分数乘法教案15篇
作为一名教学工作者,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。教案要怎么写呢?以下是小编收集整理的分数乘法教案,欢迎阅读与收藏。
分数乘法教案1
教学目的
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。 单元重点: 分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
授课课时:11课时
第一课时分数乘整数
教学内容:人教版六年级上册《分数乘法》教材第2、3页。
授课时间:1.2
教学目标:
1.在学生已有的分数加法及分数基本意义的`基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算
2. 通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。 教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。 教学难点:引导学生总结分数乘整数的计算法则。发现规律,创造规律。
分数乘法教案2
教学目标 :
1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )
2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )
3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4. 进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。
5. 得出结果
根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6. 猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的'计算中吗?
【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】
(二)探究几分之几乘几分之几的算理算法
1. 尝试猜想
请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3. 验证反馈
(1)请几个采用不同验证方法的学生进行一一展示。
(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。
4. 得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1. 读题,独立列式并解答。
2. 反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3. 练习
例4做一做1。
【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】
四、拓展总结(应用拓展,盘点收获)
1. 基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2. 练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○ ○ ○ ○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】
3.拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】
分数乘法教案3
教学目标
1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。
2.探索并掌握分数乘整数的计算方法,能正确计算。
3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
教学重点
会用分数乘整数的计算法则真确进行计算。
教学难点
分析和解决分数乘整数的'实际问题。
教师指导与教学过程
学生学习活动过程
设计意图
一,复习整数乘法的意义
1.什么叫整数乘法?就是求几个相同加数的和的简便运算。
2.出示题目,学生进行计算
(1)6+6+6=6×3
二、新授:
1、出示题卡
1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?
2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。
学生回忆整数乘法,并回答什么叫整数乘法。
1、学生仔细阅读题卡,理解题意否,列式计算。
2、学生交流各自计算的方法。
3、全班进行交流。
++==
3×=++==
通过复习整数乘法的意义,过渡到分数乘法的意义,学习易于理解。
在交流各自的语言地理学的过程中,让学生体会分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。
教师指导与教学过程
学生学习活动过程
设计意图
三、涂一涂,算一算
(1)2个3/7的和是多少?
(2)3个5/16的和是多少?
四、练习巩固
1、5个3/8是多少?
2、4个2/17是多少?
3、6个3/25是多少?
学生打开教科书,选涂一涂,再列式计算。
学生审题后,涂一涂,再列式计算。
×2=
全班交流
5/16×3=5×3/16
=15/16
学生独立完成在作业本上
帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。
分数乘法教案4
教学目标:
1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。
2、发展学生思维,侧重培养学生分析问题的能力。
教学重点:理解数量关系。
教学难点:根据多几分之几或少几分之几找出所求量的对应分率。
教学过程:
一、 复习
1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?
(1)一块布做衣服用去 。 (2)用去一部分钱后,还剩下 。
(3)一条路,已修了 。 (4)水结成冰,体积膨胀 。
(5)甲数比乙数少 。
2、口头列式:
(1)32的 是多少? (2)120页的 是多少?
(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了 ,降低了多少分贝?
(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的 ,人现在听到的声音是多少分贝?
3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?
4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。
二、新授
1、教学例2
(1)运用线段图帮助学生分析题意,寻找解题方法。
(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。
降低?分贝
现在?分贝
80分贝
(1) 四人小组讨论,根据线段图提出解决办法,并列式计算。
解法一:80-80× =80-10=70(分贝)
现在?分贝
80分贝?
(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。
解法二:80×(1- )=80× =70(分贝)
(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的.方法求出这个部分量。
2、巩固练习:P20“做一做”
3、教学例3
(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多 ”表示什么意思?(组织学生讨论,说说自己的理解)
(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的 ”。着重让学生说说谁与谁比,把谁看作单位“1”。
(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。
解法一:75+75× =75+60=135(次)
解法二:75×(1+ )=75× =135(次)
4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)
三、练习
1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。
2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。
四、布置作业
练习五第7、8、9、10题。
课后反思:
例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。
分数乘法教案5
教学目标:
1、知识与技能 使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算;使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。
2、过程与方法 回顾、整理、练习、订正。
3、情感态度与价值观 培养学生良好的计算习惯和分析解决问题的能力。
教学重点:
引导学生找准单位1,分析应用题的数量关系。
教学难点:
让学生正确、独立地分析应用题的数量关系。
教具运用:
课件
教学过程:
一、创设情境,导入复习。
出示:我们学校的图书室里有故事书400本,连环画是故事书的 ,作文书是连环画的 。学校图书室里有有多少本作文书?
