平均数教案
作为一名老师,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。那么应当如何写教案呢?以下是小编为大家收集的平均数教案,欢迎大家借鉴与参考,希望对大家有所帮助。
平均数教案1
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容 .
2.了解的意义,会计算一组数据的 .
3.当一组数据的数值较大时,会用简算公式计算一组数据的 .
(二)能力训练点
培养学生的观察能力、计算能力 .
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯 .
2.渗透数学来源于实践,反地来又作用于实践的观点 .
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .
重点·难点·疑点及解决办法
1.教学重点:的概念及其计算 .
2.教学难点:的简化计算 .
3.教学疑点:简化公式的应用,a如何选择 .
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .
2.的'概念及计算公式
一般地,如果有n个数 .
那么 ①
叫做这n个数的, 读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .
3.计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温 .
让学生动手计算,以巩固计算公式(一名学生板演)
教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量 .(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .
讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .
3.推导公式②
一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
,
那么 ,
因此,
即 ②
为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .
2.求n个数据的的公式① .
3.的简化计算公式② .这个公式很重要,要学会运用 .
方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .
八、布置作业
教材P153中1、2、3、4 .
九、板书设计
平均数教案2
教学目标:
1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)
2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。
3.操作、交流的过程中,建立学习数学的信心,发展统计观念。
教学重点:
理解平均数的意义,学会求简单数据的平均数。
学具准备:
移动学具板 、作业纸
教具准备:
移动示范板 、 课件
教学过程:
一、放情景录像,预设认知冲突
1.谈话导入、回顾情景。
2.读懂统计图,获取相关信息
从这两幅图中你能知道哪些信息?
3.提出预设问题
这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?
二、自主探索方法,理解平均数的意义
1.引起争议,探求公正的策略
当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?
2.萌发求平均数的需求,得出有效途径求平均成绩
3.小组动手操作,探索求平均数的方法
那我们应该怎样求男生、女生各组的平均成绩呢?
4.全班交流,感知方法
(1)移多补少
(2)一般方法
男生:6+9+7+6=28(个) 284=7(个)
女生:10+4+7+5+4=30(个) 305=6(个)
男生组算式中的9、6、7、6和28各代表什么呢 ?
为什么女生求出的总数30除以5,而不是除以4呢?
5.理解平均数的意义
我们求出男生组平均每人套中7个 ,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?
小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。
6.新课小结,揭示课题 ,体会求平均数是解决这类问题的有效方法之一
三、感受平均数与生活的'联系,体会平均数的作用
平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。
1.盐城去年全年平均气温在18摄氏度。
2.盐城市某小学三年级有10个班,平均每班人数为47人。
3.小明的语、数、外,三门考试,平均成绩为92分。
4.盐城市某小学三( 5 )班同学平均年龄为8岁。
现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!
四、巩固强化,拓展应用
1.移铅笔 (93页第1题)
目的:体会移多补少的思想,加深对平均数意义的理解。
2.三条丝带的平均长度 (94页第2题)
目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。
3.辨析题(第94页 第3题)
目的:加深理解平均数的意义
4.综合性训练:
目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。
五、全课总结(略)
平均数教案3
设计说明
数学问题来源于生活,并应用于生活。教材统计了学生踢毽的个数并通过比较男、女两队哪个队踢得多,提出数学问题。课堂再现踢毽比赛情境,学生统计比赛结果后,发现参赛男、女生人数不同,无法直接判断哪队胜,引出数学问题,激发学生的求知欲望,进而让学生探究解决问题的方法。
1.本节课重点创设在课堂上现场进行踢毽比赛的情境,让学生感受到平均数在生活中的重要作用,并在解决问题中感受:在数据个数不等的情况下,每组数据的总和不能反映总体情况,而用平均数才能反映每组数据的整体水平,从而加深学生对平均数的含义的理解。
2.教师与学生只是角色上的不同,在人格上是平等的。教师必须尊重学生的人格、思想感情、健康的个性并接受学生提出的合理要求,营造和谐平等、相互尊重、轻松愉悦的学习气氛。学生在这样的气氛下讨论怎么比较哪队胜合理时,才会开动脑筋认真思考、踊跃发言、大胆回答。
课前准备
教师准备多媒体课件调查表统计表
学生准备调查表统计表
教学过程
⊙创设情境,引入新课
1.同学们喜欢哪些体育运动呢?今天我们在课堂上就进行一场踢毽比赛,男生队选出5名代表,女生队选出4名代表,选两名同学做监督员,两名同学做成绩记录员。
2.开始比赛,记录成绩。
男生队
姓名
踢毽个数
女生队
姓名
踢毽个数
3.比赛结束了,哪个队的成绩好呢?
