当前位置:育文网>教学文档>教案> 《长方体的认识》教案设计

《长方体的认识》教案设计

时间:2022-05-30 05:27:11 教案 我要投稿
  • 相关推荐

《长方体的认识》教案设计

  作为一位优秀的人民教师,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的《长方体的认识》教案设计,欢迎阅读,希望大家能够喜欢。

《长方体的认识》教案设计

《长方体的认识》教案设计1

  【教材分析】

  苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。

  在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。

  【教学片段】

  师:刚才,同学们动脑筋有条理地数出了长方体有──

  生(齐):6个面,12条棱,8个顶点。

  师:我们的研究不能满足于“是什么”,还要探究“为什么”。

  (学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)

  师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?

  (学生仔细打量眼前的长方体模型,积极探索着答案。)

  生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。

  师:那应该怎样算呢?

  生(齐):6×4÷2=12条棱。

  师:你现在也能提一些“为什么”的问题吗?

  生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?

  师:问得好!你有答案吗?

  生1:我有答案,但想让其他同学回答。

  生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。

  师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?

  生1:能不能由棱的条数推算出顶点的个数、面的个数?

  生2:由顶点的个数是不是也能推算出面的个数和棱的条数?

  师:真会提问题!同学们有兴趣研究吗?

  (学生兴致勃勃地研究并汇报了两个问题。)

  师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?

  生1:都先算出了24。这是为什么?

  (学生陷入了沉思,不一会儿,陆续举起手。)

  生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。

  生3:推算时,就要先算出24条边或24个顶点,再看看与要求的.面、棱、顶点之间的数量关系,计算出最后的结果。

  师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。

  ……

  师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?

  生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。

  师:反过来呢?

  生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。

  师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。

  【教学反思】

  一、数学学习是经验的,也是推理的

  新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。

  二、空间观念是具象的,也是关系的

  一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。

  三、课堂思考是个体的,也是群体的

  学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。

《长方体的认识》教案设计2

  教学目标

  (一)掌握长方体和正方体的特征,认识它们之间的关系。

  (二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  (三)渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)长方体和正方体的特征。

  (二)立体图形的识图。

  教具准备

  教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。

  学具:长方体和正方体纸盒。

  教学过程设计

  (一)复习准备

  请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;然后老师说明这些图形都在一个平面上,叫做平面图形。

  教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。请学生先观察,再请两三位来摸一摸,然后问:这些物体的各部分都在一个面上吗?学生:它们的各部分不在一个面上。

  教师:我们看到的这些物体,它们的各部分不在一个面上,它们的形状都是立体图形。

  教师:这些物体在原来的位置不动,我们还能在它们所占的位置上放别的物体吗?(请一位同学演示。)

  学生:不能。

  教师:可见立体图形都占有一定的空间。

  教师请学生从教具中挑出长方体后,说明本节课要进一步认识长方体有什么特征,并板书课题:长方体的认识(留出写正方体的空)。

  (二)学习新课

  1.长方体的特征。

  (1)请同学取出自己准备的.长方体。

  教师:请用手摸一摸长方体是由什么围成的?

  学生:面。(教师板书:面)

  教师:请用手摸一摸两个面相交处有什么?

  学生:有一条边。

  教师:这条边称为棱。(板书:棱)

  教师:请摸一摸三条棱相交处有什么?

  学生:尖。

  教师:相交的这点称为顶。(板书:顶。)

  (2)教师:请同学们用自己的长方体,参考讨论提纲来研究长方体的特征。

  投影片出示讨论提纲:

  ①长方体有几个面?面的位置和大小有什么关系?

  ②长方体有多少条棱?校的位置、长短有什么关系?

  ③长方体有多少个顶?

  学生讨论并归纳后,教师板书:长方体:

  面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

  棱:12条,相对的4条棱长度相等。

  顶:8个。

  请学生观看动画图(用电脑软件或实物展示)

  出示有一组对面是正方形的长方体,展示同上,要表示有四个面相等;

  第三步:出示8个顶点。

  教师:请完整地说一说长方体的特征?(先请同桌两人互相说,然后请一两位同学拿着学具给全班同学说。)

  (3)老师:长方体是立体图形,画在纸上如何与平面图形区别呢?

  教师:(拿一个长方体正对学生)请观察,你能看到几个面?哪几个面?

