当前位置:育文网>教学文档>教案> 六年级下册数学教案

六年级下册数学教案

时间:2022-01-15 08:30:04 教案 我要投稿

六年级下册数学教案

  作为一位不辞辛劳的人民教师,就有可能用到教案,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!下面是小编精心整理的六年级下册数学教案,欢迎阅读与收藏。

六年级下册数学教案

六年级下册数学教案1

  教学内容:

  课本第78——79页例2和“练一练”,练习十三第1、2题。

  教学目标:

  1、让学生用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用的意识。

  2、发展思维、提高分析问题、解决问题的.能力,进一步体会数学知识之间的内在联系。

  教学重难点:

  用分数乘法和减法解决一些稍复杂的实际问题。

  课前准备:

  课件

  教学过程:

  一、谈话导入

  谈话,并出示例题。

  学生自由读题,了解题意。

  二、探索新知

  1、出示例2,问:从题中你知道了什么?要我们解决什么问题?

  说出题目的已知条件和所求问题。

  谈话:为了使已知条件之间、条件和问题之间的关系更清楚,可以先画线段图。

  教师一边讲解一边示范画线段图的过程,学生和教师一起操作,完善线段图。

  2、问:要求女运动员有多少人,可以先算什么?在图上指出来。

  各自列式解答,指名板演,期于学生同时列式解答。

  集体评讲。

  探讨其他算法

  设问:想一想还可以怎样算?

  学生思考后交流。教师适当评讲。

  三、巩固深化

  1、完成“练一练”第1题。

  让学生先说出自己的想法,然后再列式解答。

  集体评讲。

  2、完成“练一练”第2、3题。

  学生弄清题意后独立解答。(要求学生画出线段图)

  集体评讲。

  四、课堂总结

  通过今天的学习,你有什么收获呢?

  五.布置作业

  练习十三第1、2题。

  教学反思:

六年级下册数学教案2

  教学内容:

  课本第79——80页例3和“练一练”,练习十三第3-5题。

  教学目标:

  1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。

  2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,

  增强学生应用数学的意识。

  教学重难点:

  用分数乘法和减法解决一些稍复杂的实际问题。

  课前准备:

  课件

  教学过程:

  一、复习导入

  王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?

  全校的三好学生共有96人,其中男生占3/8,女生有多少人?

  学生独立解答后,让学生说说想的过程。

  二、教学例3

  出示题目,要求学生默读。

  指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。

  从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?

  问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的.班级数看作单位“1”?

  教师指导学生画线段图。

  教师再根据线段图引导学生分析题意。

  “要求今年有多少班,可以先算什么?

  请你试着把这道题做一下。

  教师找出不同的解法进行板演,并让学生说说思路。

  三、完成”练一练“

  1、做第1题。

  (1)引导学生画线段图理解题意

  (2)看线段图分析

  (3)学生独立完成,指名板演,集体评讲。

  2、做第2、3题。

  (1)让学生独立完成,指名板演,集体评讲。

  (2)让学生说说自己的想法。

  四、巩固提高

  1、完成练习十三第3题。

  学生直接把结果写在书上,集体核对。

  2、练习十三第4题。

  3、学生读题后,要求学生画出线段图进行分析,然后列式解答。

  集体评讲。

  五.本课总结。

  通过这节课的学习,你有什么收获呢?

  六、布置作业

  练习十三第5题。

六年级下册数学教案3

  教学目标

  1、知识与技能 :使学生理解反比例的意义,并能正确判断成反比例的量。培养学生观察概括的能力和学习方法的迁移能力。

  2、过程与方法 :经历反比例意义的探究过程,通过学生的讨论分析合作,使学生进一步认识事物之间的联系和发展变化的规律,体验观察比较,推理归纳的学习方法。

  3、情感态度与价值观 :通过一系列富有探究性的问题,进一步渗透自主学习和与他人合作交流的意识和探究精神,激发学习数学的热情。

  教学重难点

  重点:理解反比例的意义、正反比例的比较。

  难点:正确判断两个量是否成反比例

  教学工具

  PPT课件

  教学过程

  (一)、回忆旧知,引出新课。

  1、复述回顾:

  (1)、什么叫做成正比例的量?

  (2) 判定两种量成正比例的关键是什么?

  (3)、判定下面两种量是否成正比例?

  A、轮船行驶的速度一定,行驶的路程和时间。

  B、每小时织布的米数一定,织布总米数和时间。

  C、当圆柱体的高度一定时,体积和底面积。

  2、引出课题:这是我们上节课学习的内容——成正比例的量,今天我们继续学习这些常用的数量关系之间的一些特征。当圆柱体的体积一定时,底面积和高度又有什么态度呢? ﹙板书:成反比例的量﹚

  (二)、自主学习,探索新知。

  1.探究反比例的意义

  今天老师给大家带来了一个实验,在实验之前,提出实验要求。

  (1)、记录杯子里水的高度,把表格中补充完整。

  (2)、观察水的高度是如何变化的?

  教师播放实验。

  水的高度是怎样随着底面积的变化而变化的?