⊙引导启发,探究新知
1.××小学也举行了踢毽比赛,看教材91页中的数据,我们怎么才能知道哪个队的成绩好呢?请同学们借助课堂活动卡,小组讨论交流。(出示课堂活动卡)
2.小组汇报。
生1:我们小组通过讨论、交流认为:要想知道哪个队的成绩好,算一算每个队踢毽的总数就可以了,总数多的就代表成绩好。
生2:我们小组不同意这种做法,这样不公平,因为两队的人数不一样。
生3:我们小组认为用每队的.平均成绩来比较是合理的。男生队平均每人踢毽个数是(19+15+16+20+15)÷5=17(个),女生队平均每人踢毽个数是(18+20+19+19)÷4=19(个)。通过比较平均数得出:女生队的成绩好。
师:现在同学们用上面求平均成绩的方法来解决上课开始时提出的男生队和女生队哪个队的踢毽子成绩好的问题。
平均数教案4
一、教学目的
1.进一步理解平均数的意义。
2.掌握求较复杂的平均数的解题方法,会根据收集到的数据求平均数。
3.培养学生具体问题具体分析的能力。
4.使学生认识到求平均数这一知识在现实生活中的意义,激发学习兴趣。
二、教学重点
使学生掌握较复杂的平均数应用题的解题方法。
三、教学难点
通过学习,使学生能够找准问题与条件,条件与条件之间相对应的`关系,运用所掌握的方法灵活解答相关问题。
教学对象分析
低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。
教学策略及教法设计
教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用。
1.多媒体教学
运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性。
2.动手操作法
引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化。
四、教学过程
1.复习较简单的平均数问题
出示复习题。
求平均数需要知道哪两个条件?怎样求平均数?
把复习题稍微改动一下,就是我们今天要学习的较复杂的求平均数问题。
2.学习例题①
(1)指名读题。
(2)启发提问。
①例题①的已知和问题与复习题的有什么不同?
②要求全班平均每人投中多少个,必须先知道什么条件?
③怎样求全班共投中多少个?
怎样求全班共有多少人?
怎样求平均数?,
(3)列综合算式并解答问题。
3.学习例题②
(1)指名读题。
(2)启发提问。
①例题②与刚学过的例题①有什么异同?
②要求全班平均每人投中多少,必须先知道什么条件?
③怎样求全班一共投中多少人?
怎样求全班一共有多少人?
怎样求平均数?
(3)列综合算式并解答问题。
(教师应告诉学生,求得的平均数有时不能恰好除尽,这时只要根据具体情况取近似值就可以了。这道题中已知数只有一位小数,因此得数取一位小数就可以了。)
(4)例题①与例题②有什么不同,解答时应注意什么?
(再次强调例题①与例题②的区别,培养学生具体问题具体分析,防止死套公式。)
4.完成书后“做一做”
五、课堂练习
●基础练习
1.填空。
(1)平均数=( )÷( )
(2)( )×( )=总数量
(3)总份数=( )÷( )
2.选择题。
(1)五年级两个班为希望工程捐款,一班42人共捐168元,二班45人共捐210元,平均每个班捐款多少元?正确列式为 ( )
A.(168+210)÷2 B.(168+210)÷(42+45)
(2)一个工厂前3天烧煤4.8吨:后4天烧煤7.8吨,这个工厂一星期平均每天烧煤多少吨 ( )
A. (7.8+4.8)÷(4—3) B. (4.8+7.8)÷(4+3)
●综合练习
1.劳动实践。
(1)同学们在校办工厂里糊纸盒。第一小组10人,平均每人糊7个;第二小组8人,平均每人糊6个;第三小组5人,平均每人糊4个。三个小组平均每人糊多少个?
(2)春光小学五年级同学参加春季植树,领来白杨树苗140棵,梧桐树苗60棵,桑树苗25棵,共分给5个班种,平均每班种多少棵?
2.下表是四年一班各组同学寒假阅读课外读物情况统计表。全班平均每人看多少本课外读物?(得数保留整数)
各组人数
12
14
13
12
平均每人阅读本数
6
4.5
5
5
●实践与应用
王华同学五次语文、数学单元练习成绩如下:
第一次:语文92.5分 数学100分
第二次:语文88分 数学97分
第三次:语文94分 数学98.5分
第四次:语文98.5分 数学100分
第五次:语文99分 数学97分
先分别算出五次语文、数学两科的平均分,再制成统计表。
王华同学五次语文、数学单元练习成绩统计表
年 月
板书
求平均数
① 五年级一班分成3组投篮球第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
综合算式:(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
② 下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数。)
各组人数
12
11
10
平均每人投中数
2.5
3
3.2
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
(2)全班一共有多少人?
