当前位置:育文网>教学文档>教案> 《四边形》教案

《四边形》教案

时间:2022-06-03 10:40:04 教案 我要投稿

《四边形》教案

  作为一位杰出的教职工,常常要写一份优秀的教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么应当如何写教案呢?以下是小编整理的 《四边形》教案 ,仅供参考,欢迎大家阅读。

 《四边形》教案

   《四边形》教案 篇1

  教学目标

  (一)教学知识点

  1、能进一步理解掌握矩形、菱形、正方形的性质定理、判定定理。

  2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。

  (二)能力训练要求

  1、经历探索、猜想、证明的过程,进一步发展推理论证能力。

  2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。

  3、体会证明过程中所运用的归纳概括以及转化等数学思想方法。

  (三)情感与价值观要求

  1、通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性。

  2、体会数学与生活的联系。

  教学重点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。

  教学难点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的.灵活应用。

  教学方法:启问——交流式教学法。

  教学过程

  1、巧设现实情境,引入新课

  [师]通过前几节内容的学习,我们进一步理解了平行四边形及特殊平行四边形的性质定理和判定定理。

  这节课我们来应用它们证明和计算一些题。

  2、讲授新课

  [师]下面大家来猜一猜,想一想

  依次连接任意四边形各边的中点可以得到一个平行四边形。那么,依次连接正方形各边的中点。(如图)能得到—个怎样的图形呢?先猜一猜,再证明。

   《四边形》教案 篇2

  教学目标

  (一)使学生理解平行四边形的概念及其特性,并会画平行四边形的高

  (二)使学生掌握长方形、正方形和平行四边形的关系

  (三)进一步提高学生观察、比较能力和作图能力

  教学重点和难点

  理解和掌握平行四边形的定义及其特性,画平行四边形的高是教学重点;理解长方形、正方形与平行四边形之间的关系是难点

  教学过程设计

  (一)复习准备

  我们已经学过一些几何图形,观察一下这些图形有什么共同的特点?(投影)

  在明确它们都是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形

  提问:我们学过哪些四边形呢?

  (学过的四边形有长方形、正方形、平行四边形)

  你能举例说说哪些物体表面是平行四边形吗?

  教师出示挂图,让学生初步感知平行四边形

  我们已初步认识了平行四边形,那么什么叫平行四边形?它有什么特性?这就是我们今天要研究的课题(板书课题:平行四边形)

  (二)学习新课

  1、理解平行四边形的定义

  首先出示一组图形:

  这些图形是什么形?它们有什么特征?

  ①动手测量

  指名一学生到黑板上用三角板检验一下,每个图形的对边怎样

  其余同学用三角板检验课本151页3个图形的对边

  然后再用尺子度量一下每组对边的长怎样

  ②抽象概括

  根据你测量的结果,能说说什么叫平行四边形吗?

  小组先议论一下,(可能说出每组对边分别相等,也可能说出平行四边形每组对边平行)再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切含义

  两组对边分别平行的四边形叫做平行四边形(板书)

  教师强调说明:只要四边形的每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”

  反馈:判断下面图形哪些是平行四边形?(投影)

  2、平行四边形的特性

  同学们已经学过三角形,三角形具有稳定的特性,那么平行四边形有什么特性呢?

  (1)教师演示

  教师拿一长方形木框,用两手捏住长方形的两个对角,向相反方向拉观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角

  (2)动手操作

  学生自己动手,把准备好的长方形框拉成平行四边形,并测量一下两组对边是否还平行

  (3)归纳平行四边形特性

  根据刚才的实验、测量,引导学生概括出:平行四边形有不稳定性(板书)

  (4)对比

  三角形具有稳定性,不容易变形平行四边形与三角形不同,容易变形,也就是具有不稳定性

  这种不稳定性在实践中有广泛的应用你能举出实际例子来吗?(如汽车间的.保护网,推拉门、放缩尺等)

  3、平行四边形的底和高

  (1)认识平行四边形的底和高

  出示:

  教师边演示边说明:

  从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高这条对边叫做平行四边形的底

  (2)找出相应的底和高

  出示:(投影)

  观察上图中,有几条高?它们相对应的底各是哪条线段?