1、学生独立解决。
2、汇报交流做法。
3、提示课题:分数乘法的整理和复习
二、回顾整理,建构网络。
1、让学生说一说这个单元你学到了哪些知识?(小组内说一说,适当的时机师生进行点评)
2、展示自己整理好的分数乘法的知识。
3、小组合作,优化整理。(课件演示)
分数乘整数
求几个相同分数和的简便运算
计算方法:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分再计算)
一个数乘分数
求一个数的几分之几是多少
分数乘加、乘减及乘法运算定律的灵活运用
灵活运用运算定律,可以使计算简便。
乘法交换律:a.b=b.a;
乘法结合律(a.b).c=a.(b.c);
乘法分配律(a+b)。c=a.c+ b.c;
乘法分配律的逆运算:a.c+b.c=(a+b)。c
解决问题
1、求一个数的几分之几 是多少。
2、稍复杂的求一个数的几分之几是多少。
关系式:单位1的量(一个数)问题所对应的几分之几=所求问题
三、自主检评,完善提高。
1、计算下面各题,说一说分数乘法是怎样计算的?
2、下面各题怎样计算比较简便?
3、(1)骆驼驼峰中贮藏的脂肪,相当于体重的` ,一头体重225千克的骆驼,驼峰里含有多少脂肪?
(2)一头体重225kg的骆驼,驮着比它体重还多 的货物。它驮着的货物重多少千克?
4、(1)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的 ,第二次用去多少吨?
(2)食堂运来24吨的煤,第一次用去 ,第二次用去的这批煤的 ,第二次用去多少吨?
(3)食堂运来24吨的煤,第一次用去 ,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?
四、课堂小结。
分数乘法教案6
一、单元分析
本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。
二、单元学习目标
1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。
2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
3.会利用分数乘法解决一些实际问题。
4.使学生理解倒数的意义,掌握求倒数的方法。
三、单元课时总数:9课时
课题:分数乘整数1课时上课时间:年月日
教材分析
这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。
教学目标
1、使学生理解分数乘法的原型,掌握分数乘法的`计算方法,能够正确地进行计算.
2、培养学生的计算能力。
3、激发学生学习兴趣,热爱学习数学。
教学过程备注
活动一:创设情境,初步理解分数乘法的原型
教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?
让学生审题后独立试做。
学生可能会出现以下两种做法:
(1)学生用连加法列式
(2)用乘法列式
借助于分数加法来理解理分数乘法的原型。
活动二:教学分数乘整数的计算方法
1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?
全班交流,感觉分数乘整数的计算方法。
总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。
2、教学例2:6=
让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。
活动三:反馈练习
1、完成9页中的做一做。
教师注意强调学生的书写格式以及能约分的要先约分。
注意体会在什么情况下用分数乘法来解决问题。
2、完成练习二中的1、2题。
活动四:质疑总结。
分数乘法教案7
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的`计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
××××
14×15×××5
2、计算
××427×
过程要求:
(1)请三位学生上台板演,其余学生做在练习本上。
(2)集体反馈,学生计算过程。
(3)着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1)提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2)将结果写在书上。
2、第6题
(1)认真审题,弄清题意。
(2)分别说明三个问题各属于什么类型的问题。
(3)列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1)学生判断正误,并说明原因。
(2)改正算式。
6、第10题
(1)学生列式计算,教师巡视进行个别指导。
(2)说一说你有什么体会。
三、课后作业设计:
一、计算。
×××14×
×120××24×18
二、列式计算
1、米的是多少米?
2、千克的是多少千克?
3、吨的是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,小时行驶多少千米?
2、一个长方体长米,宽米,高米,它的体积是多少立方米?
课后反思:
分数乘法教案8
重点:
1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。
2.渗透对应思想。
难点:
1.理解这类应用题的解题方法。
2.用线段图表示分数应用题的数量关系。
教学过程:
一、复习、质疑、引新
1.说出、、米的意义。
2.列式计算:
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)
二、探索、质疑、悟理
1.出示例1(也可以结合学生的实际自编)
学校买来100千克白菜,吃了,吃了多少千克?
①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。
②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。
③画图:(课件一演示)补:把100千克当做什么?(单位1)
画图说明:
a.量在下,率在上,先画单位1
b.十份以里分份,十份以上画示意图。
C.画图用尺子,用铅笔。
④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。
学生可能会出现下面解答方法:
解法一:用自己学过的整数乘法做
(千克)
解法二:(千克)
在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的`,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。
⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。
2.巩固练习
六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?