12+11+10=33(人)
(3)全班平均每人投中多少个?
95÷33≈2.9(个)
综合算式:(2.5×12+3×11+3.2×10)÷(12+11+10)≈2.9(个)
答:全班平均每人投中2.9个。
平均数教案5
教学目标:
1.知道平均数的含义和求法。
2.加强学生对平均数在统计学上意义的理解。
3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
教师重点和难点:理解平均数的含义,掌握求平均数的方法:移多补少的实际意义和应用。
教学过程
一、创设情境、激趣导入
1.谈话引入:(出示幻灯教师家的书橱)现在我的书架上上层有12本书,下层有10本书,我想请同学帮忙,重新整理一下,使每层书架上的'书一样多。
2.感知
(1)学生思考,想象移的过程。
(2)教师操作并问:现在每层都有11本书了,这个11是它们的什么数?
(3)师:像这样把几个不同的数,通过移多补少,先合并再平分等方法,得到的相同数,就是这几个数的平均数。
今天,我们就来认识一下平均数这个新朋友,好吗?
(板书:平均数)
二、探究新知
1.理解含义,探求方法。
提出问题:小组合作按要求叠圆片,第一排叠2个,第二排叠7个;第三排叠3个。
师:看着面前的圆片,你能提出什么问题,
生:我想使每排的圆片同样多?
师:是个好问题!下面我们就以小组为单位来研究怎样才能使三排圆片同样多。先动手活动,再互相说说法。
小组活动讨论。
汇报交流。
生1:我们先从7个里拿出1个给3个,再从7个里拿出2个给2个,这样每排的圆片就同样多了。
生2:我们是以最少的一排2为标准。从7个里拿出5个,再从3个里拿出5个,然后把这6个平均放到三排,每排放2个,和原来2个合起来,每排都是4个,也同样多。
师:不管怎样移,我们都是把个数多的移给个数少的
请你想一想:在刚才移动过程中,有什么相同的规律?
根据学生回答板书:不相等 相等
小结:像这样,在总数不变的前提下,几个不相同的数通过移多补少变得同样多,同样多的那个数就是原来这几个数的平均数。
2.初步应用,内化拓展。
师:刚才同学们用各种方法示出了平均数,请你选择最喜欢的方法,并说说你是怎样想的?(出示:7,3,6,4的平均数是多少?)
生1:我是这样想的(7+3+6+4)+4=5,所以7,3,6,4,的平均数是5,我在加的时候还用了凑十法。
生2:我是从7拿出2给3;6拿出1给4,通过移多补少得出7,3,6,4的平均数是5。
出示幻灯:身高情况
先估计一下平均身高大约是多少?(148,147,149,)算一算,比较一下估计准不准,谁先算好自己上来写到黑板上。
生1:我是这样想的,152拿出3个给146,151拿出2个给147,那么这组数据的平均数就是149。
生2:我是这样想的,这列数从146到153,里面少148与150,148与150的中间数是149,所以这些平均数是149。
三、拓展练习
1.应用一。
小组活动:拿出准备好的调查表,先用计算器求出平均数,再互相交流看法与观点。(调查表有小组成员的体重,身高,家里近几个月的电话费、电费,上周的气温情况等)交流反馈。
平均数教案6
教学目标
1、掌握用计算器求平均数、标准差与方差的方法.
2、会用计算器求平均数、标准差与方差.
教学建议
重点、难点分析
1、本节内容的重点是用计算器求平均数、标准差与方差,难点是准确操作计算器.
2、计算器上的标准差用 表示,和教科书中用S表示不一样,但意义是一样的.而计算器上的S和我们教科书上的标准差S意义不一样.在计算器上S和 是并排在一起的,按同一键,都是统计计算用的.因S在前, 在后,这样要想显示出标准差 ,就需要发挥该键的统计功能中第二功能,于是就得先按 键,再按 键.
教学设计示例1
素质教育目标
(一)知识教学点
使学生会用计算器求平均数、标准差与方差.
(二)能力训练点
培养学生正确使用计算器的能力.
(三)德育渗透点
培养学生认真、耐心、细致的学习态度和学习习惯.
(四)养育渗透点
通过本节课的教学,渗透了用高科技产品求方差值的简单美,激发学生的学习兴趣,丰富了学生具有数学美的底蕴.
重点难点疑点及解决办法
1.教学重点:用计算器进行统计计算的步骤.
2.教学难点:正确输入数据.
3.教学疑点:学生容易把计算器上的键S主认为是书上的标准差S,教科书中的符号S与CZ1206计算器上的符号S的意义不同,而与计算器上的符号 相同.
4.解决办法:首先使计算器进入统计计算状态,再将一些数据输入,按键得出所要求的统计量.
