当前位置:育文网>教学文档>教案> 有理数教案

有理数教案

时间:2022-03-02 14:55:41 教案 我要投稿

有理数教案

  作为一名为他人授业解惑的教育工作者,往往需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?以下是小编帮大家整理的有理数教案,欢迎阅读,希望大家能够喜欢。

有理数教案

有理数教案1

  教学目标

  1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

  教学建议

  (一)重点、难点分析

  本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

  (二)知识结构

  (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

  教学目标

  1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

  2.通过有理数的乘法运算,培养学生的运算能力;

  3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

  教学重点和难点

  重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

  难点:有理数乘法法则的理解.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.计算(-2)+(-2)+(-2).

  2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

  3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

  4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

  二、师生共同研究有理数乘法法则

  问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米.

  问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米).

  引导学生比较①,②得出:

  把一个因数换成它的相反数,所得的`积是原来的积的相反数.

  这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

  把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数同0相乘,都得0.

  继而教师强调指出:

  “同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.

  用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.

  因此,在进行有理数乘法时,需要时时强调:先定符号后定值.

  三、运用举例,变式练习

  例1 计算:

  例2 某一物体温度每小时上升a度,现在温度是0度.

  (1)t小时后温度是多少?

  (2)当a,t分别是下列各数时的结果:

  ①a=3,t=2;②a=-3,t=2;

  ②a=3,t=-2;④a=-3,t=-2;

  教师引导学生检验一下(2)中各结果是否合乎实际.

  课堂练习

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

  (5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

  2.口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a.

  这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.

  3.当a,b是下列各数值时,填写空格中计算的积与和:

  4.填空:

  (1)1×(-6)=______;(2)1+(-6)=_______;

  (3)(-1)×6=________;(4)(-1)+6=______;

  (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

  (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。

  5.判断下列方程的解是正数还是负数或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

  四、小结

  今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

  五、作业

  1.计算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0。001); (5)-4。8×(-1。25); (6)-4。5×(-0。32).

  2.计算:

  3.填空(用“>”或“<”号连接):

  (1)如果 a<0,b<0,那么 ab ________0;

  (2)如果 a<0,b<0,那么ab _______0;

  (3)如果a>0时,那么a ____________2a;

  (4)如果a<0时,那么a __________2a.

  探究活动

  问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

  答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.

  道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.

有理数教案2

  七年级上2.5有理数的减法(一)教案

  教学目标:

  1、经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题,培养抽象概括能力和口头表达能力。

  教学重点运用有理数减法法则做有理数减法运算。

  教学难点有理数减法法则的得出。

  教具学具多媒体、教材、计算器

  教学方法研讨法、讲练结合

  教学过程一、引入新课:

  师:下面列出的是连续四周的最高和最低气温:

  第1周第二周第三周第四周

  最高气温+6℃0℃+4℃-2℃

  最低气温+2℃-5℃-2℃-5℃

  周温差

  求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0-(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程二、有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

  举例:(-5)+()=-2

  得出(-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而(-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  教学过程三、法则的'应用:

  例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1)原式=-34+(-56)+(+28)

  =-90+(+28)

  =-62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检测题

  教学过程四、练习反馈:

  师:巡视个别指导,订正答案。

  教学过程五、小结:

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

有理数教案3

  一、教学目标:

  知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

  过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  二、教学重点:

  运用有理数的减法法则,熟练进行减法运算。

  三、教学难点:

  理解有理数减法法则。

  四、教材分析:

  本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

  五、教学方法:

  师生互动法

  六、教具:

  七、课时:

  1课时

  八、教学过程:

  1、计算(口答):

  (1)1+(-2)

  (2)-10+(+3)

  (3)+10+(-3)

  2、出示幻灯片二:

  如图:

  这是20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?教师引导观察

  教师总结:这就是我们今天要学习的内容(引入新课,板书课题)

  1、师:谁能把10-3=7这个式子中的性质符号补出来呢?

  (+10)-(+3)=7

  再计算:(+10)+(-3),师让学生观察两式结果,由此得到:

  (+10)-(+3)=(+10)+(-3)

  观察减法是否可以转化为加法计算呢?是如何转化的呢?

  (教师发挥主导作用,注意学生的参与意识)

  2、再看一题:

  计算:(-10)-(-3)

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?

  问题:计算:(-10)+(+3)

  教师引导,学生观察上述两题结果,由此得到

  (-10)-(-3)=(-10)+(+3)

  教师进一步引导学生观察式子,你能得到什么结论呢?