  从而让学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC

  (3)画平行四边形的高

  同学们已经学过三角形画高的方法,平行四边形高的画法与其相同,都用过线外一点画已知直线的垂线的方法从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高这里高要画在平行四边形内,不要求把高画在底边的延长线上

  同学动手画高:152页“做一做”

  4、教学长方形、正方形和平行四边形的关系

  教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形还可把平行四边形变成长方形,比较一下长方形和平行四边形的异同点

  引导学生明确:相同点是两组对边都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形

  比较正方形和平行四边形的相同点和不同点

  引导学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形还可看作是特殊的长方形

  这三种图形之间的关系可以用集合图来表示

  (三)巩固反馈

  1、说说什么叫做平行四边形?它有什么特性?

  2、在下面图形中画高,并指出它的底

  3、在下面图形中,画出两条不同的高

  4、说一说平行四边形、长方形和正方形之间的关系

  (四)作业(略)

  课堂教学设计说明

  本节课是在学生对平行四边形有了初步感知的基础上,通过直观演示,操作实践等手段,给学生建立明确的概念

  新课分为四个部分

  1、首先让同学利用前面讲过的检验平行线的方法,检查三个不同形状的平行四边形,然后再用尺子度量一下每组对边的长度,让学生从实践中发现平行四边形的特征,从而抽象概括出平行四边形的定义

  2、其次通过教师的演示和学生实际操作,发现平行四边形的特性,就是具有不稳定性

  3、然后认识平行四边形的底和高,并会画高

  4、最后通过比较长方形、正方形和平行四边行的异同点,明确它们的关系:正方形是特殊的长方形,长方形、正方形都是特殊的平行四边形并用集合图表示

  5、在教学或练习中,既要重视直观演示,运用比较的方法,又要加强动手操作,量一量、画一画等,让学生在实践中既获得知识,又提高能力

  板书设计

  由四条线段围成的图形叫做四边形

  两组对边分别平行的四边形叫做平行四边形

  特性:不稳定性

  画出两条不同的高

   《四边形》教案 篇3

  教学建议

  1.教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:的有关概念及内角和定理。因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

  难点:的概念及不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

  2.教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立的`有关概念,如的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、的图形,对比着指给学生看,让学生明确这些概念。

  (3)因为在三角形中没有对角线,所以的对角线是一个新概念,它是解决问题时常用的辅助线,通过它可以把问题转化为三角形问题来解决。结合图形,让学生自己动手作的一条对角线,并观察的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握的有关概念及的内角和外角和定理.

  2.了解的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的.

  4.讲解外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点·难点·疑点及解决办法

  1.教学重点:及其有关概念;熟练推导外角和这一结论,并用此结论解决与内外角有关计算问题.

  2.教学难点:理解的有关概念中的一些细节问题;不稳定性的理解和应用.

  3.疑点及解决办法:的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出有关概念;师生共同推导内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

  第一课时

  七、教学步骤

  【复习引入】

  在小学里已经对、长方形、平形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种的性质和判定分析它们之间的关系,并运用有关的知识解决一些新问题.

  【引入新课】

  用投影仪打出课前画好的教材中P119的图.

  师问:在上图中你能把知道的长方形、正方形、平行、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

  【讲解新课】

  1.的有关概念

  结合图形讲解,的边、顶点、角,凸,的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形.

  (2)要与三角形类比.

  (3)讲清定义中的关键词语.如定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

  (4)强调对角线的作用,作为的一种常用的辅助线,通过它可以把问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原的关系.

  (5)强调的表示方法,一定要按顶点顺序书写如图4—1.