教学步骤
(一)明确目标
请同学们回想一下,我们已学过用科学计算器进行过哪些运算?(求数的方根、求角的
三角函数值等),那么用计算器和用查表进行这些运算在运算速度、准确性等方面有什么不
同,(计算器运算速度快、准确性高,查表慢,且准确性低).这节课我们将要学习用计算器进行统计运算.它会使我们更能充分体会到用计算器进行运算的优越性.
这样开门见山的引入课题,能迅速将学生的注意力集中起来,进入新课的学习.
(二)整体感知
进行统计运算,是科学计算器的重要功能之一.一般的科学计算器,都含有统计计算功
能,教科书以用CZ1206计算器进行统计计算为例说明计算方法.用CZ1206计算器进行统计计算,一般分成三步:建立统计运算状态,输入数据,按键得出所要求的统计量.这些统计量除了平均数 、标准差 外,还有数据个数n,各数据的和 ,各数据的平方和 .衡量一组数据的波动大小的另一个量S.计算器上的键S,并不表示教科书上的标准差S.
(三)教学过程
教师首先讲清解题的三个步骤,第一步建立统计运算状态.方法:在打开计算器后,先按键2ndF、STAT,便使计算器进入计计算状态.第二步输入数据,其过程一定要用表格显示输入时,每次按数据后再按键DATA.表示已将这个数据输入计算器.这时显示的数,是已输入的数据的累计个数,表中所有数据输入后显示的`数为8,表明所有数据的个数(样本容量)为8,如果有重复出现的数据,如有7个数据是3,那么输入时可按37(前面是输入的数据,后面是输人数据的个数).第三步按一下有关的键,即可直接得出计算结果.
在教师讲情操作要领的基础上,(把学生分成两组)让学生自己操作,用计算器求14.3节例1中两组数据的平均数、标准差与方差.
在学生操作过程中,教师要指导学生每输入一个数据,就检查一下计算器上的显示是否
与教科书的表格一致,如发现刚输入的数据有误,可按键DEL将它清除,然后继续往下输
入.
教师还要指出教科书上的符号S与CZ1206型计算器上的符号S的意义不同,而与该计
算器上的符号 相同,在CZ1206型计算器键盘上,用 表示一组数据的标准差.由于这个计算器上未单设方差计算键,我们可以选按键 ,然后将它平方,即按键 = ,就得到方差值 .
让学生把表5、表6与前面的笔算结果相比较,结论是一致的.引导学生通过比较计算器与笔算两种算法,总结出计算器有哪些优越性;(省时,省力,计算简便.)
这样做的目的,是使学生亲自动手实践.参与教学过程,不仅便于学生掌握用计算器进
行统计运算的步骤和要领,而且能使学生充分认识到计算器的优越性,更有利于科学计算器
在中学的普及使用.
课堂练习:教材P177中1、2.
(四)总结、扩展
知识小结:
通过本节课的学习,我们学会了用科学计算器进行统计运算.在运算中,要注意操作方
法与步骤,由于数据输入的过程较长,操作时务必仔细,避免出错,在用计算器进行统计计算的前提下,可通过比较两组数据的标准差来比较它们的波动大小,而不必再转到相应方差的比较.
方法小结:用CZ1206型计算器进行统计运算.一般分成三步:建立统计运算状态,输入数据,按键得出所要求的统计量.
布置作业
教材P179中A组
板书设计
随堂练习
用计算器计算下列各组数据的平均数和方差、标准差
1.60,40,30,45,70,58
2.9,8,7,6,9,7,8
教学设计示例2
一、教学目的
1.使学生了解计算器上有关统计计算的符号.
2.使学生会用计算器求一组数据的平均数、标准差与方差.
3.使学生体会到用计算器统计的省时、省力的优越性.
二、教学重点、难点
重点:掌握用计算器计算平均数、方差的方法.
难点:计算器上符号的准确识读与应用.
三、教学过程
复习提问
1.我们学过哪些计算一组数据的平均数的方法?
2.我们学过哪些计算一组数据的方差与标准差的方法?
引入新课
随着科学的进步,一些先进的计算工具逐步进入千家万户,我们可以用这些计算工具来进行计算.本课我们学习用计算器计算一组数据的平均数与方差的方法.
新课
让学生阅读并在教师指导下计算教材例中两组数据的平均数、标准差与方差.同时,通过应用计算器,了解 的作用.
接下来让学生作如下练习:
填空题:
2.计算器中,STAT是____的意思,DATA是____的意思.
3.计算器键盘上,符号与书中符号____意义相同,表示一组数据的____.
4.在CZ1206型计算器上设有标准差运算键,而未设____运算键,一般要通过将标准差____得到____.