  教师总结:由以上两式可以看出减法运算可以转化成加法运算。

  教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?

  教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。

  强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)

  3 、例题讲解:

  出示幻灯片三(例1和例2)

  例1计算:

  (1)6-(-8)

  (2)(-2)-3

  (3)(-2.8)-(-1.7)

  (4)0-4

  (5)5+(-3)-(-2)

  (6)(-5)-(-2.4)+(-1)

  教师板书做示范,强调解题的规范性,然后师生共同总结解题步骤,(1)转化(2)进行加法运算。

  例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?师巡视指导,最后师生讲评两个学生的解题过程。

  课后练习1、2

  教师巡视指导

  师组织学生自己编题

  1、谈谈本节课你有哪些收获和体会?[

  2、本节课涉及的数学思想和数学方法是什么

  教师点评:有理数减法法则是一个转化法则,要求同学们掌握并能应用进行计算。

  课堂检测(包括基础题和能力提高题)

  1、-9-(-11)

  2、3-15

  3、-37-12

  4、水银的凝固点是-38.87℃,酒精的'凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?

  学生思考后抢答,尽量照顾不同层次的学生参与的积极性。

  学生观察思考如何计算

  学生观察思考

  互相讨论学生口述解题过程

  由两个学生板演,其他学生在练习本上做

  第1小题学生抢答

  第2小题找两个学生板演。

  学生回答

  学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

  综合考查学以致用

  既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础

  创设问题情境,激发学生的认知兴趣。

  让学生通过尝试,自己认识减法可以转化为加法计算。

  学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力

  可以培养学生严谨的学风和良好的学习习惯,同时锻炼学生的表达能力

  可以照顾不层次的学生,调动学生学习积极性。

  通过练习让学生进一步巩固新知,体验知识的应用性。

  能增强学生学习的主动性和参与意识。

  学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。锻炼学生综合运用知识,独立解题的能力

  板书设计:

  2.6有理数的减法

  有理数减法法则:减去一个数等于加上这个数的相反数.

  例1:(+10)-(+3)=(+10)+(-3)

  (-10)-(-3)=(-10)+(+3)

  例2:

  练习:

  教学反思:

  本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。

有理数教案4

  教学目标

  1?理解有理数乘方的概念,掌握有理数乘方的运算;

  2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;

  3?渗透分类讨论思想?

  教学重点和难点

  重点:有理数乘方的运算?

  难点:有理数乘方运算的符号法则?

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?

  在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?

  二讲授新课

  1?求n个相同因数的积的运算叫做乘方?

  2?乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

  一般地,在an中,a取任意有理数,n取正整数?

  应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

  3.我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?

  例1 计算:

  (1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;

  (3)0,02,03,04?

  教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

  引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

  (1)模向观察

  正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

  (2)纵向观察

  互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

  (3)任何一个数的偶次幂都是什么数?

  任何一个数的偶次幂都是非负数?

  你能把上述的结论用数学符号语言表示吗?

  当a0时,an0(n是正整数);

  当a

  当a=0时,an=0(n是正整数)?

  (以上为有理数乘方运算的符号法则)

  a2n=(-a)2n(n是正整数);

  =-(-a)2n-1(n是正整数);

  a2n0(a是有理数,n是正整数)?

  例2 计算:

  (1)(-3)2,(-3)3,[-(-3)]5;

  (2)-32,-33,-(-3)5;

  (3) , ?

  让三个学生在黑板上计算?

  教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?

  教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?

  课堂练习

  计算:

  (1) , , ,- , ;

  (2)(-1)20xx,322,-42(-4)2,-23(-2)3;

  (3)(-1)n-1?

  三、小结

  让学生回忆,做出小结:

  1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?

  四、作业

  1?计算下列各式:

  (-3)2;(-2)3;(-4)4; ;-0.12;

  -(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?

  2?填表:

  3?a=-3,b=-5,c=4时,求下列各代数式的值:

  (1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?

  4?当a是负数时,判断下列各式是否成立?

  (1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .

  5*?平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

  6*?若(a+1)2+|b-2|=0,求a20xxb3的值?

  课堂教学设计说明

  1?数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?

  2?数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的.,而a4,a5,,an是学生通过类推得到的?

  推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?

  3?把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?

  我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?

  4?有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?