  (6)在判断一个是不是凸时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

  2.内角和定理

  教师问:

  (1)在图4-3中对角线AC把ABCD分成几个三角形?

  (2)在图4-6中两条对角线AC和BD把分成几个三角形?

  (3)若在ABCD如图4-7内任取一点O,从O向四个顶点作连线,把分成几个三角形.

  我们知道,三角形内角和等于180°,那么的内角和就等于:

  ①2×180°=360°如图4—6;

  ②4×180°-360°=360°如图4-7.

  例1已知:如图4—8,直线于B、于C.

  求证:(1);(2)。

  本例题是内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

  【总结、扩展】

  1.的有关概念.

  2.对角线的作用.

  3.内角和定理.

  八、布置作业

  教材P128中1(1)、2、 3.

  九、板书设计

  十、随堂练习

  教材P122中1、2、3。

   《四边形》教案 篇4

  

  学习目标:

  1.能运用综合法证明正方形性质定理。

  2.体会证明过程中所运用的归纳概括以及转化等 数学思想方法

  课前热身:

  矩形、菱形有哪些性质和判别方法?

  正方形有哪些性质?你能证明吗?

  自主学习

  1.证明有一个角是直角的菱形是正方形

  2.证明对角线相等的菱形是正方形

  4.议一议

  ①依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。

  ②依次连接特殊平行四边形 四边中点呢?

  课堂小结

  1、顺次连接任意四边形各边的中点得到的四边形是

  2、顺次连接矩形各边的中点得到的四边形是

  3、顺次连接菱形各边的中点得到的`四边形是

  4、顺次连接正 方形各边的中点得到的四边形是

  反馈检测:

  1.正方形的边长为 ,则它的对角线长 ,若正方形的对角线长为 ,它的边长为 。

  2.边长为 的正方形,在一个角 剪掉一 个边长为的 正方形,则所剩余 图形的周长为 。

  3.已知:如图 Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F。

  求证:四边形CEDF是正方形。

  布 置作业:

  A组:习题 4、2 创新设计 B 组 习题4.、2 C 组 背定义

   《四边形》教案 篇5

  教学内容:教材34-36页

  教学目标:

  1、直观感知四边形,能区分和辨认四边形,进一步认识长方形和正方形,掌握长方形和正方形的特点。

  2、通过找一找、涂一涂、说一说、分一分、围一围等多种活动,培养学生的观察比较和抽象概括的能力。

  3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

  4、培养学生积极参与数学学习活动的态度,以及与他人合作的良好习惯。

  教学重点:认识四边形及特征。

  教具、学具准备:

  师准备多媒体课件、钉子板、把例1的图形画在纸上制成答题卡发给每一位学生。

  生准备直尺、纸、剪刀、细铁丝、七巧板、小棒。

  教学设计:

  课前谈话:这节课有几位专家老师到我们三(3 )班来,看同学们学习,请大家用热烈的掌声欢迎他们的到来。希望同学们认真思考,大胆发言,把我们三(3)班善于学习的风采展示给专家老师们看,好不好?上课!

  一、感知四边形

  1、师:(课件出示主题图)请看屏幕,小精灵聪聪带领我们到光明小学参观。聪聪说:“仔细观察,你会发现许多图形。”从图上你能发现哪些图形?

  学生自由回答。

  师根据学生的回答把相应的图形用课件闪动。

  2、师:同学们真棒!在光明小学发现了这么多图形。(课件出示9个图形)在你们发现的这些图形中,哪些图形可以放在一起,分为一类?为什么?

  让学生充分发表意见。

  (用课件演示)可以把长方形、正方形、梯形、平行四边形、菱形放在一起,因为他们都有四个角四条边。

  3、师说明:这些图形就叫做四边形。板书课题:四边形

  4、师:说一说你身边哪些物体的表面是四边形的?