选择题:
1.通过使用计算器比较两组数据的波动大小,只需通过比较它们的____即可 [ ]
A.标准差 B.方差
C.平均数 D.中位数
2.如果有重复出现的数据,比如有10个数据是11,那么输入时可按 [ ]
3.用计算器计算样本91,92,90,89,88的标准差为 [ ]
A.0 B.1 C.约1.414 D.2
4.用计算器计算7,8,8,6,5,7,5,4,7,6的平均数、方差分别为 [ ]
A.6.3,1.27 B.1.61,6.3
C.6.3,1.61 D.1.27,1.61
教师可先用投影片(或小黑板或示意图纸)写好操作效果图和学生的计算结果进行对比.
接下来师生共同继续作课本上练习
小结
1.熟悉计算器上各键的功能.
2.学会算(用计算器)平均数、标准差、方差.
四、教学注意问题
1.本课教学内容关键是动手,要让学生动手作,为帮助学生中动手能力差者,要提倡互相帮助.
2.学生做作业时可提示他们可核对以前的题目的准确性.
平均数教案7
教学目标
知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。
过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。
情感态度与价值观:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:让学生感受算术平均数与加权平均数的练习和区别
教学难点:利用算术平均数与加权平均数解决问题
教学过程:
第一环节:情境引入 (3分钟,复习导入,学生回顾)
内容:请同学们回忆:什么是算术平均数?什么是加权平均数?
请同学们各举一个有关算术平均数和加权平均数的实例,并解决之。
在学生的复习交流中引入课 题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。
第二环节 :合 作探究(25分钟,小组合作 探究,教师指导)
内容:1.做一做[
我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:
黑板 门窗 桌椅 地面
一班 95 90 90 85
二班 90 95 85 90
三班 85 90 95 90
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的.方案,哪一个班的卫生成绩最高?
对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价。正确的答案是:
一班的卫生成绩为:9515%+9010%+9035%+8540% = 88.75
二班的卫生成绩为:9015%+9510%+8535%+9040% = 88.75
三班的卫生成绩为:8515%+9010%+9535%+9040% = 91
因此,三班的成绩最高。
对于第( 2)问,让学生先在小组内各抒己见,然后在全班交流体会:
以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。
内容:2.议一议
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年 增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?
以下是小明和小亮的两种解法,谁做得对?说说你的理由。
小明: (9%+30%+6%)= 15%
小亮:
学生分组讨论,全班交流,说明理由:
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率地位不同,它们对总支出增长率的影响不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的权,从而总支出的增长率为小亮的解法是对的。
第三环节:运用提高(10分钟,学生独立完成,全班交流)
内容:1.小明骑自行车的速度是15千米/时 ,步行的速度是5千米/时。
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如 果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?
2. 某校招聘学生会干部一名,对A,B,C三名候选人进行了四项素质测试,他们的各项测试成绩如下表所示:
测试项目 测 试 成 绩
A B C
语 言 85 95 90
综合知识 90 85 95
创 新 95 95 85
处理问题能力 95 90 95
根据实际需要,学校将语言、综合知识、创新、处理问题能力按20%、30%、30%、20%的比例计算成绩,此时谁将被录用?
第四环节:课堂小结(2分钟,学生总结0
内容:说说算术平均数与加权平均数有哪些联系与区别?
教师引导学生比较、议论、交流、总结出结论:
算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数。
由于权的不同,导致结果不同,故权的差异对结果有影响。
第五环节:布置作业
课本习题8.2。A组(优等生)1、2、3 B组(中等生)1、2
C组(后三分之一)1、2
平均数教案8
一、导入新授:
通过师生谈话引出两个小组投球比赛成绩的数据。
二、新授:
1.出示投球记录:
第一组 第二组
姓名 投中个数
刘杰 9
杨立 8
孙梅 5
王丽 3
丁鹏 5
姓名 投中个数
张华 8
王云 7
李英 6
赵明 7
2.比较哪组的成绩好。
(1)让学生进行讨论,学生可能会说出不同的比较方法和想法,重点引导学生考虑怎样比较才是"公平"的。
(2)如果学生不能说出平均每人投中的个数,教师可以作为参与者提出并让学生讨论。
3.学生试做。
4.交流计算结果,并根据平均数比较两组的成绩,说明哪组的成绩好。
第一组(8+7+6+7)÷4 第二组(9+8+5+3+5)÷5
= 28÷4 =30÷5
=7(个) =6(个)
7>6
答:第一组成绩好。
三、求平均数:
1.下表是亮亮家一周丢弃塑料袋的.情况。
星期 一 二 三 四 五 六 日
个数 1 3 2 3 2 6 4
2.算一算:平均每天丢弃几个塑料袋?