  3、观看实验记录单,回答三个问题。

  ①表格中有哪两种量?

  ② 水的高度是怎样随着底面积的变化而变化的?

  ③相对应的杯子的.底面积和水的高度的乘积分别是多少?

  教师据学生汇报说明:在水的高度和底面积这两种相关联的量中,一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。相对应的两个数的乘积是一定的。像这样的两种量,叫做成反比例的量,它们的关系叫反比例关系。

  4、课件展示反比例的意义,请学生回答判断两种量成反比例的关键是什么?

  学生小组内讨论得出判断两种量成反比例的关键是有三个条件,1、两种相关联的量;2、变化方向相反;3、乘积一定。

  3.说一说:生活中还有哪些量成反比例关系?

  师:想一想在日常生活中,还有哪些量成正比例关系谁给我们来举个例子吧。

  (1)学生自由举例。

  (2)师讲述:日常生活和生产中有很多相关联的量,有的成反比例,有的相关联,但不成比例。判断两种相关联的量是否成反比例,要看这两个量的积是否一定,只有积一定,这两个量才成反比例

  三、巩固练习。

  (一)、基础练习

  1、判断下面每题中的两种量是不是成正比例,并说明理由。

  (1)轮船行驶的速度一定,行驶的路程和时间。

  (2)每小时织布的米数一定,织布总米数和时间。

  (3)当圆柱体的高度一定时,体积和底面积。

  (1)、表格中有( )和( )两种相关联的量。

  (2)、写出这两种量中相对应的两个数的积,并比较大小。

  (3)、这个积表示( )。

  (4)、表中的相关联的两种量成反比例吗?为什么?

  2、判断下面每题中的两种量是不是成反比例,是“√ ”,不是“×”。

  (1)煤的量一定,每天的烧煤量和能够烧的天数. ( )

  (2)种子的总量一定,每公顷的播种量和播种的公顷数. ( )

  (3)李叔叔从家到工厂,骑自行车的速度和所需的时间. ( )

  (4)华容做12道数学题,做完的题和没有做的题. ( )

  四、积极应用,拓展新知。

  出示课件,正、反比例的例题,请学生比较,正、反比例的相同点、和不同点?把表格补充完整。

  学生小组内讨论,得出答案。

  五、拓展练习。

  1、判断下面每题中的两种量成比例吗?并说明理由。

  (1)、长方形的面积一定,它的长和宽。 ( )

  (2)、轮船行驶的速度一定,行驶的路程和时间。 ( )

  (3)、生产电视机的总台数一定,每天生产的台数和所用的天数。 ( )

  (4)、小麦每公顷的产量一定,小麦的公顷数和总产量。 ( )

  (5)、矿泉水瓶中喝掉的水和剩下的水。 ( )

  (6)、圆的半径和它的面积。 ( )

  (7)、铺地面积一定,方砖面积与所需块数。 ( )

  六、课堂小结。

  通过这节课的学习,你有什么收获?想挑战一下自我吗?好!请同学们认真完成堂堂清练习题。

六年级下册数学教案4

  教学目标

  1.1 知识与技能:

  1.在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数,知道0既不是正数也不是负数。

  2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

  1.2过程与方法 :

  经历负数的认识过程,体验比较、归纳总结的方法。

  1.3 情感态度与价值观 :

  感受数学与实际生活的联系,激发学习兴趣,培养学思结合的良好学习习惯,体会数学知识之间内在联系的逻辑之美。

  教学重难点

  2.1 教学重点

  能用正、负数表示生活中两种相反意义的量。

  2.2 教学难点

  用负数解决生活中的实际问题。

  教学工具

  多媒体课件

  教学过程

  一、游戏引入

  同学们,今天我们来玩个游戏轻松一下,游戏叫“我正你反”。游戏规则:老师说一句话,请你说出与它意思相反的话。

  1、向上看(向下看)

  2、向前走200米(向后走200米)

  3、电梯上升15层(电梯下降15层)

  4、零上10摄氏度(零下10摄氏度)

  很好,接下来,老师换一个游戏规则。老师给大家看一幅图片(课件出示第2页例1的几幅图)。

  二、初步感知

  师:同学们以前有没有见过类似于第2页例1的几幅图的情景呢?

  生:有,看天气预报的时候。

  师:我国面积非常大,在同一个时间,不同的地区气温相差非常大。仔细观察这幅图,你看,这六个城市,你能读出这六个城市的天气怎样的吗?

  出示例1情境图.

  学生读一读。

  三、认识负数

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  师:(课件出示温度计)同学们,认识它吗?

  生:温度计。

  师:你知道它们表示什么?(课件出示℃、℉)

  生:℃表示摄氏温度,读作“摄氏度”。

  生:℉表示……

  师:℉表示华氏温度,读作“华氏度”。 那我国用什么来计量温度呢?

  生:我国用摄氏度来计量温度。

  师:一大格表示多少摄氏度?一小格表示多少摄氏度?

  通过课件展示让学生对温度计做进一步的认识,让学生知道一大格表示10摄氏度,一小格表示2摄氏度。

  师:0摄氏度怎样规定的?你知道吗?