  找五名学生充分举例说明。

  5、师:看来,生活中的四边形实在是太多了!那你能动手把四边形做出来吗?用自己准备的材料做出四边形。看谁做的又快又好。

  让学生用小棒摆,用铁丝围,用笔画,用纸剪,充分动手。

  师:谁愿意把自己做的四边形展示给大家看?

  找用不同材料做的四名学生展示。

  6、师:刚才你们找出了四边形又做出了四边形。那么,你能说一说到底什么样的图形是四边形呢?

  归纳:有四条直直的边,有四个角的'图形就是四边形。

  板书:有四条直的边 有四个角

  二、教学例1

  过渡:同学们真了不起,知道了什么样的图形是四边形。(课件出示例1)指着屏幕问:这些图形哪些是四边形?请你在答题卡上把四边形找出来,用彩笔涂上自己喜欢的颜色。

  学生涂颜色。指一名学生展示、回答。

  师用课件演示正确答案进行反馈、讲解。

  三、动手实践,教学例2。

  1、师:小组合作把这7个四边形剪下来交给学习小组的组长,再把这些图形分分类。

  学生活动。

  师:你们是怎么分的?为什么这样分?

  2、学生汇报分类结果,着重指导学生说出为什么这样分。教师用课件随机演示分的方法。

  a.按照是不是直角:把长方形、正方形分为一类;把其它的图形分为一类。

  b. 按照对边是否平行且相等,把长方形、正方形、平行四边形、菱形分为一类,其他的图形分为一类。

  c.按照四条边是否相等的:把正方形、菱形分为一类;其他的图形分为一类。

  d. 按照是否是规则图形:把正方形、长方形、平行四边形、梯形、菱形分为一类;其他的四边形分为一类。

  四、全课总结

  这节课,你学会了什么?

  五、巩固练习,拓展延伸

  1、在钉子板上围一围。(第36 页做一做)

  2、让学生以小组为单位,任意用七巧板中的图形拼成各种各样的四边形,展示给大家看。

   《四边形》教案 篇6

  (一)教学目标

  1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

  2.使学生掌握平行四边形和梯形的特征。

  3.通过多种活动,使学生逐步形成空间观念。

  (二)教材说明和教学建议 教材说明

  本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。

  例题

  具体内容及要求

  垂直与平行

  例1

  认识同一平面内两条直线的特殊位置关系:平行和垂直。

  例2

  学习画垂线,认识“点到直线的距离”。

  例3

  学习画平行线,理解“平行线之间的距离处处相等”。

  平行四边形和梯形

  例1

  把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的'关系。

  例2

  认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。

  学习画高。

  教学建议

  1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。

  教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。

  2.理清知识之间的内在联系,突出教学的重点。

  由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。

  3.注重学用结合,就地取材,充实教材内容。

  尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。

  4.加强作图的训练和指导,重视作图能力的培养。

  这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。

  5.本单元可用6课时完成。

   《四边形》教案 篇7

  1.教学设计学科名称 三年级上册第三单元35-36页

  2.所在班级情况,学生特点分析

  3.教学内容分析 《四边形》是人教版《义务教育课程标准实验教科书——数学》三年级上册第三单元的教学内容。,这部分内容是在前面“空间与图形”的基础上教学的,教材一方面注意挖掘几何知识之间的内在联系,另一方面提供了与空间观念密切相关的素材,并遵循儿童学习数学的规律,选择了活动化的呈现方式,目的是加强有关空间观念的内容。四边形是本单元的起始内容中的第一课时。通过涂一涂、说一说、围一围等系列活动,充分感知四边形,抽象出四边形的特征。 4.教学目标1、直观感知四边形,能区分和辨认四边形。 2、能根据四边形的特点对四边形进行分类,进一步认识长方形和正方形,知道它们的角都是直角。 3、通过找一找、涂一涂、说一说、围一围活动,培养学生的观察比颐和园教学设计较和概括抽象的能力。 4、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,受到美的熏陶,进一步激发学生的学习兴趣。