(1)让学生观察统计表,说一说得到了哪些信息?
(2)自己试做。
(3)交流计算的方法和结果。
3.议一议:求出的"3个"是每天实际丢弃的塑料袋的个数吗?
四、做一做:
先让学生想一想,再动手操作。教师注意观察学生的方法。交流操作的过程,有意识的指几名学生说说是怎样想的、怎样做的。
平均数教案9
一.教学目标
(一)教学知识点
1.会求加权平均数,并体会权的差异对结果的影响.
2.理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.
(二)能力训练要求
1.通过利用平均数解决实际问题,发展学生的数学应用能力.
2.通过探索算术平均数和加权平均数的`联系和区别,发展学生的求同和求异思维.
(三)情感与价值观要求
通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.
二.教学重点
1.会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性.
2.探索算术平均数和加权平均数的联系和区别.
三.教学难点
探索算术平均数和加权平均数的联系和区别.
四.教学方法
探讨式教学.
五.教具准备
投影片三张:
第一张:补充练习(记作8.1.2 A);
第二张:补充练习(记作8.1.2 B);
第三张:补充练习(记作8.1.2 C).
六.教学过程
Ⅰ.创设问题情境,导入新课
在上节课我们学习了什么叫算术平均数和加权平均数,以及如何求一组数据的算术平均数和加权平均数.本节课我们继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别.
Ⅱ.讲授新课
1.例题讲解
某学校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面.
平均数教案10
教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入“平均数”象哥哥和妹妹分得一样多的`5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?
二、学习计算平均数
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、巩固训练
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?
2、根据统计表算一算,三年段平均每班踢几下?
班级三(1)三(2)三(3)三(4)
踢的次数632654668646
四、小结:
通过这节课的学习,你们有什么收获,还有什么问题?
五、布置作业:
练习十一1、2、3
平均数教案11
一、教学目标:
1、会根据频数分布表求加权平均数,从而解决一些实际问题
2、会用计算器求加权平均数的值
3、会运用样本估计总体的方法来获得对总体的认识
二、重点、难点:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、教学过程:
1、复习
组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.
因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量.
为了更好的`理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.
2、教材P140探究栏目的意图
①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.
②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义.
3、教材P140的思考的意图.
①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.
②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.
4、利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.
5、运用样本估计总体
要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.
平均数教案12
教学目的:
⒈、经历平均数产生的过程,理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。
⒉、在解决问题的过程中培养学生的分析、综合、估算和说理能力。
⒊、渗透统计初步思想。
教学实录:
一、创设情境,提出问题
师:从孩子喜欢的球类运动入手:“小朋友们,你们都喜欢什么球类运动?”
生:“足球!”“篮球!”“乒乓球!”……
师:“这么多小朋友都喜欢足球,我也和你们一样是个球迷!不过,今天由于场地的限制,我们想组织一次拍球比赛,有兴趣吗?”
生:“有!”
师:“咱们全班男女生分为两大组,每组商量一下,先为本组起一个名字。”
(很快,男生组起名叫“必胜队”,女生组起名叫“快乐队”。)
师:“如果一个人一个人地来拍球,时间肯定不够,咱们想个办法,应该怎样进行比赛呢?”
【课伊始,趣已生。从孩子喜欢的游戏入手,激发了学习兴趣;让孩子自己想出比赛的办法,把自主权留给了孩子。】
二、解决问题,探求新知
1、感受平均数产生的需要
问题提出,同学们马上有办法,各队推选一名最有实力的代表进行比赛。比赛开始,男生10秒钟拍球19个,女生10秒钟拍球20个,老师宣布“快乐队”为胜。男生马上不服气,“不行!不行!一个人代表不了大家的水平!再多派几个人!”于是,两队又各派四人上台。比赛结果:男生队拍球数量为:17、19、21、23。女生队拍球数量为:20、18、15、23。同学们用计算器算出:“必胜队”拍球总数为80个,“快乐队”拍球总数为76个。老师高高地举起男生代表的小手宣布:“必胜队胜利!”“吔!”男孩子们高兴地跳了起来,女生们则沮丧地低下了头。
这时老师来到了弱者的一边,安慰女生“快乐队的小朋友们,不要气馁,我来加入你们队好不好?”“太好了!”于是,我现场拍球29个。“快算算,这回咱们快乐队拍球的总数是多少?”女生很快算出:105个。“这一次我宣布:快乐队胜利!”女同学的脸上现出了微笑,男生们却马上反驳:“不公平!不公平!我们是4个人,快乐队是5个人,这样比赛不公平!”
“哎呀,看来人数不相等,就没法用比较总数的办法来比较哪组的.拍球水平高,这可怎么办呢?”