  生:水结冰的温度定为0℃。

  师:是的,科学家把水结冰的温度定为0℃。读作:0摄氏度。比0℃ 低的温度叫零下温度,通常在数字前加“—”(负号)

  师:零上温度用正数表示 ,零下温度用负数表示。

  师:那零上10摄氏度记作?:+10℃ 零下10摄氏度记作?:-10℃

  生:零上10摄氏度记作:+10℃;零下10摄氏度记作:-10℃ 。

  2、读出水银柱所表示的温度。(课件出示)

  教师课件出示水银柱所表示的温度,引导学生读一读。

  3、从上面的天气预报图中你了解到哪些信息?

  例如:北京最高温度是5℃,最低温度是零下5 ℃。

  师:北京-5℃和5℃一样吗?都表示什么意义呢?

  生:-5℃和5℃不一样, -5℃表示比零度还要低5摄氏度, 5℃表示比零度高5摄氏度。

  生:-5℃和5℃不一样, -5℃比零摄度冷, 5℃表示比零摄氏度热。

  教师小结:5℃和- 5℃表示具有相反意义的量。

  4、正确读出例1中的各个城市的天气温度。

  师生一起小结:当气温高于0℃的时候,我们在数字前面加一个“+”号或者直接用数字来表示,读作零上×摄氏度。当气温低于0℃的时候,我们在数字前面加一个“-”号来表示,读作零下×摄氏度。因此,+5℃表示零上5摄氏度,读作正三摄氏度;-5℃表示零下5摄氏度,读作负三摄氏度。(板书:+5℃ 正三摄氏度;-5℃ 负三摄氏度)

  学生自主完成例1的信息表,然后和同桌说说各数表示的意思。

  指名学生回答,教师点评并总结。

  5、教学教材第3页例2。

  师:接下来我们再来看一下第3页例2的图片,每个数字表示什么意思?

  生:“20xx”表示存入20xx元。

  生:“-500” 表示支出了500元。

  生:“-132” 表示支出了132元。

  生:“500”表示存入500元。

  师:你能找到意思相反的词语或者数学符号吗?(提示20xx.00与+20xx.00代表相同的意思。)

  师:那在这里500.00和-500.00分别表示什么意思呢?

  生:500.00表示存入500元, -500.00表示支出500元

  学生说出各个数字的含义。

  教师小结:500和-500表示具有相反意义的量。

  师:很好,同学们再试着说说图中其他数各表示什么。

  学生交流。

  6、思考总结

  教师引导学生比较例1和例2,找出他们的共同点。

  师:同学们比较一下例1和例2,他们有什么共同点吗?

  学生小组讨论汇报。提示:在例1和例2中,都有两种数来表示两种相反意义的.量—零上温度和零下温度,支出与收入。

  7、0是什么数?

  师:我们把海平面的高度看做多少呢?

  生:看作0。

  师:(课件展示)比海平面高的用(+几或几)表示,例如+5000米比海平面低的用(-几)表示,例如-20xx米

  把海平面0当成正数和负数的分界线。

  师:(课件展示)珠穆朗玛峰比海平面高8844.43米,怎么表示?

  生:记作+ 8844.43米。

  师:吐鲁番盆地比海平面低155米,如何表示?

  生:记作-155米。

  课件展示小知识:海平面,顾名思意,就是大海的水面。它用在测量地面高度上,又称海拔。我国所有的大地测量和标志,都是以黄海海面的基点开始的,任何海拔标高,都是相对于黄海海面的基准点。

  (通过对海平面的认识,温度计上的0,得出0像一条分界线,把正负数分开,所以0既不是正数也不是负数。)

  小结:为了表示两种相反意义的量,这里出现了一种新的数:-16,-500。像-16,-500,-3,-0.4……这样的数叫做负数。- 读作负八分之三。

  而以前所学的16,20xx, ,6.3……这样的数叫做正数。正数前面也可以加上“+”号,例如+16,+ ,+6.3等(也可以省去“+”号)。+6.3读作正六点三。

  师:0像一条分界线,把正负数分开。0既不是正数,也不是负数。

  8、做一做

  课件出示题目:

  (1)、用正负数表示。

  ①、零上12.5摄氏度表示为:________,(+12.5 ℃)

  零下3.5摄氏度表示为:________。(-3.5 ℃)

  ②、广西某地有一天坑,

  坑口高于海平面125m,表示为:________, (+125)

  坑底低于海平面 m,表示为:________.(—100)

  (2)、先读一读,再议一议:观察这些数,可以怎样分类?

  学生同桌讨论,教师指名汇报。

  9、教师引导学生总结:数可以分成正数、0、负数。正数包括正整数、正分数、正小数 ,负数包括负整数、负分数、负小数 ,0既不是正数,也不是负数。它是正、负数的分界点。

  正数前面可以写“+”,但通常不写,而负数前面的“-”必须写。正数前面可以读“正”,但通常不读(如果有“+”号必须读),而负数前面的“负”必须读。

  四、走进生活

  师:负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。课件出示题目进行检测:

  1.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 __________。月球表面的最低温度是 __________。(100℃,0℃, -88.3 ℃, -183℃)

  2、做一做

  胜5场记作 _______, 读作_________;(+5场,正五场)

  输3场记作 _______ , 读作 _________。(-3场,负三场)

  收入100元记作_______,读作___________;(+100元,正一百元)

  支出200元记作_______ ,读作___________。(-200元,负二百元 )

  学生交流,指名说一说。

  3、叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?