  5.教学难点分析 认识四边形、了解四边形(长方形、正方形)的特征。

  6.教学课时

  7.教学过程

  一、、喜羊羊开店主题图引入,揭示课题

  师: 小朋友们喜欢看喜羊羊与灰太狼的故事吗?故事里的小羊聪明机智,经常发生一些有趣的事情。最近在羊村里又发生了一件大事,原来,喜羊羊开了一家图形店,打算出售各种各样的图形。瞧,这是喜羊羊打算出售的图形。

  二、初步感知,发现特征

  店里的生意真好,喜羊羊一个人忙不过来,他打算招聘一些营业员,要求营业员懂一些有关图形的`知识,聪明的小朋友,你们敢试一试吗?(真有自信)

  【设计意图:利用贴近学生生活的动画主题图,激发学生的兴趣,注重学生已有的生活经验,将视野从课堂拓展到生活的空间,把数学中的图形带入生活中,引导他们去观察生活,从现实世界中发现有关空间与图形的问题。】

  三、探究四边形的特点

  1、(课件出示图形)师:图形家族的成员可真不少,把你认为是四边形的图形涂上颜色,涂色时请同学们注意方法,可以用画阴影的方法,也可以用描边框的方法。

  2、学生涂学具卡。

  3、反馈汇报

  4、师:同学们真了不起,用自己的智慧把四边形都找出来了,这些图形有什么共同的特点。(指名说一说)(适时板书:四个角、四条直边)

  5、师:现在老师要考考你。(课件出示不同的图形,有是四边形的,有的不是,让学生来判断,并说明为什么不是四边形。)

  6、师:大家可真能干,在生活中,好多物体的表面也是四边形的,在家来找一找。说一说身边哪免费课件下载些物体的表面是四边形的?(举例)

  【设计意图:图形的性质,对于小学生来讲,都比较抽象。课上先让学和对具体的图形涂上颜色,然后进行观察,通过有条理的思考、交流等活动,经历从现实空间中抽象出几何图形的过程,从而获得鲜明、生动和形象的认识。】

  四、探究长方形、正方形的特点

  1、师:我们已经把四边形找出来了,可他们都是一个模样吗?(不是)那我们能不能把这些四边形进行一下分类呢?

  2、小组合作分类

  师:分类之前,老师先给你们一些建议,首先想好分类的标准,恰当使用手中的工具,记录好分蜡笔物理学中文类的结果,最后推荐一名同学汇报。

  好,现在拿出学具袋中的图形,小组合作进行分类。

  3、汇报,想一想,还有没有别的分法?

  4、师:在刚才的分类中,有两个图形倍受大家关注,他们是谁?(长方形、正方形)(板书:长方形、正方形)

  师:长方形和正方形与其他的图形相比,有什么特别的地方?你是怎样知道的?(学生汇报)

  师:正因为有这们的特点,他们倍受关注,他们是四边形家庭中的特殊成员。(板书:特殊)

  【设计意图:长方形、正方形学生已能直观认识了,对他们本身特有的特点,先是让这生在具体的分类活动中突显出来课件制作教程,然后让学生运用手中的工具进行比、量,从而验证自己的发现,使得图形特点这一抽象的内容在具体操作的过程中得以掌握。

  8.课堂练习 把一个四边形,剪去一个角后,会变成什么形状?

  【设计意图:留给学生思考的空间。】

  9.作业安排

  10. 附录(教学资料及资源)

  11. 自我问答 这节课主要充分发挥学生的主体作用,通过学生的大胆猜测及自主探索,使其积极主动地参与知识形成的全过程,培养学生的创新精神和实践能力。

   《四边形》教案 篇8

  总第22课时

  复习目标:

  1、使学生进一步认识四边形的特征,会在方格纸上画长方形、正方形和平行四边形。

  2、使学生进一步知道周长的含义,会计算长方形、正方形等图形的周长。

  3、通过多种活动,使学生逐步形成空间观念和估算意识,感受数学与生活的联系。

  复习过程:

  一、复习导入

  1、先量一量,再计算下面各图形的周长。

  2、谈话导入,板书课题。

  二、探究体验

  1、完成p47页第2题。

  (1)指名说一说题意:怎么才能知道奖状能不能放进镜框?就是要知道它们的`什么?