  请几位观察角度不同的同学回答。

  教师:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。(介绍的同时用动画图像展示。)

  教师:出示长方体框架请观察,再出示框架的投影图。(如图)请指出框架上的12条棱分几组?并指出哪几条棱是一组的?

  请指出相交于一个顶点的三条棱。

  教师:请量一量自己的长方体上相交于一个顶点的三条棱,看一看长度是否相等?

  教师:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  练习:请分别说出下面两个长方体的长、宽、高各是多少?第二个长方体与第一个长方体有什么区别?(投影片)

  •   2.正方体特征。

  (1)展示动画图像:(或抽拉投影图)

  第一步:长方体中的长边缩短,使长、宽、高相等;

  第二步:长方体中的短边伸长,使长、宽、高相等。

  教师:看一看新得到的长方体与原来长方体比较有什么变化?

  学生:长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。

  教师:请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。(把课题补充完整加上正方体。)

  学生讨论、归纳后,教师板书:正方体:

  面:6个完全相同的正方形。

  棱:12条棱长度都相等。

  顶:8个。

  请看动画图像。

  (2)教师:请对比长方体和正方体的特征,说一说它们的相同点与不同点。

  学生讨论后归纳:长方体和正方体在面、棱、顶点的数量上都相同;在面的形状、面积、棱的长度方面不相同。

  教师:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

  学生:正方体是特殊的长方体。

《长方体的认识》教案设计3

  学习目标:

  1、进一步认识长方体和正方体,了解长方体和正方体各部分的名称

  2、经历观察、分类操作和讨论等探索活动过程,发现长方体和正方体的特点,能运用长方体和正方体的特点解决一些简单的问题。

  3、通过具体的操作活动,培养学生的探索意识和实践能力,发展空间观念。

  学习重点:

  熟练掌握长方体和正方体的特征

  学习难点:

  培养学生的探索意识,发展空间观念

  教(学)具

  长方体框架、长方体和正方体物体和模型、课件

  教学过程:

  一、扑克牌展示,导入新课:

  师:(出示一张扑克牌)请问这是我们学过的什么图形?

  生:长方形

  师(出示一副扑克牌)同学们这是什么图形呢?

  生:长方体(板书:长方体)

  师:同学们!桌子上的磁带、包装盒,这里的磁带盒等(在讲台上出示),这些物体的形状都是长方体。这节课我们就一起来认识长方体。(补充板书:的认识)

  师:(出示一些长方体形的、非长方体形的物体和模型)现在请两们同学来分一分,把是长方体形的物体放在左边,不是长方体形的物体放在右边,。

  (学生上台分,)

  师:他们分得对不对?等我们研究了长方体的物征后就知道了。

  二、切果成形,观察讨论,探究特征

  师:(取一个苹果)这里有一个苹果,把它切一刀,就切出一个平面,(摸,板书:面)再切一刀,(垂直于上切面)又是一个面,两个面相交的边(指示)叫作“棱”,(板书:棱)再切一刀,(垂直于棱切)现在有几个面?

  生:三个。

  师:有几条棱?

  生:三条。

  师:三条棱相交的点,叫作顶点。(板书:顶点)如果再相对着切三刀就得到一个长方体。(出示长方体模型)我们先来研究长方体的面的情况。请拿起你手中的长方体,摸一摸它的面,数一数,长方体有几个面?

  生:(摸、数)长方体有六个面。

  师:你是怎样数的?

  生:我是这样数的——按上下、前后、左右的顺序数。

  师:根据长方体的面的位置,分别把它们称作上下两个面、前后两个面、左右两个面。(指着)位置上相对着的叫作一组相对的面,长方体有几组相对的面?

  生:三组。

  师:这六个面都是什么形状?

  生:都是长方形。

  生:可能有两个相对的面是正方形。

  师:你身边有这样的长方体吗?

  (生举起一个长方体)

  师:对!也可能有两个相对的面是正方形。再看一看,长方体相对的面的面积怎样?

  生:相等。

  师:是不是相等呢?请看——(观看PPT模型演示)相等吗?

  生:相等

  师:现在来研究棱的情况,大家摸一摸长方体的棱,数一数,有几条?

  生:(摸、数)长方体有12条棱。

  师:(展示长方体框架)请看,这12条棱中,同一种颜色的四条棱是一组相对的棱。长方体有几组相对的'棱?

  生:三组。

  师:看一看,相对的棱的长度怎样?

  生:相等。

  师:你是怎么知道的?