  学生交流,指名说一说。

  4、六年级三个班进行智力抢答赛,答对一题得10分,答错一题扣10分,不答得0分。根据三个班的得分,说一说他们的答题情况。

  学生交流,指名说一说。

  5、你会用正负数表示下面各地的海拔高度吗?

  (1)、华山比海平面高20xxm,记作(+ 20xxm )

  (2)、死海比海平面低392m,记作(- 392m )

  学生交流,指名说一说。

  6、我能判断对错

  (1)任何一个负数都比正数小。(√)

  (2)一个数不是正数就是负数。(×)

  (3)因为“4”前面没有“+”号,所以“4”不是正数。(×)

  (4)上车5人记作“+5人”,则下车4人记作“-4人”。( √)

  (5)正数都比0大,负数都比0小。(√)

  (6)5゜C和+5゜C所表示的气温一样高。(√)

  7、小结交流

  师:你还在什么地方见过负数吗?

  生:家庭收支账本上。

  生:冰箱的冷冻室温度。

  生:地图上显示的海拔高度。

  五、巩固练习

  1、教材第4页“做一做”第1题。

  学生独立读出-3℃和-18℃这两个温度,并根据题干思考北京和哈尔滨的温度哪个低些。

  教师指名回答。

  2、教材第4页“做一做”第2题。

  学生小组依次回答,教师集体订正。

  教师强调:0既不是正数,也不是负数。

  课后小结

  师:通过这一节课的学习,你有什么收获?

  师:这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

  板书

  认识负数

  +5℃ 正三摄氏度 -5℃ 负三摄氏度

  5 三 -5 负三

  八分之三 -

  负八分之三

  0既不是正数,也不是负数。

六年级下册数学教案5

  第一单元:认识负数

  教学内容:

  1、认识负数:教材第1—6页例1—例4以及练习一

  2、实践活动:面积是多少第10—11页

  教学目标:

  1、让学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。

  2、让学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。

  3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。

  教学重点:正数、负数的意义

  教学难点:理解0既不是正数也不是负数

  课时安排:3课时

  (1)认识负数的意义

  教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题

  教学目标:

  1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

  2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。

  3、体验数学与日常生活密切相关,激发学生对数学的兴趣。

  教学重点:在现实情境中理解正负数及零的意义。

  教学难点:用正负数描述生活中的.现象。

  教学准备:温度计挂图等

  教学过程:

  一、谈话导入:

  通过复习,你知道这节课要学什么么?(板书:负数)

  说我们以前认识过哪些数?(自然数、小数、分数)

  分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)

  二、学习例1:

  1、你知道今天的最高温度么?你能在温度计上找到这个温度么?

  介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?

  在温度计上找到表示35℃的刻度。

  你知道什么时候是0℃吗?(水和冰的混合物)

  你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?

  分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。

  读一读:正35,负5

  分别说说在这3个不同的温度你的感受。

  2、完成试一试:

  写出下面温度计上显示的气温各是多少摄氏度,并读一读。

  对零下几度,可能学生会不能正确地看,注意指导。

  3、完成第3页第2题的看图写一写,再读一读。

  简单介绍有关赤道、北极、南极的知识。

  4、完成第6页第4题:

  先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。

  5、读第7页第5题。,让学生说说体会。

  6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。

  三、学习例2:

  1、出示例2图片,介绍“海平面”“海拔”的基本知识。

  让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。

  再指一指吐鲁番盆地的海拔。

  指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。

  用你自己的理解来说说这样记录有什么好处?

  2、完成第6页第1题:用正数或负数表示下面的海拔高度。

  读一读第2题的海拔高度,它们是高于海平面还是低于海平面。

  三、认识正负数的意义:

  1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?

  你能用自己的话来说说怎样的数是正数?怎样的数是负数?

  0呢?为什么?

  2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。

  3、完成第6页第3题:分别写出5个正数和5个负数。

  四、全课小结:(略)

六年级下册数学教案6

  教学目标

  1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学关键 培养学生分析和解决实际问题的'能力

  教学重点 复习分数乘除法应用题,掌握解题方法。

  教学难点 找准单位“1”

  教学步骤 教学过程 教学课件演示 教学意图

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

六年级下册数学教案7

  教学目标

  1.1 知识与技能:

  1. 能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。

  2. 通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3. 探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  1.2过程与方法:

  讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。

  1.3情感态度与价值观:

  引导学生进一步体会立体图形的平面化,感受数学探索活动本身的乐趣,增强学好数学的信心。

  教学重难点

  2.1教学重点:

  让同学们理解圆柱的表面积计算方法。

  2.2 教学难点:

  能够分清侧面积和表面积的区别,合理应用到日常生活中.