有理数教案5

  目标:

  1、知识与技能

  使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。

  2、过程与方法

  经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。

  重点、难点:

  1、重点:有理数乘法法则。

  2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。

  过程:

  一、创设情景,导入新

  1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?

  乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:

  (-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。

  3、在一条由西向东的笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?

  二、合作交流,解读探究

  1、小学学过的乘法的意义是什么?

  乘法的`分配律:a×(b+c)=a×b+a×c

  如果两个数的和为0,那么这两个数 互为相反数 。

  2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)

  3、学生活动:计算3×(-5)+3×5,注意运用简便运算

  通过计算表明3×(-5)与3×5互为相反数,从而有

  3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。

  类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0

  由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。

  4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?

  鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。

  在学生猜测、归纳、交流的过程中及时引导、肯定

  两数相乘,同号得正,异号得负,绝对值相乘。

  任何数与0相乘,积仍为0

  (板书)有理数乘法法则:

  三、应用迁移,巩固提高

  1、计算

  (-5)×(-4) 2×(-3.5) × (-0.75)×0

  (1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。

  (2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。

  2、计算下列各题

  ① (-4)×5×(-0.25) ② ×( )×(-2)

  ③ ×( )×0×( )

  指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。

  教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?

  学生小结后,教师归纳:

  几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0

  练习:本P31练习

  四、总结反思(学生先小结)

  1、有理数乘法法则

  2、有理数乘法的一般步骤是:

  (1)确定积的符号; (2)把绝对值相乘。

  五、作业:P39习题1.5 A组 1、2

有理数教案6

  教学目标

  1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)

  2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.

  教学过程

  一、情境导入

  北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是20xx年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?

  《1.3.2有理数的减法》同步练习含答案

  1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的形式是()

  A.-6-7+2-9B.-6-7-2+9

  C.-6+7-2-9D.-6+7-2+9

  2.式子-20+3-5+7的'正确读法是()

  A.负20加3减5加7的和

  B.负20加3减负5加正7

  C.负20加3减5加7D.负20加正3减负5加正7

  3.下列交换加数位置的变形中,正确的是()

  A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3

  C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-1

  4.某地冬季一天中午的气温是5℃,下午上升到7℃,受冷空气影响,到夜间气温最低时又下降了9℃,则这天夜间的最低气温是________℃.

  1.3.2有理数的减法》同步练习题(含答案)

  一、选择题

  1.下列等式计算正确的是( )

  A.(-2)+3=-1B.3-(-2)=1

  C.(-3)+(-2)=6D.(-3)+(-2)=-5

  答案D(-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;

  (-3)+(-2)=-5,故选项C错误,选项D正确,故选D.

  2.-3,-14,7的和比它们的绝对值的和小( )

  A.-34B.-10C.10D.34

  答案D可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.

有理数教案7

  第一章 有理数

  课题:1.1 正数和负数(1)

  【学习目标】:1、掌握正数和负数概念;

  2、会区分两种不同意义的量,会用符号表示正数和负数;

  3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

  【重点难点】:正数和负数概念

  【导学指导】:

  一、知识链接:

  1、小学里学过哪些数请写出来: 、 、 。

  2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

  回答下面提出的问题:

  3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

  二、自主学习

  1、正数与负数的产生

  (1)、生活中具有相反意义的量

  如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

  请你也举一个具有相反意义量的例子: 。

  (2)负数的产生同样是生活和生产的需要

  2、正数和负数的表示方法

  (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

  (2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

  (3)阅读P3练习前的内容

  3、正数、负数的概念

  1)大于0的数叫做 ,小于0的数叫做 。

  2)正数是大于0的数,负数是 的.数,0既不是正数也不是负数。

  【课堂练习】:

  1. P3第一题到第四题(直接做在课本上)。

  2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

  3.已知下列各数: , ,3.14,+3065,0,-239;

  则正数有_____________________;负数有____________________。

  4.下列结论中正确的是 ( )

  A.0既是正数,又是负数 B.O是最小的正数

  C.0是最大的负数 D.0既不是正数,也不是负数

  5.给出下列各数:-3,0,+5, ,+3.1, ,20xx,+20xx;

  其中是负数的有 ( )

  A.2个 B.3个 C.4个 D.5个

  【要点归纳】:

  正数、负数的概念:

  (1)大于0的数叫做 ,小于0的数叫做 。

  (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【拓展训练】:

  1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

  2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.

