03-22

初二数学教学心得04-26

初二数学教学总结06-15

初二数学教学反思03-18

(精选)初二数学教学反思07-07

初二数学教学反思(精选)07-07