  (2)你准备怎样计算?小组讨论。

  (3)组织全班汇报交流。

  2、完成p48页第4题。

  (1)学生分组在钉子板上围一围。

  (2)分组展示,看看哪个组围的种类多。

  (3)在方格纸上画一画。

  3、完成p48页第6题。

  (1)同桌讨论:怎样比较这两个图形的周长?哪个图形的周长长?

  (2)组织汇报交流:两个图形的周长一样长。

  三、实践应用

  1、独立完成p47页第3题。

  2、找自己喜欢的物品,先估一估,再算一算它们的周长,并记录在p48页表格中。

  四、全课总结

  1、通过今天的复习,你有什么新的收获?

  2、老师总结。

   《四边形》教案 篇9

  一、学习目标

  1、经历探索多项式与多项式相乘的运算法则的过程,发展有条理的思考及语言表达能力。

  2、 会进行简单的多项式与多项式的乘法运算

  二、学习过程

  (一)自学导航

  1、创设情境

  某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米,用两种方法表示这块林区现在的面积。

  这块林区现在的长为 米,宽为 米。因而面积为________米2。

  还可以把这块林地分为四小块,它们的面积分别为 米2, 米2,_______米2, 米2。故这块地的面积为 。

  由于这两个算式表示的都是同一块地的面积,则有 =

  如果把(m+n)看作一个整体,你还能用别的方法得到这个等式吗?

  2、概括:

  多项式乘以多项式的法则:

  3、计算

  (1) (2)

  4、练一练

  (1)

  (二)合作攻关

  1、某酒店的厨房进行改造,在厨房的中间设计一个准备台,要求四面的过道宽都为x米,已知厨房的长宽分别为8米和5米,用代数式表示该厨房过道的总面积。

  2、解方程

  (三)达标训练

  1、填空题:

  (1) = =

  (2) = 。

  2、计算

  (1) (2)

  (3) (4)

  (四)提升

  1、怎样进行多项式与多项式的乘法运算?

  2、若 的乘积中不含 和 项,则a= b=

  应用题

  第三十五讲 应用题

  在本讲中将介绍各类应用题的解法与技巧.

  当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点.

  应用性问题能引导学生关心生活、关心社会,使学生充分到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.

  解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:

  在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等.

  例题求解

  一、用数式模型解决应用题

  数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.

  【例1】(2003年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。有关数据如下表所示:

  景点ABCDE

  原价(元)1010152025

  现价(元)55152530

  平均日人数(千人)11232

  (1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。问风景区是怎样计算的?

  (2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。问游客是 怎样计算的?

  (3)你认为风景区和游客哪一个的说法较能反映整体实际?

  思路点拨 (1)风景区是这样计算的:

  调整前的平均价格: ,设整后的平均价格:

  ∵调整前后的平均价格不变,平均日人数不变.

  ∴平均日总收入持平.

  ( 2)游客是这样计算的:

  原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)

  现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)

  ∴平均日总收入增加了

  (3)游客的说法较能反映整体实际.

  二、用方程模型解应用题

  研究和解决生产实际和现实生恬中有关问题常常要用到方程<组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.

  【例2】 (重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min内可以通过560名学生;当同时开启一道正门和一道侧门时,4mln内可以通过800名学生.

  (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

  (2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门整否符合安全规定?请说明理由.

  思路点拨 列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.

  (1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,由题意得:

  ,解得:

  (2)这栋楼最多有学生4×8×4 5=1440(名).

  拥挤时5min4道门能通过.

  5×2(120+80)(1-20%)=1600(名),

  因1600>1440,故建造的4道门符合安全规定.