  生:我用尺量的,发现它们一样长。

  师:不用尺量,你能知道吗?

  生:在同一个面上的两条相对的棱是一个长方形的一线对边,长方形对边相等。所以这两长棱的长度相等。

  师:这一组四条相对的棱的长度相等,同样的道理,其它两组相对的棱的长度也分别——

  生:相等。

  师:再看顶点的情况,请指出长方的顶点给同桌看一看,数一数,长方体有几个顶点?

  生:(指、数)长方体有8个顶点。

  师:长方体的特征可以从面、棱、顶点这三个方面进行概括。谁能说说,长方体有怎样的特征?

  (生根据板书内容叙述)

  师:现在,不看黑板上的内容,拿起你手中的长方体,同桌的同学互相说一说长方体的特征,好吗?

  生:好!

  师:(指讲台上的模型)刚刚那位同学分的对吗?为什么?

  学生小组讨论并交流。

  三、演示投影,真切了解直观图

  师:刚才我们认识了长方体的物体,书上画的、黑板上出现的是它的立体图形,怎么看长方体的立体图形呢?

  (出示一个长方体)

  有的同学可能要问了,长方体有六个面,每个面都是长方形,而这个图上只有三个面,并且有两个面是平行四边形,这是怎么一回事?

  师:(将一个长方体模型放在讲台中央;把同学分成三部分,从不同的角度观察)能看到几个面?

  生:我只看到了一个面。

  生:我看到了两个面。

  生:我看到了三个面。

  师:还有三个面出于被遮住了我们看不见,在立体图上可用虚线画出被遮住的三条棱,形成这个立体图。(在原图上形成立体图)

  四、变式呈现,辩证地理解长、宽、高

  师:现在请思考,如果要知道长方体12条棱的长度,只要量哪几条棱就可以了?

  生:(讨论后,指着相交于一点的三条棱)只要量这三条棱的长度就可以了。

  师:像这样相交于一点顶点的三条棱的长度分别叫做长方体的长、宽、高。(在立体图上指示后,在相应的地方标上“长”、“宽”、“高”

  一般来说,底面中较长的棱的长度称作长,较短的称作宽,垂直于底的棱的长度称作高。

  请同学们四人小组合作相互说一说你们手中长方体的长、宽、高。

  学生小组合作,汇报交流

  五、循序渐进,巩固新知,发展能力

  师:现在我们运用所学知识做几道习题。

  六、课堂小结

  通过本课的学习,我们已经对长方体有了一个基本的了解,知道了长方体的基本特征。在生活中,我们经常见到长方体,注意留心生活,我们就会学到很多的数学知识。

《长方体的认识》教案设计4

  教学要求

  通过观察实物和动手操作等教学活动,使学生掌握长方体的特征,形成长方体的概念,发展学生的空间观念。

  教学重点

  长方体的特征。

  教学用具

  ①教师准备:教材第20页图中的各个实物,铁丝制作的长方体框架、投影仪。

  ②学生准备:收集一些长方体开头的小纸盒,并将教材第169页的长方体展开图剪下来贴在硬纸板上备用。

  教学过程

  一、创设情境

  1、观察后回答:①我们已经学过这些图形,你能说出它们的名称吗?

  ②根据学生的回答有意归类并板书。

  平面图形立体图形

  ③指着左边问:这些都是什么图形?(并在上面板书:平面图形)

  ④指着右边问:这又都是什么图形?(并在上面板书:立体图形)

  2.实验

  用两个同样大小的量筒装600毫升的水。然后往其中一只里放入一块石头,让学生观察,这只量筒里水面的变化情况?小组讨论一下为什么会出现这种情况?更好地帮助学生理解“空间”这一概念。

  从今天开始,我们的数学课主要研究长方体和正方体,这节课我们首先学习长方体的认识,并板书课题。

  二、探索实践

  1.让学生拿出准备好的.一个长方体的纸盒来观察它们的特征。

  (1)认识长方体的面。(让学生分组讨论)

  ①用手摸一摸它有几个面(注意培养学生有顺序地观察)

  ②每个面是什么形状?(注意出示也有两个相对的面是正方形)

  ③哪些面完全相等?(演示给学生看)

  再根据学生的发言用投影归纳出:

  长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。

  (2)认识长方体的棱。

  让学生用手摸一摸长方体每两个面相交的地方(有意引导学生有顺序地摸)。这些地方我们给它起个什么名字呢?(学生按自己的想法来做,最后统一为“棱”)