订正时候强调1)把哪个数量看作单位1?
2)为什么用乘法计算?
3.学习例2
例2小林身高米,小强身高是小林的,小强身高多少米?
在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。
(课件二演示)
先画单位1
再画单位1的几分之几
画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)
在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?
列式:(米)
答:小强身高米。
4.改变例2
改变例2的条件和问题成为下题(可让学生完成)。
小强身高米,小林身高是小强的倍,小林身高多少米?
改编后,可让学生独立画图完成。
(米)
三、归纳、总结
1.今天所学题目为什么用乘法计算
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)
四、训练、深化
1.先分析数量关系,再列式解答
①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?
②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?
2.提高题
①一桶油400千克,用去,用去多少千克?还剩多少千克?
②一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、课后作业:练习五1、2、3
六、板书设计:
分数乘法应用题
100==80(千克)
答:吃了80千克。
(米)
答:小强身高是米。
分数乘法教案9
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)
3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?
预设: 生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为。
提出质疑:3个相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法
1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?
预设: 生1:按照加法计算=(个)。 生2:(个)。
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。
2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知
1.例1“做一做”第1题 师:说出你的思考过程。
2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的.是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”
2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)
五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了,用去了多少吨?
(2)一堆煤有吨,5堆这样的煤有多少吨?
3.拓展练习
1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
分数乘法教案10
本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的能力。下表是全单元教学内容的编排。
分数与整数相乘
用乘法求几个相同分数的和(例1)
用乘法求整数的几分之几是多少(例2)
求一个数的几分之几是多少的实际问题(例3) 练习八
分数乘分数
分数乘分数(例4、例5)
分数连乘(例6) 练习九
倒数
倒数的意义,求倒数的方法(例7) 练习十
整理与练习
教材在编排上有以下特点。
第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。
乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。因此,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联系现实的数量关系体会这些算式的具体含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。
第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下图是本单元教材里的计算知识结构图。
先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。
整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不仅能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。
分数乘分数先教学基础知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。
第三,编排倒数知识,为分数除法作准备。
分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
一、 例1着重教学分数与整数相乘的算法。
首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。
例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□□/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。
例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。
二、 例2着重教学用乘法求一个数的几分之几是多少。
10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。
在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三点:
首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用十分熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的`含义。
然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出求一个数的几分之几是多少,用乘法计算。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。
沟通新旧算法的联系,更好地理解分数乘法。如果比较算式101/2和102,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可对比的内容,让学生反复体验分数乘法。
练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进行较抽象的思考并用数学方法解决求一个数的几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描述图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。
例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。
三、 例3用分数乘法解决实际问题。
例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多(或少)几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。
解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。
比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,如果把表示黄花的直条平均分成5份(每2格看成1份),绿花比黄花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。
第44页第14题分析比一个数多(少)几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完整,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它有助于列出算式或列出方程;从思维角度上看数量关系式,把文字叙述的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了思考结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏差。如果对比一个数多(少)几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,如果在等号右边填出皮球的个数,就是概念错误造成的。解答第15~17题,都要以正确的数量关系为前提,教材编排第14题的意图是十分清楚的。
四、 例4、例5构建分数乘法的计算法则。
分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。
构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。
例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。
例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。
两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。
第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法则。
五、 例6教学分数连乘的算法和技巧。
例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。
例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间能够进行的约分都完成以后,相乘就简单了。两点内容学生都能接受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计算结果应是最简分数的认识,能够理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。
六、 例7教学倒数的知识。
倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7十分重视概念的形成以及对概念的准确把握。
教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字叙述强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。
求已知数的倒数分三个层次教学: 先求3/5、2/5等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会了互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。写整数的倒数,从概念出发,寻找与整数相乘等于1的那个分数,体会如果把整数看作分母是1的分数,那么它的倒数也是调换分子、分母位置得到的那个数。教材要求学生理解0没有倒数,并作出相应的解释。这是因为0和任何数相乘都得0,不存在与0相乘能得到1的数。
第51页第4题里有四组数。第(1)组数都是真分数,它们的倒数都是假分数。第(2)组数都是大于1的假分数,它们的倒数都是真分数。第(3)组数的分子都是1,它们的倒数都是整数。第(4)组数都是整数,它们的倒数都是几分之一的数。让学生发现这些规律,是为了巩固倒数概念,熟练掌握求倒数的方法。
分数乘法教案11
教学内容
先约分再计算结果的分数乘法
教材第5页的内容、练习一的第7~13题,第8页例5。
教学目标
1.通过学习,理解分数乘分数的计算法则也适用于分数和整数相乘,加深对分数乘法计算法则的理解。
2.进一步提高学生计算的准确性和灵活性。
3.培养学生良好的书写习惯。
重点难点
正确掌握分数和整数相乘的约分方法,灵活计算。
教具学具
口算卡,练习题投影片。
教学过程
一、导入
1.说出下面各算式的意义。
二、教学实施
1.揭示课题。
老师:我们已经会计算分数乘分数了,而整数也可以看作分母是1的假分数,所以我们也可以用分数乘分数的法则来计算分数乘整数的算式。
板书课题:分数乘整数的约分方法
2.出示例4。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)理解题意。
少千米,用什么方法计算?为什么?