  三、用不等式模型解应用题

  现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.

  【例3】 (苏州中考题)我国东南沿海某地的风力资源丰富,一年内月平均的风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A、B两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:一天的发电量)如下表:

  日平均风速v(米/秒)v<33≤v<6v≥6

  日发电量 (千瓦?时)A型发电机O≥36≥150

  B型发电机O≥24≥90

  根据上面的数据回答:

  (1)若这个发电场购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为 千瓦?时;

  (2)已知A型风力发电机每台O.3万元,B型风力发电机每台O.2万元.该发电场拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000千瓦?时,请你提供符合条件的购机方案.

  根据上面的数据回答:

  思路点拨 (1) (100×36+60×150)x=12600x;

  (2)设购A型发电机x台,则购B型发电机(10—x)台,

  解法一根据题意得:

  解得5≤x ≤6.

  故可购A型发电机5台,B型发电机5台;或购A型发电机6台,B型发电视4台.

  四、用函数知识解决的应用题

  函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.

  【例4】 (扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供丁如下信息:

  ①买进每份0.20元,卖出每份0.30元;

  ②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;

  ③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社;

  (1)填表:

  一个月内每天买进该种晚报的份数100150

  当月利润(单位:元)

  (2)设每天从报社买进该种晚报x份,120≤x≤200时,月利润为y元,试求出y与x的函数关系式,并求月利润的最大值.

  思路点拨(1)填表:

  一个月内每天买进该种晚报的份数100150

  当月利润(单位:元)300390

  (2)由题意可知,一个月内的20天可获利润:

  20×=2x(元);其余10天可获利润:

  10=240—x(元);

  故y=x+240,(120≤x≤200), 当x=200时,月利润y的最大值为440元.

  注 根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x的取值范围.

  另外,初三还会提及统计型应用题,几何型应用题.

  【例5】 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.

  (1)求甲、乙两工程队单独完成此项工程所需的天数.

  (2)如果请甲工程队施工,公司每日需付费用200 0元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程;B.请乙队单独完成此项工 程; C.请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?

  思路点拨 这是一道策略优选问题.工程问题中:工作量=工作效率×工时.

  (1)设乙工程队单独完成此项工程需x天,根据题意得:

  , x=30合题意,

  所以,甲工程队单独完成此项工程需用20天,乙队需30天.

  (2)各种方案所需的费用分别为:

  A.请甲队需2000×20=40000元;

  B.请乙队需1400×30=4200元;

  C.请甲、乙两队合作需(2000+1400)×12=40800元.

  所队单独请甲队完成此项工程花钱最少.

  【例6】 (2全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km的速度出发,沿河岸向上游行进若干天后到达目的`地,然后在生态区考察了若干天,完成任务后以每天25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队的生态区考察了多少天?

  思路点拨 挖掘题目中隐藏条件是关键!

  设考察队到 生态区去用了x天,返回用了y天,考察用了z天,则x+y+z=60,

  17x-25y=-1,即25y-17x=1. ①

  这里x、y是正整数,现设 法求出①的一组合题意的解,然后计算出z的值.

  为此,先求出①的一组特殊解(x0,y0),(这里x0,y0可以是负整数).用辗转相除法.

  25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.

  与①的左端比较可知,x0 =-3,y0=-2.

  下面再求出①的合题意的解.

  由不定方程的知识可知,①的一切整数解可表示为x=-3+25t,y=-2+17t,

  ∴ x+y=42t-5,t为整数.按题意0

  ∴z=60—(x+y)=23.

  答:考察队在生态区考察的天数是23天.

  注 本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法.

  【例7】 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下:

  (1)若一次购物少于200元,则不予优惠;

  (2)若一次购物满200元,但不超过500元,按标价给予九折优惠;

  (3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折 优惠.

  小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购 买小明分两次购买的同样多的物品,他需付款多少?