  教学工具

  课件、多媒体设备等

  教学过程

  一、情境导入

  师:同学们,在如常生活中我们经常会遇到一些圆柱体,比如我手里面拿的水杯,你们知道他有哪些东西组成的吗?

  生:同学们举手进行回答。

  师:这个水杯有哪些面组成呢?

  生:上底面、下底面、侧面

  师:多媒体出示动画

  师:我们可以看出它有三部分组成。

  师:现在想一下这三部分都是什么图形?

  生:上下底面(圆形),侧面(长方形)

  师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。

  生:举手口述连线答案。

  师:课件出示答案

  圆柱的侧面积 = 底面周长 × 高

  师:现在,我们来看一些数量关系:

  ①柱体上下底面面积相等;

  ②圆柱体侧面长=底面圆周长

  ③圆柱体侧面宽=圆柱体高

  二、探究新知

  (一)、侧面积

  师:我们现在来看看圆柱体的侧面积是怎样计算的。

  学生:举手发言

  在回答问题的过程中教师要用鼓励性的.语言激发学生探求知识的能力。

  师:多媒体出示答案

  圆柱侧面积=长×宽=底面圆周长x高

  师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)

  1、已知圆柱体的底面圆半径为50px,高为125px,求一下这个圆柱体的侧面及时多少?

  生:举手回答

  师:多媒体出示答案

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20πcm?

  师:同学们要认真观察书写步骤。

  (二)、表面积

  师:现在我们来看看圆柱体的表面积是怎么计算的。

  生:举手回答问题

  师:多媒体出示答案

  圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积

  师:下面我们再来做一个练习吧!

  2、现在要制作一个底面半径为2dm,高为10dm的圆柱形铁桶,需要多少铁皮?

  师:同学们可以先算出侧面积和底面积,然后再算表面积。

  生:通过同学们互相竞争,增强了同学们学习数学的兴趣。

  解析:

  解:周长=2πr =2×2π =4π

  侧面积=周长×高=4π×10=40π

  底面圆面积=πr?=4π

  圆柱表面积=侧面积+2底面积 =40π+2x4π=40π+8π =48π

  答:需要48πdm?铁皮

  三、巩固练习

  师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)

  1、 天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为20xxpx,烟囱的半径为100px,求制作这样的烟囱一节需要多少铁皮。

  师:要找出题目的关键,理清思路,细心解题。

  生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。

  解析:

  解:周长=2πr=2×4π=8π

  表面积=侧面积=8π×10=80π

  答:制作这样的烟囱一节需要80πcm?铁皮

  师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)

  2. 现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少平方米的混凝土。

  生:各小组在竞争中享受获取知识的乐趣。

  解析:周长=πd=1.5π

  表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π

  答:整个水窖需要抹去6.75π平方米的混凝土

  师:现在大家独立完成下面的题目(出示题目)。

  3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。

  解:设圆柱体的高为h

  根据:表面积=侧面积+2底面积

  628=2×2πh+2×π2?

  628=4πh+8π

  628=4×3.14h+8×3.14

  20=4h+8

  h=4

  答:圆柱体的高4米

  7 作业布置

  师:在作业本上面完成下面的2个题目。

  1、一个圆柱体,如果底面半径为5,圆柱体高为10,那么,求一下圆柱体的侧面积和表面积 ?

  解:周长=2πr=2×5π=10π

  侧面积=周长×高=10π×10=100π

  底面积=πr?=25π

  表面积=侧面积+2底面积=100π+2×25π=150π

  2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20π

  底面积=πr?=4π

  表面积=侧面积+2底面积=20π+4π=24π

  课后小结

  这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为平面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。

  板书

  第2节 圆柱(圆柱的表面积)

六年级下册数学教案8

  教学目标

  1.结合丰富的实例,认识反比例。

  2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

  3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

  教学重点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学难点

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程

  一、复习

  1.什么是正比例的量?

  2.判断下面各题中的两种量是否成正比例?为什么?

  (1)工作效率一定,工作时间和工作总量。

  (2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

  (3)正方形的边长和它的面积。

  二、导入新课

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

  三、进行新课

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

  两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

  同桌交流,用自己的语言表达。

  写出关系式:速度×时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定。

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

  写出关系式:每杯果汁量×杯数=果汗总量(一定)

  以上两个情境中有什么共同点?

  4.反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

  教学内容:

  苏教版义务教育课程标准实验教科书第60-61页

  教材分析:

  在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

  “实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。

  在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

  教学目标:

  ⑴使学生会用工具测量两点间的距离、步测和目测的方法。

  ⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

  ⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。

  教学重点:

  掌握“用工具测量两点间的距离、步测和目测”的方法。

  教学难点:

  掌握“用工具测量两点间的距离、步测和目测”的方法。

  教学具准备:

  卷尺、标杆、50米跑道。

  教学流程:

  一、揭示课题,明确学习内容。

  ⑴揭示课题。

  板书课题——实际测量。让学生说说对课题的理解。

  ⑵了解测量工具。

  让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

  ⑶明确学习内容。

  测量地面上相隔较远的两点间的距离;步测和目测。

  二、了解测量知识,为实践活动作准备。

  ⑴测量相隔较远的两点间的距离。

  理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

  理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

  观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

  掌握测定直线的步骤:测定直线;分段量出;记录计算。

  ⑵学习步测的方法。

  理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

  掌握步测的方法:用步数×每一步的距离。

  理解步测的关键:确定平均步长。

  掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

  理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

  ⑶学习目测的方法。

  观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

  目测较短距离:人书本的长和宽;课桌的长和宽等等;

  理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

  三、实践活动。

  ⑴测定直线。

  ⑵确定平均步长。

  ⑶步测篮球场的长和宽。

  ⑷目测教学楼的长度。

  第三单元分数除法

  第10课时按比例分配的实际问题

  教学内容:

  课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。

  教学目标:

  1、使学生理解按比例分配实际问题的意义。

  2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

  教学重难点:

  理解按比例分配实际问题的意义,掌握解题的关键。

  课前准备:

  课件

  教学过程:

  一、创设情境、引入新知

  根据信息填空:

  (1)男生有31人,女生有21人,男生人数是女生人数的。

  (2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?

  师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。

  二、探究新知

  1、出示例11中的实物图及例题。

  (1)让学生阅读题目后说说你知道哪些信息?

  (2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:

  ①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;

  ②红色与黄色方格数的比是3:2,红色方格占总格数的'3/5,黄色方格占2/5。

  ③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。

  师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。

  学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?

  说说你是怎样做的?

  方法一:3+2=530÷5×330÷5×2

  方法二:30×3/530×2/5

  2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?

  说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)

  如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)

  3、完成练一练第1题。

  4、完成试一试。

  出示试一试。

  提问:“按各小组人数的比分配”是什么意思?你想到了什么?

  5、归纳(讨论)。

  (1)比较例题与试一试题目在解答方法上有什么共同特点?

  (2)怎么解答?

  求总份数,各部分量占总数量的几分之几,最后求各部分量。

  (3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)

  三、应用比的知识解决实际问题

  1、练一练第2题。

  独立完成后进行交流

  指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?

  2、练一练第3题。

  独立填表,完成后集体核对。

  3、练习十第1题。

  四、课堂总结

  这节课学过以后,你有什么收获?

  五、布置作业:

  练习十第2、3题。

  教学反思:

  教学过程:

  (一)导引探究,由表及里

  教学例1,认识成正比例的量。

  1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

  时间(时)123456……路程(千米)80160240320400480……

  在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

  2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

  3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

  4.让学生根据板书完整地说一说表中路程和时间成什么关系。

  [数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

  (二)自主探究,尝试归纳

  出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

  速度(千米/时)406080100120……时间(时)3020151210……

  1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

  2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

  3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

  [从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]

  (三)对比探究,把握本质规律

  1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

  多媒体呈现:

  例1路程/时间=速度(一定)

  路程和时间成正比例

  例2速度×时间;路程(一定)

  速度和时间成反比例

  2.探究活动。

  (1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

  (2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

  [例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

  (3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

  启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

  根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

  [概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

  3.组织对比性练习。

  (1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

  表1

  数量/本2030405060……总价/元3045607590……

  表2

  单价/元1。52456……数量/本4030151210……

  在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

  在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

  [将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

  (2)成比例与不成比例的对比练习。

  下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

  ①圆的直径和周长。

  ②小麦每公顷产量一定,小麦的公顷数和总产量。

  ③书的总页数一定,已经看的页数和未看的页数。

  [这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

  (3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

  [举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。

六年级下册数学教案9

  教学内容:

  课本第99页例9和“练一练”,练习十六第7-10题。

  教学目标:

  懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。

  教学重点:

  按折扣进行计算。

  教学难点:

  对折扣的理解,并正确列出算式。

  课前准备:

  课件

  教学过程:

  一、创设情境,引入新课

  春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。

  刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。

  二、实践感知,探究新知

  1、提问:看到“打折”两个字,你会想到什么?

  学生全班交流。

  小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。

  出示:华联超市的毛衣打“六折”出售。

  提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?

  小结:“几折”就是十分之几,也就是百分之几十。

  提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?

  质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?

  学生交流课前搜集到的有关打折信息的'意思。

  提问:说一说下面每种商品打几折出售。

  ①一辆汽车按原价的90%出售。

  ②一座楼房按原价的96%出售。

  ③一只旧手表按新手表价格的80%出售。

  2、教学例9。

  学生自己读题。

  出示例9的场景图。让学生说说从图中获取到哪些信息。

  提问:你知道“所有图书一律打八折销售”是什么意思吗?

  提问“现价是原价的80%”这个条件中的80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?

  学生独立尝试。

  全班交流算式和思考过程

  解:设《趣味数学》的原价是ⅹ元。

  ⅹ×80%=12

  ⅹ=12÷0.8

  ⅹ=15

  答:《趣味数学》的原价是15元。

  3、引导检验,沟通联系。

  启发:算出的结果是不是正确?你会不会对这个结果进行检验?

  先让学生独立进行检验,再交流交验方法。

  启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。

  4、指导完成“练一练”。

  先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?