一个胖胖的小男孩站起来伸开双臂,结结巴巴地说:“把这几个数匀乎匀乎,看看得几,就能比较出来了。”
“求平均数!”几个孩子脱口喊了出来。
【在一次又一次的矛盾激化中,在现实生活的需要中,学生请出了“平均数”。可爱的孩子一句“匀乎匀乎”,表明孩子们已经从实际问题的困惑中产生了求平均数的迫切需求。】
2、探索求平均数的方法
“我们怎样求出平均数呢?你能想办法试一试吗?”很快,有同学把大数多的部分匀乎给了小数,使数字平均;有的学生用计算的方法:(17+19+21+23)÷4=20(个)(20+18+15+23+29)÷5=21(个)通过求平均数,比较得出“快乐队”为胜方。
3、理解平均数的意义
平均数已经求出来了,但探讨并没有就此停止,我继续引导大家:“快乐队拍球的平均数是21,21代表什么?你怎么认识理解21这个数?”
孩子此时也发现了问题:“怎么没有一个人拍球的数量是21呀?“
“是呀,21是谁拍的数量呀?”老师俨然一个大朋友般地与孩子们一起陷入了思考。此时的课堂很安静,老师在耐心地等待着。
终于,一个清秀的小女孩站起来说:“21是这几个数的平均数。”
老师我马上追问:“什么是平均数呀?”
生1:“就是把大数多的部分往小数上匀乎匀乎。”
生2:“平均数是一个虚的数,比最小的数大一些,比的数小一些,在它们中间。”
生3:“平均数不是某一个人具体的拍球数量,它代表的是几个人拍球的平均水平。”
此刻,老师再也抑制不住激动的心情:“孩子们,你们真是太棒了!平均数正如你们所说,它不是一个实实在在的数,而是代表一组数的平均值。你们的学习精神和理解能力真让我佩服!”
【在老师精心创设的情境中,在孩子们的亲身感受中,他们用自己稚嫩的语言道出了他们对平均数意义的理解,虽然这只是初步的,但却是非常有价值的。】
三、联系实际,拓展应用
少儿歌手比赛(出示题目)你知道1号歌手的实际得分是多少吗?
同学们经过计算得出:(93+98+95+83+92+96+94+)÷7=93(分)。
此时电脑上出现1号歌手的实际得分是94分。
师:“咦?这是怎么回事?”“为什么小朋友们计算1号歌手的得分是93分,而电脑给出的却是94分呢?是我们错了,还是电脑错了?”教师里一片寂静。
突然,一个小朋友大声说:“是我们错了!我们看歌手比赛的时候,还要去掉一个分和一个最低分呢?”
师:“噢!想起来了,是这样的。”
孩子们用自己的生活经验找到了症结所在。同学们马上自觉地又伏案计算,去掉一个分98分,去掉一个最低分83分,(93+95+92+96+94)÷5=94(分)。电脑给出的答案是正确的。
【一个生活实例的巧妙运用,使孩子们深深地体会到在生活中不能死套公式,知识的运用要结合具体情况具体分析。那一段时间的沉默,留给孩子的是一片思考的空间。等待是一种艺术,空白也是一种艺术,我们在课堂上应该善于等待,恰到好处地运用等待艺术。】
四、总结评价,布置作业
通过这节课的学习,你有什么收获?还有什么遗憾?你认为应该给自己布置什么样的作业?”
平均数教案13
第一步:课堂引入
设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
第二步:应用举例:
例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:
载客量/人组中值频数(班次)
1≤x<21113
21≤x<41315
41≤x<615120
61≤x<817122
81≤x<1019118
101≤x<12111115
这天5路公共汽车平均每班的`载客量是多少?
分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的权是它的频3,由此这天5路公共汽车平均每班的载客量是:
思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?