  3.甲比乙大-3岁表示的意义是______________________。

  4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

  【总结反思】:

  课题:1.1正数和负数(2)

  【学习目标】:

  1、会用正、负数表示具有相反意义的量;

  2、通过正、负数学习,培养学生应用数学知识的意识;

  【学习重点】:用正、负数表示具有相反意义的量;

  【学习难点】:实际问题中的数量关系;

  【导学指导】

  一、知识链接.

  通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。

  问题:零为什么即不是正数也不是负数呢?

  引导学生思考讨论,借助举例说明。

  参考例子:温度表示中的零上,零下和零度。

  二.自主探究

  问题:(课本第4页例题)

  先引导学生分析,再让学生独立完成

  例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

  2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

  美国减少6.4%, 德国增长1.3%,

  法国减少2.4%, 英国减少3.5%,

  意大利增长0.2%, 中国增长7.5%.

  写出这些国家20xx年商品进出口总额的增长率;

  解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;

  2)六个国家20xx年商品进出口总额的增长率:

  美国___________ 德国__________

  法国___________ 英国__________

  意大利__________ 中国__________

有理数教案8

  一、目的要求

  1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

  2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。

  二、内容分析

  有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的.运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。

  本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的变化。

  三、教学过程

  复习提问:

  1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。

  答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。

  2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?

  答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。

  3.小学学过的除法和乘法的关系是什么?

  答:除以一个数等于乘上这个数的倒数。

  4.5÷0=?0÷0=?

  答:0不能作除数,这两个除式没有意义。

  新课讲解:

  与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。

  引例:计算:8×(-)和8÷(-4)

  8×(-)=-2,

  8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,

  ∵(-4)×(-2)=8,

  ∴8÷(-4)=-2。

  从而,8÷(-4)=8×(-),

  同样,有(-8)÷4=(-8)×,

  (-8)÷(-4)=(-8)×(-),

  这说明,有理数除法可以利用乘法来进行。

  又(-4)×=-1,4×=1,

  由4和互为倒数,说明(-4)和(-)也互为倒数。

  从而对于有理数仍然有:乘积为1的两个数互为倒数。

  提问:-2,-,-1的倒数各是什么?为什么?

  注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。

  由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。

  注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。

  例1计算。(见教科书第103页例1)

  解答过程见教科书第103页例1。

  阅读教科书第102页至第103页。

  课堂练习:教科书第104页练习第l,2,3题。

  提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?

  (答:略)

  2.两数相除,商的符号如何确定?为什么?商的绝对值呢?

  答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。

  从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。

  在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。

  例2见教科书第104页例2。

  解答过程见教科书第104页例2。

  注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。

  例3见教科书第105页例3。

  分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。

  对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。

  解答过程见教科书第105页例3。

  讲解教科书例3后的两个注意点。

  课堂练习:见教科书第105页练习。

  第1题可直接约分,也可化为除法。

  第2题可先化成乘法,并利用乘法的运算律简化运算。

  课堂小结:

  阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。

  提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?

  (2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)

  四、课外作业

  习题2.9A组第1,2,3,4,5题的双数小题,第6题。

  选作题:习题2.9B组第1,2,3题双数小题。

有理数教案9

  一、课题2.4有理数的减法

  二、教学目标

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力.

  三、教学重点

  有理数减法法则

  四、教学难点

  有理数减法法则

  五、教学用具

  三角尺、小黑板、小卡片

  六、课时安排

  1课时

  七、教学过程

  (一)、从学生原有认知结构提出问题

  1.计算:

  (1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

  2.化简下列各式符号:

  (1)-(-6);(2)-(+8);(3)+(-7);

  (4)+(+4);(5)-(-9);(6)-(+3).

  3.填空:

  (1)______+6=20;(2)20+______=17;

  (3)______+(-2)=-20;(4)(-20)+______=-6.

  在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

  (二)、师生共同研究有理数减法法则

  问题1(1)(+10)-(+3)=______;

  (2)(+10)+(-3)=______.

  教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

  教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;

  (2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

  (2)的结果是多少?

  于是,(+10)-(-3)=(+10)+(+3).

  至此,教师引导学生归纳出有理数减法法则:

  减去一个数,等于加上这个数的相反数.

  教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

  (三)、运用举例变式练习

  例1计算:

  (1)(-3)-(-5);(2)0-7.