  再让学生分小组去数和量:

  ①数:长方体有多少条棱?(要说出数的方法)

  ②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)

  根据学生的发言归纳出:(投影显示)

  长方体有12条棱,相对的4条棱的长度相等。

  (3)认识长方体的顶点。

  让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:

  ①你们知道它叫什么吗?(顶点)

  ②长方体有几个顶点?(8个)

  (4)拿一个长方体放在讲台上让学生观察。

  最多能看到几个面?(3个面)

  讲:所以我们通常把长方体画成这样。

  (投影出示)

  (5)用填空的形式小结长方体的特征。(投影显示)

  长方体是由个长方形(特殊情况有两个相对的面是形)围成的图形。在一个长方体中,相对的两个面,相对的棱的长度。

  2、教学长方体的长、宽、高。

  让学生分组讨论如下的两个问题:

  (1)它的12条棱可以分成几组?怎样分?

  (2)相交于同一个顶点的三条棱长度相等吗?

  找几名代表将测量结果告诉大家。

  想一想:

  (1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)

  (2)长方体的长、宽、高的长短与这个长方体有没有关系?(投影显示出几个长、宽、高不同的长方体)

  结论:长方体的大小和形状是由它的长、宽、高决定的。

  三、课堂实践

  1.量一量教科书的长、宽、高。

  2.练习五的第2题。

  3.练习五的第3题。

  五、课堂小结

  由学生小结今天学习的内容。

  口诀:

  长方体立体形,8顶6面十二棱;

  棱分长、宽、高,每组四条要记好;

  6个面对着放,对应面都一样。

  六、课外延伸

  在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。

《长方体的认识》教案设计5

  一、设计理念

  数学学习是师生之间、学生之间互动与共同发展的过程,所以有效的学习更应促进学生的发展。维果茨基认为:“只有当教学走在发展前面的时候,这才是好的教学”。他提出“最近发展区”的概念,其实质就是教学要把那些正在或将要成熟的能力推向前进。促进学生的发展,必须关注学生的发展的自主性、主动性,尊重学生发展的差异性,强调学生发展中的体验与交往过程。使他们成为发展与变化的主体,进而帮助他通过现实与寻求走向完人理想的道路。

  《长方体和正方体的认识》一课的教学设计,主要从以下几方面体现了学生学习的“有效性”

  1、积极了解儿童的现有经验

  布鲁姆说过:对教学影响最大的是学生已有的知识。这已有的知识实际上就是儿童的经验。其中有相当一部分是儿童自己获取的,而且来自于课外,教师要很好的研究儿童的经验水平,根据儿童的已有经验设计教案,才能更好地推进教学进程。如“引入新课部分媒体出示可乐罐、礼品盒、魔方、牙膏壳等实物让学生判断这些物体的形状”;“说说生活中哪些物体是长方体(正方体)的?”这些问题的答案虽然王花八门,但是真实地反映了儿童在这方面的真实水平。

  2、重视数学活动的建设和开展

  活动是数学学习的重要特征。新课标十分重视数学活动的建设和开展,指出:“教师应向儿童提供充分的从事数学活动的机会,帮助他们在自主探索的合作交流的过程中揭示规律,建立概念,真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验。

  (1)倡导“自主探究”式学习

  “探究”是新课改的一个主题词,所课探究,是对问题做出猜想、假设、预测、收集数据、证明的过程。这是一个活动过程也是学生的.思维过程,对儿童的发展来说是最重要的。这一点在本堂课中比较突出:我引导学生探究长方体的面、棱、顶点以及长、宽、高,探究正方体的特点以及长方体与正方体之间的关系等等,内容一步一步推进,使学生逐步掌握了探究这类问题的一些方法。

  (2)倡导在“触摸”中学习数学

  让学生多实践、多操作,在此基础上去感悟知识,主动获取知识。这是本堂课的一大特点。在教学中曾多次让学生运用数一数、看一看、量一量等方法发现长方体(正方体)面、棱、顶点以及长、宽、高等的特征。让学生在“触摸”中掌握知识,有助于激发学习兴趣,提高学习内驱力。

  (3)倡导自主讨论、交流

  学习数学的过程不只是计算的过程,还要能够在推理、思考的过程中学会交流,进行体验。在本堂课中,安排了多次小组交流活动,让学生及时反馈获得的数学信息,表述自己独到的发现。交流是信息共享的过程,也是尝试的过程,它超越了“掌握知识”而升华为“学会生存”。