  三、巩固练习

  1、做练习十六第7题。

  指名口答。

  2、做练习十六第8题。

  让学生独立解答,再对学生解答的情况适当加以点评。

  四、课堂总结

  提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?

  五、布置作业

  练习十六第9、10题。

六年级下册数学教案10

  教学内容:

  教科书第十二册P.110整理与反思以及P.110111练习与实践13题。

  教学目标:

  1、用上、下、前、后、左、右描述物体的位置;

  2、用东、南、西、北描述物体的方向;

  3、用数对表示物体的具体位置;

  4、比例尺的知识

  教学目标:

  1、使学生通过复习,比较系统地综合地运用各种描述的方法描述并确定物体的位置,体会用不同的方法确定位置的特点和作用;能综合地运用比例尺的知识确定物体之间的图上距离或实际距离。

  2、在复习中训练并培养学生的`方向感和空间观念、综合运用所学知识解决实际问题的能力以及识图、作图的能力。

  3、在复习中让学生感受数学与生活的关系,利用数学自身的魅力发展学生对数学积极的情感,激发学生学习数学的积极性。

  重点难点:

  1、能根据文字描述在图上正确找出指定位置

  2、能用数学语言准确描述图形中指定的位置。

  教具学具:

  教学光盘

  教法写学法:

  可以先复习确定物体位置的方法。比如,教师可以提问,我们已经学过哪几种确定物体位置的方法,由学生说出一种是用数对,一种是用方向和距离,由此引出东、南、西、北和东北、西北、东南、西南八个方向的复习。

  然后出示课本上的街区平面图,可以先让学生说说街区图的内容,特别是比例尺1∶10000表示图上1 cm相当于实际距离多少米。然后由学生自己提出问题,请同学看图回答。以提问从阳光小区到邮局怎样走为例,如果学生回答:出小区穿过马路向左拐弯,到四季路再向右拐弯;沿着和平路向西,到四季路向北都应认可。当说出行进距离时,学生之间有时会出现较大误差。由此可以让学生看课本第106页下面街区图的局部放大图,看看该示意图是怎样量的,使学生明确通常是量目标位置所在的点到路的中轴线的距离。有了这个统一的约定,一般可要求六年级学生将图上距离的测量误差控制在2 mm之内。

  复习时,也可以先讨论课本上两个少先队员的对话内容,再请学生提出问题。还可以在学生说出街区图的内容时,由回答比例尺1∶10000表示图上1 cm相当于实际距离多少米的提问,引出图上测量的问题。让学生看课本第106页下面街区图的局部放大图,搞清楚该怎样量,然后再看着第106页上面的街区图,提出问题,或讨论课本上两个少先队员对话中的问题。

六年级下册数学教案11

  一、学生基本情况分析:

  ②情况分析(学科特点与班级情况“个性”的分析)

  智的学生。这些学生都来自服务半径“三村一段”,学生的基础成绩都比较好。该班级学生经过半年的共同学习生活,已经形成了勤奋学习、积极向上、团结友爱、关心集体、尊敬师长的良好道德品德;他们已经形成了良好的学习习惯,具有较强的学习能力,学习比较刻苦,成绩比较稳定。

  二、总的教学目的要求:

  1.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题。

  2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的.计算方法;

  3、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  4、在具体的情境中,初步理解图形的放大和缩小,.理解比例的意义和性质,初步理解比例尺的意义,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。

  5、初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。

  6、让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问

  题中数量关系、空间形式和数据信息的理解,提高综合应用数学知识和方法飞能力。

  三、各单元教学目的要求与教学进度安排(附后)

  四、提高教学质量的主要措施和研究课题:

  1、创设愉悦的教学情境,激发学生学习的兴趣。

  2、提倡学法的多样性,关注学生的个人体验。

  3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。

  4、加强基础知识的教学,使学生切实掌握好这些基础知识。本学期要以新的教学理念,为学生的持续发展提供丰富的教学资源和空间。要充分发挥教材的优势,在教学过程中,密切数学与生活的联系,确立学生在学习中的主体地位,创设愉悦、开放式的教学情境,使学生在愉悦、开放式的教学情境中满足个性化学习需求,从而达到掌握基础知识基本技能,培养学生创新意识和实践能力的目的。

六年级下册数学教案12

  第一单元负数

  第一课时负数

  教学内容:

  教材2-4页例题及“做一做”的内容。

  教学目标:

  知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:初步认识正数和负数以及读法和写法。

  教学难点:理解0既不是正数,也不是负数。

  教学具准备:

  温度计、练习纸。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①、我在银行存入了500元(取出了500元)。

  ②、知识竞赛中,五(1)班得了20分(扣了20分)。

  ③、10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。

  3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  看教材:首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

  现在你能看出南京是多少摄式度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。

  上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄式度。

  了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的.关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?