学生甲:应该用乘法计算。因为是在求一个数的几分之几是多少。
学生乙:已知速度和时间,求路程,用乘法计算。
老师:同学们从不同角度说明了这道题为什么用乘法计算,有的同学想到了分数乘法的意义,有的同学想到了“路程、速度和时间”这三者之间的关系,真的很棒。
学生互相交流,得出结论。
(3)计算。
提问:怎样计算更加简便?
明确:能约分的可以先约分再乘。
(5)分析错因。
提问:为什么第三种答案与其他两种不同呢?错在哪里?
学生自由发言。
追问:分数和整数相乘怎样约分?小结:因为整数都可以看作分母是1的分数,所以分数乘分数的法则也适用于分数乘整数。
3.巩固练习。
(1)完成教材第5页的“做一做”。
学生可以先说意义再计算,集体订正答案时,请学生说出计算方法。
(2)完成教材第6页练习一的第7题。
老师对掌握程度不同的学生可以有不同的要求,引导学生找出当一个数分别乘一个比1大的数、比1小的数和等于1的数时,积与第一个因数之间的大小关系。
(3)完成教材第6页练习一的第8~13题。
学生独立完成后,集体订正答案。
4.出示例5。
(1)明确题意。
请学生读题,并找出已知条件和问题。
(2)探究算法。
老师:我们已经学会分数乘分数、分数乘整数的计算方法,那么分数乘小数怎么算呢?
板书:分数乘小数的计算方法
学生1:可以把2.1转成分数进行计算。
三、课堂作业新设计
1.在○里填上“>”“<”或“=”。
四、思维训练
1.先计算下面各题,说一说发现了什么规律。参考答案
(2)略
板书设计
分数乘整数的约分方法
分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
运用约分对分数乘分数进行简便运算时,约分后分子和分母必须只有公因数1,计算后的结果才是最简分数。
分数乘小数的计算方法。计算小数乘分数时,可以把小数转化成分数进行计算,即分子与分子相乘,分母与分母相乘,然后约分就可以了;也可以把分数化成小数,按照小数乘小数的.计算方法进
行计算;在计算小数乘分数时,如果小数能和分数的分母约分,可以先约分再计算,这样可以使计算简便。
备课参考教材与学情分析
本部分内容主要教学分数乘法在乘的过程中的简便的书写格式。教材一方面把分数乘法的两种形式集中呈现,加强它们之间的对比和联系,一方面提出分数和整数相乘怎样约分的问题,让学生知道除了像例4那样进行约分,也可以把分数的分母与整数直接约分。这部分内容是在学生学过分数乘整数的基础上进行教学的,它是后面学习分数除法以及分数乘除法应用题的基础。
课堂设计说明
1.加强两种形式的乘法的对比练习。
学生已经理解了分数乘整数和分数乘分数的意义,通过对比练习可以找到两种形式的乘法之间的联系。
2.引导学生观察教材的约分过程,想一想与例2的约分形式有什么不同。特别要注意提醒学生要先观察能否约分,并且注意提醒他们不能把整数与分数的分子约分。
分数乘法教案12
分数乘法一步应用题
教学目标:
1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
教学过程:
一、复习
1、先说下列各算式表示的意义,再口算出得数。
12× ×
2、列式计算。
(1)20的 是多少? (2)6的 是多少?
3、学生得出:求一个数的几分之几用乘法。
二、新授
1、教学例1
(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。
(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)
(3)在分析题意的基础上,学生独立列式、计算。
2500× =1000(平方米)
2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的`?依据是什么?然后独立解答。
三、练习
1、练习四第2题:让学生先找出分率句中隐藏的单位“1”——全世界的丹顶鹤数20xx只。
2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。
四、总结
解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)
分数乘法教案13
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重难点:
学生能够熟练的计算出分数乘以分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
3/11×3 9/16×12 21×5/14
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
二、讲授新课
教师出示课本例题:一张长方形的纸条,第一次剪去它的1/2,第二次剪去剩余部分的1/2。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的.1/2,那么剩下的部分占这张纸条的几分之几?