  3、让数学走进生活

  “数学来源于生活,又应用于生活”,引导学生在日常生活中掌握数学,探索真实世界中的数学,这比单纯学习数学更能激发他们的好奇心和创造力。因此作为教师必须引导他们走向生活,勇于实践,培养他们“用数学”的意识和能力。

  ①本堂课所使用的教具大都来源于生活中的实物,从观察实物入手,慢慢得出长方体、正方体的特征。

  ②让学生带着所学的知识走向实践,学会用数学的观点来解释现实世界中的一些问题,如:“下面图形,能不能围成长方体或正方体?如不能,为什么?”

  二、设计思路

  长方体和正方体是最基本的立体图形,它是在学生直观认识长方形、正方形特征基础上展开教学的。为今后学习长方体、正方体的表面积作好铺垫。因此,认识长方体、正方体特征,理解它们内在规律及联(转自数学 吧 )系是非常重要的。本课多次让学生动手操作实践,让学生在看一看、量一量、摸一摸等实际操作中不断积累空间观念的。在认识长方体特征的基础上,利用学习迁移自主讨论正方体的特征,再比较长方体与正方体之间的异同。明确它们的内在联系,最后用学到的新知解决一些实际问题。教学程序图:

  教师活动: 创设情境 协作指导 拓展延伸

  学生活动: 操作感悟 自主探究 实践应用

  三、教学设计

  教 学 过 程 设 计 意 图

  (一)操作感悟

  1、出示实物:可乐罐、礼品盒、魔方、牙膏盒等,请学生选择喜欢的物体,说说是什么形状的?

  2、揭题:长方体和正方体的认识 联系生活实际,支持学生根据自己的“数学和生活经验”发现生活中的数学。同时强调了学生学习的自主性,选择喜欢的物体说说形状。

  (二)自主探究

  1、认识长方体特征

  (1)初步感知不同形状的长方体实物,并动手摸一摸,认识长方体的面、顶点、棱。

  (2)小组合作,运用数一数、看一看、量一量的方法再次观察实物。通过讨论、交流、概括特征。

  (3)指导识图

  认识不同方位,不同形状的长方体(包括有两个面是正方形的长方体)和学生一起探讨看不见的棱和面的表示方法,理解立体直观图的形状特点,完善对长方体的整体认识。

  (4)认识长方体的长、宽、高,揭示它们的意义及其相对性。

  教师向学生提供充分的从事数学活动的机会,通过动手操作实践,使他们在自主探索和合作交流的过程中揭示规律,建立概念。

  教师作为活动的组织者和学生一起探究,逐步获得新知,学生在探索新知的同时,也逐步掌握了探索的方法。促进了学生观察力和空间想象力的发展。

  运用多媒体教学,加强学生的直观感知,提高教学效率。

  2、认识正方体的特征

  小组合作探究正方体的特征,诱发比较、迁移类推。

  3、认识长方体、正方体的关系

  (1)多媒体动态演示,比较分析。揭示出长方体和正方体的内在联系,得出:正方体是特殊的长方体。

  (2)说说生活中哪些物体是长方体、正方体的。 开放学习的方式,以学生的自主学习为中心,让学生通过自身的发展尝试总结,验证,实现知识的“再创造”。

  比较是认识事物的主要方法之一,特别在几何体教学中,运用比较方法,加强形体间的联系和区别,提高识别能力。同时渗透事物普遍联系和发展变化的辩证唯物主义观。联系生活,体现数学来源于生活,又应用于生活的特点。

  (三)实践应用

  1、判断题

  2、操作题

  将8个大小完全相同的小正方体摆成形状不同的长方体,并分别指出长、宽、高。

  3、拓展提高题

  判断部分展开图形能否围成长方体或正方体,并说明理由。

  侧重于知识点的落实,巩固新知。

  加强动手操作实践,丰富学生感知,积累空间观念,形成能力。

  积极引发学生的争论,辩明概念,建立初步的空间观念。

《长方体的认识》教案设计6

  教学内容:

  P1-2例1、例2、“练一练”、练习一第1—3题。

  教学目标:

  1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。

  2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。

  教学重点:认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。

  教学难点:长方体和正方体的特征。

  教学过程:

  一、引入新课

  1、由平面图形引到立体图形。

  出示一张长方形的纸,让学生说出它的形状,然后把许多这样的纸摞在一起,问学生还是长方形吗?