  例2计算:

  (1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

  通过计算上面一组有理数减法算式,引导学生发现:

  在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

  例3世界上最高的.山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

  阅读课本63页例3

  (四)、小结

  1.教师指导学生阅读教材后强调指出:

  由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

  (五)、课堂练习

  1.计算:

  (1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

  2.计算:

  (1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

  (5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

  3.计算:

  (1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

  (4)(-5.9)-(-6.1);

  (5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

  利用有理数减法解下列问题

  4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

  八、布置课后作业:

  课本习题2.6知识技能的2、3、4和问题解决1

  九、板书设计

  2.5有理数的减法

  (一)知识回顾(三)例题解析(五)课堂小结

  例1、例2、例3

  (二)观察发现(四)课堂练习练习设计

  十、课后反思

有理数教案10

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程

  探索新知

  在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:

  按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的',而本题中只填了所给的几个数,所以应该加上省略号:。

  思考:

  问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

  小结与作业

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

有理数教案11

  教学目的:

  1、要求学生会进行有理数的加法运算;

  2、使学生更多经历有关知识发生、规律发现过程。

  教学分析:

  重点:对乘法运算法则的运用,对积的确定。

  难点:如何在该知识中注重知识体系的延续。

  教学过程:

  一、知识导向:

  有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

  二、新课:

  1、知识基础:

  其一:小学所学过的乘法运算方法;

  其二:有关在加法运算中结果的确定方法与步骤。

  2、知识形成:

  (引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

  情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

  列式:

  即:小虫位于原来出发位置的东方6米处

  拓展:如果规定向东为正,向西为负

  情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

  列式:

  即:小虫位于原来出发位置的西方6米处

  发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

  同理,如果我们把中的一个因数2换成它的'相反数-2时,所得的积是原来的积6的相反数-6

  概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

  3、设疑:

  如果我们把中的一个因数2换成它的相

  反数-2时,所得的积又会有什么变化?

  当然,当其中的一个因数为0时,所得的积还是等于0。

  综合:有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数与零相乘,都得零。

  例:计算:

  (1)(2)

  三、巩固训练:

  P52.1、2、3

  四、知识小结:

  本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

  五、家庭作业:

  P57.1、2,3

  六、每日预题:

  1、小学多学过哪些乘法的运算律?

  2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数教案12

  一、素质教育目标

  (一)知识教学点

  1.了解:代数和的概念.

  2.理解:有理数加减法可以互相转化.

  3.应用:会进行加减混合运算.

  (二)能力训练点

  培养学生的口头表达能力及计算的准确能力.

  (三)德育渗透点

  通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.

  (四)美育渗透点

  学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.

  二、学法引导

  1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.

  2.学生写法:练习→寻找简单的一般性的方法→练习巩固.

  三、重点、难点、疑点及解决办法

  1.重点:把加减混合运算算式理解为加法算式.

  2.难点:把省略括号和的形式直接按有理数加法进行计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

  七、教学步骤

  (一)创设情境,复习引入

  师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:

  -9+(+6);(-11)-7.

  师:(1)读出这两个算式.

  (2)“+、-”读作什么?是哪种符号?

  “+、-”又读作什么?是什么符号?

  学生活动:口答教师提出的`问题.

  师继续提问:(1)这两个题目运算结果是多少?

  (2)(-11)-7这题你根据什么运算法则计算的?

  学生活动:口答以上两题(教师订正).

  师小结:减法往往通过转化成加法后来运算.

  【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

有理数教案13

  教学目标

  知识与技能:

  熟记有理数的减法法则,能熟练进行有理数减法运算。

  过程与方法:

  1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;

  2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。

  情感态度价值观:

  4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。

  教学重、难点

  重点:有理数减法法则和运算

  难点及突破:有理数减法法则的推导

  教学用具

  多媒体

  教学过程设计

  一、导入

  我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?

  生:减法

  师:今天我们一起来学习有理数的减法!

  二、一起研究

  下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表

  城市/°C最低气温/°C

  昆明92

  杭州6-2

  北京-2-12

  温差怎么表示?(温差=-最低气温)

  1.那么怎么表示这一天的温差呢?学生填表回答

  城市表示温差的算式观察到的温差/°C

  昆明9-27

  杭州

  北京

  结论:昆明的温差可表示成9-2=7°C

  杭州的温差可表示成6-(-2)=8°C

  北京的温差可表示成-2-(-12)=10°C

  2.现在我们来看这样一组算式,填空:

  9+________=7; 6+______=8; -2+_______=10.

  3.比较:9-2=7 9+(-2)=7

  6-(-2)=8 6+2=8

  -2-(-12)=10 -2+(+12)=10

  思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。

  怎样把加法转化为减法运算?