教师让学生思考这个例题,并对学生进行提问。
1/2×1/2?分析第一次剪去它的1/2,第二次再剪去剩下的1/2,那就是1/2的1/2。也就是1/2×1/2
教师让学生从图中看出是1/4,让学生从1/2×1/2=1/4中思考,分数乘以分数的运算规则,让学生同桌之间相互讨论。
教师提问学生说说分数乘以分数的运算法则。并对学生的说法给以鼓励。
教师和全班学生共同总结出分数乘以分数的运算法则:分数乘以分数,分子乘以分子作为分子,分母乘以分母作为分母。
验证法则:让学生折纸验证3/4×1/4?,并让学生分析为什么?
课堂讨论:让学生能够根据课本7页中的插图,说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?让学生进一步理解整体和部分的关系;初步理解求分数的几分之几是多少?
三、巩固练习
做课本8页试一试,1/4×2/3;3/5×2/9;7/8×5/14
让学生运用分数乘以分数的法则来进行计算。注意能约分的先约分,如:7/8×14/15中的7和14先约分。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
1/2×1/2=1/4;1/2×1/2=1×1/2×2=1/4
分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。
分数乘法教案14
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、引导学生在经历猜想、验 证等数学活动中,发展学生的思维能力。
3、通过小组合作学习,培养学生进行交流的能力与合作意识。
教学重点:
使学生能够熟练分数的简便运算。
教学难点:
会用运算定律对分数进行简便运算。
教具准备:
自作课件。
教学过程
一、 复习导入
1、 回顾学习过的乘法运算定律。
(1)请学生说一说已学过的乘法运算定律,根据学生的回答,教师板书:
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac=bc
(2) 用简便方法 计算下面各题。
251348(9+12.5) 12524
2、 下面的每组算式的左右两边有什么样的关系?
1/21/3○1/31/2 (1/42/3)3/5○1/4(2/33/5)
(1/21/3)1/5○1/21/5+1/31/5
3、在学生发表自己的发现后,教师明确指出整数乘法的交换律、结合律和分配律也适用于分数乘法。
二、 探究新知
1、整数乘法运算定律推广到分数乘法
(1) 各组观察复习第2题的每组中两个算式,你们发现了什么?
(2) 各组发表本组同学的发现。
2、 应用
(1) 教学例5.计算3/51/65.
① 请试着做一做.
② 让学生互相交流自己的计算方法.(有的学生是按运算顺序计算的;有的是按运算定律进行计算的。)
③ 比较:哪一种方法简便?应用了什么运算定律?
④ 跟据学生的回答教师板书:
3/51/65
=3/551/6(应用乘法交换律)
=1/2
(2) 教学例6 .计算(1/10+1/4)4
① 让学生观察算式的特点,想一想,怎样计算比较简便?
② 学生计算完后,请学生说一说计算中应用了什么定律?
③ 根据学生的.交流,教师板书:
(1/10+1/4)4
=1/104+1/44(应用乘法分配律)
=2/5+1
=1.2
3、 小结
在学生交流后,强调以下两点:
(1) 整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
(2) 在计算中,要根据题目的特点,灵活、合理的运用定律,使计算简便。
三、 巩固练习
1、 学生在书上直接.完成练习三的第6题。
请学生说一说每个题目应用了什么运算定律?
2、 完成第10页做一做。其中的第2小题教师可作适当指导。(可以把87看作86+1来计算)
四、 课堂作业
完成练习三的第7、8、9题。
五、总结
通过这节棵的学习你学会了什么?有哪些收获?
六、板书设计:
分数乘法的简便运算
乘法运算定律 乘法交换律 ab=ba
乘法结合律 (ab)c=a(bc)
乘法分配律 (a+b)c=ac+bc
例5 计算3/51/65例6 计算(1/10+1/4)4
3/51/65 (1/10+1/4)4
=3/551/6(应用乘法交换律) =1/104+1/44(应用乘法分配律)
=1/2=2/5+1
=1.4
分数乘法教案15
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的'意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
【分数乘法教案】相关文章:
分数乘法教案01-17
分数乘法的教案02-28
《分数乘法》教案06-08
关于分数乘法的教案03-31
关于分数乘法教案05-18
分数乘法教案(15篇)02-01
分数乘法教案15篇01-22
精选分数乘法教案三篇01-20
精选分数乘法教案6篇01-20
精选分数乘法教案四篇01-22