  接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。

  2、引导学生认识什么是立体图形。

  让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的纸盒。问:有什么感觉?为什么会有这种感觉呢?

  指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形。

  问:这些物体的形状都是什么图形呢?在这里面哪些物体的.形状是长方体的呢?

  3、举例。

  让学生举出日常生活中见过的长方体的物体实例。

  师:要知道这些物体为什么都是长方体,就要研究长方体的特征。

  二、引导探究

《长方体的认识》教案设计7

  [教材简析]

  本节内容是在学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上,进一步探索长方体和正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。

  例1教材一共安排了三个层次学习活动,让学生由浅入深,由表及里地探索长方体的特征。第一层次结合实物(或图片)从整体上感知长方体,第二层次通过对长方体的进一步观察,认识长方体的直观图及其面、棱和顶点,第三层次探索发现长方体面和棱的特征。在此基础上,介绍长方体长、宽、高的含义。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。

  [教学目标]

  1、学生通过观察、操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。

  2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  3、学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

  [教学重点]

  认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。

  [教具准备]

  长方体、正方体教具、CAI课件

  [教学过程]

  一、观察与操作,认识长方体的特征

  1、教学例1

  出示画面:有一些长方体的实物和正方体的实物。(如电冰箱、饼干盒、魔方等)

  谈话:同学们,这些是我们生活中常见的一些物体,你能说说哪些物体的形状是长方体,哪些物体的形状是正方体?

  学生回答,并举例再说说生活中还有哪些物体的形状是长方体和正方体。

  出示长方体模型,谈话:长方体有几个面?从不同的角度观察一个长方体,你觉得最多能同时看到几个面?

  学生说一说自己的猜想。

  分组操作,进行验证。学生分组从不同角度观察一个长方体,看一看最多能同时看到几个面。

  学生汇报、演示观察结果,并说一说从某一个角度进行观察,能同时看到的.是哪几个面,看不到的是哪几个面。

  提问:那么,从不同的角度观察一个正方体,最多能同时看到几个面?

  说明:从不同的角度观察一个长方体或正方体,最多能同时看到三个面。

  谈话:依据同学们的观察结果,我们画出长方体和正方体的直观图。

  出示长方体和正方体的直观图。(标出面)

  谈话:直观图中线和点都有各自的名称,请同学们自学课本。

  学生看书,理解棱和顶点的含义。

  指名说一说什么叫做棱,什么叫做顶点?

  (两个面相交的线叫做棱,三条棱相交的点叫做顶点。)

  (演示)在直观图中闪烁棱和顶点,指名说一说(指一指)这条棱是由哪些面相交得到的,这个顶点是由哪些棱相交得到的?

  提问:直观图是用实线和虚线两种线画成,你知道它们表示什么吗?

  说明:直观图中的实线表示从某个角度能看到的棱,而虚线则表示从某个角度看不到的棱。

  提问:长方体有几条棱和几个顶点?自己数一数。

  指名演示数一数长方体面、棱和顶点的个数。集体交流数法。(适当进行指导,让学生能体会到面可以一对一对地数,棱可以一组一组地数,顶点可以4个4个或2个2个地数。)

  得出:长方体有6个面,12条棱和8个顶点。

  提问:长方体的面和棱有什么特点?

  学生观察长方体,说一说自己的猜想和判断。

  谈话:同学们观察有了一些直观的感受,下面我们通过量一量、比一比实际操作进行验证。

  学生分组活动,利用长方体模型进行操作活动,并在小组中交流。

  组织学生在班级中进行交流。

  学生1:长方体6个面都是长方形。

  学生2:长方体的上面和下面的2个面完全相同,前面和后面的2个面完全相同,左面和右面的2个面完全相同。

  学生3:长方体的棱有3组,每组的4条棱长度相等。

  可以让学生演示操作,证明得到的结论。

  谈话:长方体的上面和下面完全相同,前面和后面完全相同,左面和右面完全相同,我们可以用一个词来表示。学生或教师说出(相对的面)

  引导学生理解长方体相对的面完全相同是指的哪两个面;相对的棱长度相等是指的哪四条棱。

  出示有两个面是正方形的长方体。

  提问:这是长方体吗?这个长方体和刚才同学们观察的长方体有什么不同?