  比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

  ①、上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  ②、北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)、交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐

  鲁番盆地的海拔可以记作:-155米。(板书)

  (2)、小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。

  面以上的高度,-155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

  1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

  2、学生交流、讨论。

  3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

  ①、如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

  ②、如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

  4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表

  示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

  五、联系生活,巩固练习

  1、练习一第2、3题

  2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是。

  3、讨论生活中的正数和负数

  (1)、存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

  (2)、电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

  六、课堂小结

  这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我

  们都可以用正数和负数来表示。

  七、布置作业

  《冠魔新干线》第1页的练习。

  第二课时负数

  教学内容:比较正数和负数的大小。

  教学目的:

  知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。

  过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

  教学重、难点:负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?15-85.6+0.9-+0-82832、如果+20%表示增加20%,那么-6%表示。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是____摄氏度。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)、提问你能在一条直线上表示他们运动后的情况吗?

  (2)、让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)、教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)、学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)、总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)、引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5

  处,应如何运动?

  (7)、练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。

  四、全课总结

  (1)、在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)、负数比0小,正数比0大,负数比正数小。

  五、布置作业

  《冠魔新干线》第2页的练习。

  第三课时

  内容:认识负数练习

  1、先读一读下面这些温度,在写下来。

  汽油蒸发的温度是四十摄氏度。()

  汽油凝固的温度是十八摄氏度。()

  金星表面的最高温度是四百六十五摄氏度。()

  2、先读一读,再把这些数放入相应的框内。

  正数:()

  负数:()

六年级下册数学教案13


  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。

  甲乙两数的比是5:3。乙数是60,甲数是( )。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、 A×1/6=B×1/5 A:B=( ):( )

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例( ):( )、( ):( )

  实践与应用

  1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的`和是5.4它们的比是5:4,这块钢板的实际面积是多少?

  板书设计: 整理和复习

  比例的意义

  比例 比例的性质

  解比例

  正反比例 正方比例的意义

  正反比例的判断方法

  比例应用题 正比例应用题

  反比例应用体题

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、 培养学生的思维能力。

六年级下册数学教案14

  教学内容:

  课本第98页例8,“试一试”和“练一练”,练习十六第4-6题。

  教学目标:

  1、了解储蓄的含义。

  2、理解本金、利率、利息的含义。

  3、掌握利息的计算方法,会正确地计算存款利息。

  教学重点:

  本金、利息和利率的含义。

  教学难点:

  利用计算公式进行利息计算。

  课前准备:

  存款单、有关利率表格

  教学过程:

  一、创设情境,引入课题

  1、从师生谈话中引出“压岁钱”的话题。

  师:老师与你们一样大的时候,过年最开心的也是能拿压岁钱,那么你们现在过年一般能拿到多少压岁钱?

  师:我相信每个同学都有压岁钱拿,但是不管多少,都是长辈对我们的关心。你们拿了那么多的.压岁钱,是不是都买鞭炮放了?那么你们是如何处理压岁钱的呢?(引导学生存入银行)

  2、联系生活,理解有关利息的知识。

  师:压岁钱有那么多,除了一部分消费外,多余的存银行。那么你能不能向大家介绍一下有关储蓄的知识?(生1:定期利率比活期利率高。生2:活期可以自由地拿,定期不到时间要用身份证才能拿。……)

  师:储蓄有定期和活期之分,定期储蓄的利率较高,就是拿到的什么比较多?(生齐答:利息。师板书)

  师:那么谁来举例说明一下哪一部分是利息呢?

  (师:那么存人的一千元又叫什么呢?(生:本金。师板书)

  师:看来定期储蓄的利率比较高,定期储蓄中又分了一些类型,其中最主要的就是整存整取。我们来看下这张表,你知道了些什么?(出示例1的储蓄年利率表)

  二、探究新知

  1、出示例8。

  学生读题后说说题目的意思

  教师提问:应该选择哪种年利率来计算?为什么?

  学生独立尝试后交流。

  让学生把计算利息的公式补充完整。补充问题:两年后他从银行拿回的钱一共是多少?

  2、完成试一试。

  学生独立完成。完成后交流核对。

  3、完成练一练。

  三、巩固练习

  完成练习十六第4题。

  四、课堂总结

  什么是利息?什么是本金?利息的多少一般由什么决定?你还知道什么?如何计算利息?

  五、布置作业

  练习十六第5、6题。

六年级下册数学教案15

  第一课时

  教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。

  教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。

  教学重点:使学生认识圆柱的特征。

  教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。

  教学过程:

  一、复习

  我们已经认识了长方体和正方体。

  谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?

  谁能说一说我们学习了长方体和正方体的.哪些知识?

  二、 新授

  教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。

  1、 初步印象

  教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?

  (圆柱是由2个圆,1个曲面围成的。)

  2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?

  3、 交流和汇报

  (1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。

  (2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

  (3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。

  4、 举例说明进一步明确特征

【六年级下册数学教案】相关文章:

六年级下册数学教案02-20

人教版六年级下册数学教案02-20

苏教版六年级下册数学教案02-06

六年级下册数学教案(15篇)11-07

六年级下册数学教案15篇01-15

人教版六年级下册数学教案8篇02-24

北师大版小学六年级下册数学教案03-15

五年级下册数学教案02-26

五年级下册人教版数学教案10-12