分析:
由表格可知,81≤x<101的18个班次和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39.8%
活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如键),计算器便会求出平均数的值。
例2:下表是校女子排球队队员的年龄分布:
年龄13141516
频数1452
求校女子排球队队员的平均年龄(可使用计算器)。
答:校女子排球队队员的平均年龄为14.7岁
平均数教案14
设计说明
平均数是统计中的一个重要概念。在统计中,平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到。本节课是在学生已有知识经验的基础上,让学生进一步体会平均数的意义,掌握求平均数的方法。
1.创设问题情境,引发认知冲突。
“问题是数学的心脏”,有了问题才会思索,有了问题才会引发学生认识上的冲突。这节课通过具体问题情境,激发学生的学习兴趣。由“为什么两个阿姨都领着孩子,第一位阿姨只买一张票,而第二位阿姨却要买两张票呢?”引发学生的认知冲突,从而产生进一步探究平均数的意义的欲望。
2.在分析讨论中促进学生对平均数意义和计算方法的再认识。
在以往的学习中,平均数的意义和计算方法学生已经接触过,但对于具体生活情境中问题的解答,学生比较陌生,所以在教学中通过学生的小组讨论、交流、分析,使学生了解到在不同的情境中,求平均数的方法也不同,培养学生灵活运用所学知识解决生活中的实际问题的能力。
课前准备
教师准备 PPT课件
学生准备 作业纸
教学过程
⊙谈话导入
1.课件出示两位阿姨排队买票的情境图(一位阿姨抱着一个大约四五岁的孩子,另一位阿姨领着一个大约七八岁的孩子)。
师:从画面上你获取了哪些信息?你认为买票时应该怎样做?(适时对学生进行思想品德教育)
课件依次演示第一位阿姨只买了一张票,而第二位阿姨却买了两张票。
师:从画面上你知道了什么?有哪些疑问呢?为什么两个阿姨都带着孩子,第一位阿姨只买了一张票,而第二位阿姨却要买两张票呢?
(学生在小组内讨论、交流,初步感知学龄前儿童免票的规定)
2.引出新知。
师:这节课我们一起来学习平均数的再认识。(板书:平均数的再认识)
设计意图:数学来源于生活,从学生熟知的乘车买票情境入手,使学生初步感知平均数在实际生活中的应用,为后面学习用平均数知识解决生活中的实际问题奠定基础。
⊙探究新知
(一)进一步探究平均数的意义。
课件出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2m的儿童免费乘车。
1.组织学生讨论:1.2m这个数据可能是如何得到的?
(学生在小组内交流、讨论,然后全班汇报)
(1)调查了一些6岁儿童的身高。
(2)1.2m可能是这些身高的平均数。
2.据统计,目前北京市6岁男童身高的平均值为119.3cm,女童身高的平均值为118.7cm。引导学生根据上面信息解释免票线确定的合理性。
(学生在小组里讨论、交流各自的想法)
(二)引导学生从生活情境中理解平均数。
课件出示:下表是“新苗杯”少儿歌手大奖赛的成绩统计表。
1.指导学生把统计表填写完整,并排出名次。
学生进行计算,独立填表,排出名次。
2.根据你的生活经验,说一说在实际比赛中计算平均分的.规则。
(在小组内讨论、交流,初步感知实际比赛中的评分规则和平常的求平均数方法的不同)
3.引导学生讨论:在实际比赛中,通常都采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(交流并汇报:平均数容易受偏大或偏小数据的影响)
4.小结:在很多比赛中,为了体现公平、公正的原则,往往采取去掉一个最高分和一个最低分,然后求平均分的记分方法。
5.引导学生按照上面的方法重新计算3位选手的最终成绩,然后排出名次。
(学生独立计算,然后全班汇报)
引导学生理解:其中一个数有变化,所求的平均数也会发生变化。
平均数教案15
教学内容:
练习十一1—3题,教材42页例1
教学目标:
1、掌握平均数的意义和求平均数的方法
2、知道移多补少求平均数的方法
3、会根据数据列出算式求平均数
教学重点:
掌握求平均数的方法
教学难点:
正确计算平均数
教具准备:
课件,小黑板,统计表
教学流程:
一、导入
拿8枝铅笔,指4名同学,要平均分怎样分?
每人2枝,每人手中一样多,叫平均分。2是平均数
二、学习交流
1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图
(1)从图中,你知道了什么信息?
(2)他们四人怎样分才能一样多?
(3)平均分后是多少个?
2、课件展示统计图的变化过程
(1)指名展示
(2)这种方法叫什么?
点拨:移多补少
3、要求平均数,还可以怎样想?
(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?
14+12+11+15=
(2)平均分成4份,怎么办?
52÷4=
4、归纳
要求平均数,可以先求出( )数,再平均分几份
5、算一算你们小组的平均身高,交流展示求平均数的方法和过程
6、算出各小组的平均体重,说说你们是怎么算的.?
三、交流展示
展示自己的学习成果,说清求平均数的方法和过程
四、达标测评
1、练习十一第2题
(1)什么是最高温度?什么是最低温度
(2)你知道了哪些信息?
(3)填写统计表:本周温度记录
(4)计算出一周平均最高温度和最低温度
(5)说说你是怎么算的?
2、测量小组跳远成绩,求平均数
五、总结
通过这节课的学习活动,你有什么收获?
【平均数教案】相关文章:
《平均数》教案03-29
《平均数》 教案03-18
求平均数教案02-22
《求平均数》教案08-26
《平均数》教案15篇03-31
平均数教案15篇02-06
《求平均数》教案14篇03-05
《求平均数》教案(14篇)03-06
平均数说课稿01-13