  学生:这个长方体有2个相对的面是正方形的,4个面是长方形的。前面观察的长方体的6个面都是长方形的。

  小结:长方体有6个面,有的6个面都是长方形,有时6个面中,会有两个相对的面是正方形。长方体相对的面完全相同,相对的棱长度相等。

  演示闪动长方体相交于同一顶点的三条棱。

  提问:这三条棱的长度相等吗?你知道这三条棱分别叫做什么?(长、宽、高)

  说明:相交于同一个顶点的三条棱中,通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。

  [设计意图:学生对长方体和正方体有一些直观的认识,教学中让学生通过观察、操作、测量、比较等活动,在学生充分感知的基础上,由浅入深、由表及里地探索长方体的特征,并通过交流,对有关发现加以适当的整理和概括。]

  2、练一练

  说明操作要求:同座两人一组,选择一个长方体实物,先指出它的面、棱和顶点,再量出它的长、宽、高。

  学生操作活动,互相说一说。

  二、探索与发现,认识正方体的特征

  1、教学例2

  出示正方体的直观图。

  谈话:我们对长方体的特征有了一定的认识,想一想正方体有几个面、几条棱和几个顶点?正方体的面和棱有各有什么特征?看一看,量一量,比一比,并在小组里交流。

  学生自主探索,并在小组中交流。

  指名在班级中说一说。

  学生1:正方体有6个面,12条棱和8个顶点。

  学生2:正方体的6个面都是正方形,并且完全相同。

  学生3:正方体的12条棱的长度相等。

  学生演示操作,验证得到的结论。

  提问:长方体和正方体有哪些相同点?有哪些不同点?

  出示比较的表格,让学生填一填,再在小组中交流。

  名称

  长方体

  正方体

  相同点

  不同点

  学生在班级中交流比较结果。

  得出:长方体和正方体都有6个面、8个顶点和12条棱。不同的是长方体6个面是长方形或其中有2个面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体12条棱都相等。长方体相交于同一顶点的三条棱的长度分别叫做长、宽、高,正方体都叫为棱长。

  2、练一练

  选择一个正方体实物,量出它的棱长。

  学生在小组中操作,在班级中汇报测量结果。

  [设计意图:学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱和顶点的特征,体会正方体和长方体的联系与区别,帮助学生能比较完整地把握长方体和正方体的特征。]

  三、巩固与拓展,感受变化,加深理解

  1、练习三第1题

  学生独立看题,和同座同学说一说。

  指名在班级中说一说,集体交流。

  提问:这三个长方体有什么不同之处吗?(发现第2个和第3个长方体的长比宽要短,第三个长方体的长和高一样长,说明有两个面是正方形的。)

  2、练习三第2题

  第2题中的4个问题学生先独立解答,在图中标注出数据,然后在组内进行交流。

  指名口答,并说一说想法。说明各个面是什么图形及相应的长和宽的长度是多少。

  (第4个问题,教师可以换一种提问:还有哪些面和同学们刚才观察的几个面完全相同?)

  3、练习三第3题

  出示图。

  提问:观察这两个直观图,从图中你能知道些什么?

  学生看图,并说一说自己观察的结果。

  学生:一个是长方体,一个是正方体。

  学生:长方体的长、宽、高分别是5厘米、4厘米和5厘米。正方体的棱长是5厘米。

  谈话:继续观察,它们的面各有什么特征?

  学生观察可以发现长方体前后有2个面是正方形的,其余的四个面都是长方形,并且完全相同。正方体的6个面完全相同。

  4、练习三第4题

  说明题意,并指名说一说摆成的是长方体还是正方体。

  学生独立标出各个几何体的长、宽、高,再在小组中指一指,说一说。

  指名在班级中说一说各个几何体的长、宽、高(或棱长)的位置和长度。

  5、练习三第5题

  出示题,学生读题,理解题意。

  独立做一做,做好指名说一说计算过程和想法,集体交流做法。

  提问:怎样算长方体的底面的面积?正方体呢?

  (学生可以发现,长方体的底面面积就是长乘宽,正方体的底面面积就是棱长乘棱长。)

  [设计意图:在巩固练习中,不仅帮助学生加深对长方体和正方体基本特征的认识,也让学生在观察和交流中进一步拓展认识,感受长方体和正方体的变式。并为后面学习长方体和正方体的体积公式做好准备。]