  法则:减去一个数,等于加上这个数的'相反数。

  4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?

  例1(略)

  注意:减法转化为加法时,减数一定要改变符号

  例2 (略)

  三、练习:

  P28 1、2

  四、小结

  1.理解有理数减法运算的法则。

  2.熟悉有理数减法运算的两个步骤

  3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。

  五、板书设计

  1.6 有理数减法

  1.减法法则:减去一个数,等于加上这个数的相反数

  a-b=a+(-b)

  2.例

有理数教案14

  教学目标

  1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

  2、能力目标:能应用正负数表示生活中具有相反意义的量.

  3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

  重点:理解有理数的意义.

  难点:能用正负数表示生活中具有相反意义的量.

  教学过程

  一、创设情境、提出问题

  某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

  二、分析探索、问题解决

  分组讨论扣的分怎样表示?

  用前面学的.数能表示吗?

  数怎么不够用了?

  引出课题.

  讲授正数、负数、有理数的定义.

  用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.

  三、巩固练习

  1、用正数或负数表示下列各题中的数量:

  (1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

  (2)球赛时,如果胜2局记作+2,那么-2表示______;

  (3)若-4万表示亏损4万元,那么盈余3万元记作______;

  (4)+150米表示高出海平面150米,低于海平面200米应记作______.

  分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

  2、下面说法中正确的是().

  a.“向东5米”与“向西10米”不是相反意义的量;

  b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

  c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

  d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

  三、小结回顾、纳入体系

  学生交流回顾、讨论总结,教师补充如下:

  概念:正数、负数、有理数.

  分类:有理数的分类:两种分法.

  应用:有理数可以用来表示具有相反意义的量.

有理数教案15

  一、教学内容

  《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

  在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  二、设计理念

  七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

  三、教学目标与重难点

  目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

  2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  重点:会用有理数加法法则进行运算.

  难点:异号两数相加的法则.

  四、学情分析

  1.学生非常熟悉正数加正数,正数加零的情况。

  2.有理数的分类、数轴、绝对值的相关知识已经掌握。

  3.学生善于形象思维,思维活跃,能积极参与讨论。

  五、教学策略

  1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

  2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

  3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

  六、教学流程

  1.回顾旧知,启发思维

  展示课件上的三个问题,请同学们思考并回答。

  (1)有理数是怎么分类的?

  (2)有理数的绝对值是怎么定义的?

  (3)下列各组数中,哪一个数的绝对值大?

  7和4; -7和4; 7和-4; -7和-4

  【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

  2.创设情境 引入课题

  问题一:两个有理数相加,有多少种不同的情形?

  答:正+正,负+负,正+负,正+0,负+0,0+0.

  【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

  问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

  请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

  师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

  (出示课题)

  【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

  (二)分析问题探究新知

  问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

  学生们各抒己见,总结法则。

  1、 同号两数相加,取相同的符号,并把绝对值相加。

  2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

  3、 一个数同0相加,仍得这个数

  老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

  【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的.语言概括法则,提高学生的概括能力和语言表达能力

  (三)运用新知深入体会

  例1计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

  解题时,先确定和的符号,后计算和的绝对值.

  课堂练习:

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  3.用“>”或“<”填空:

  (1)如果a>0,b>0,那么a+b____0;

  (2) 如果a<0,b<0,那么a+b____0;

  (3) 如果a>0,b<0,|a|>|b|,那么a+b____0;

  (4) 如果a<0,b>0, |a|<|b|,那么a+b____0;

  【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

  问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

  (1)如果a>0,b>0,那么a+b=+(|a|+|b|)

  (2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

  (3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)

  (4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)

  (5)a+0=a.

  【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

  (四)延伸拓展敢于挑战

  问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

  问题六:小学学过的运算律是否适用于有理数的加法?

  【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

  (五)归纳总结感受思想

  (1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

  (2)本节课你学习到了哪些数学思想方法?

  【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

  (六)布置作业

  (1)P56 习题1、3

  (2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

  【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

  七、设计说明

  1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

  2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

  3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

  4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

【有理数教案】相关文章:

有理数的乘方的教案08-26

《有理数加法》教案08-29

《有理数的加法》教案04-01

有理数的加法教案11-26

有理数减法教案03-21

《有理数的加法》教案02-25

《有理数的乘法》教案02-26

有理数的乘方教案02-14

有理数的除法教案01-23