  思路点拨 应付198元购物款讨论:

  第一次付款198元,可是所购物品的实价,未 享受优惠;也可能是按九折优惠后所付的款.故应分两种情况加以讨论.

  情形1 当198元为购物不打折付的钱时,所购物品的原价为198元 .

  又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱;104÷0. 8 =130(元).

  因此,554元所购物品的原价为130+500=630(元),于是购买小呀花198 +630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828-500)×0.8=712.4(元).

  情形2 当198元为购物打九折付的钱时,所购物品的原价为198 ÷0.9=220(元) .仿情形1的讨论,,购220+630=850{元}物品一次性付款应为500×0.9+(850-500)×0.8=730(元).

  综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元

  【例8】 (2002年全国数学竞赛题)某项工程,如果由甲、乙两队承包,2 天完成,需180000元;由乙、丙两队承包,3 天完成,需付150000元;由甲、丙两队承包,2 天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?

  思路点拨 关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:

  设甲、乙、丙单独承包各需x、y、z天完成.

  则 ,解得

  再设甲、乙、丙单独工作一天,各需付u、v、w元,

  则 ,解得

  于是,由甲队单独承包,费用是45500×4=182000 (元).

  由乙队单独承包,费用是29500×6= 177000 (元).

  而丙队不能在一周内完成.所以由乙队承包费用最少.

  学历训练

  (A级)

  1.(河南)在防治“SARS”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液?

  2.(山东省竞赛题)某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)

  3.(江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?

  4.某人从A地到B地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?

  (提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少)

  (B级)

  1.(全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min可抽完;如果用4台抽水机抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水机 台.

  2.(希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销:

  购买台数1~5台6~10台11~15台16~20台20台以上

  每台价格760元720元680元640元600元

  乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折; 每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折.

  (1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表;

  (2)现在有A、B、C三个单位,且单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少?

  3.(河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.

  4.从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏—级).问:

  (1)扶梯露在外面的部分有多少级?

  (2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离)则男孩第一次追上女孩时走了多少级台阶?

  5.某化肥厂库存三种不同的混合肥,第一种 含磷60%,钾40%,第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100?(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.

  6.(黄冈竞赛题)有麦田5块A、B、C、D、E,它们的产量,(单位:吨)、交通状况和每相邻两块麦田的距离如图21-2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪快麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a、b、d表示距离,且b < a

  多边形的边角与对角线

  j.Co M

  第十四讲 多边形的边角与对角线

  边、角、对角线是多边形中最基本的概念,求多边形的边数 、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识.

  多边形 的内角和定理反映出一定的规律性:(n-2)×180°随n的变化而变化;而多边形的外角和定理反映出更本质的规律;360°是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧.

  将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸 边形的一个顶点引出的对角线把 凸 边形分成 个多角形,凸n边形一共可引出 对角线.

  例题求解

  【例1】在一个多边形中,除了两个内角外,其余内角之和为2002°,则这个多边形的边数是 .

  (江苏省竞赛题)

  思路点拨 设除去的角为°,y°,多边形的边数 为 ,可建立关于x、y的不定方程;又0°

  链接 世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的几何性质,多边形可分成三角形,三角形可以合成其他

  一些几何图形.

  【例2】 在凸10边形的所有内角中,锐角的个数最多是( )

  A.0 B.1 C.3 D.5

  (全国初中数学竞赛题)

  思路点拨 多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为 外角为钝角的个数的探讨.

  【例3】 如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长.

  (乌鲁木齐市中考题)

  思路点拨 把动手操作与合情想象相结合 ,解题的关键是能注意到重合的边作为四边形对角线有不同情形.

  注 教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题.

  本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解.

  【例4】 在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.

  (1)请根据下列图形,填写表中空格:

  (2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?

  (3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面 图形?说明你的理由.

  (陕西省中考题)

  思路点拨 本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性.假定正n边形满足铺砌要求,那么在它的顶点接合的地方,n个内角的和为360°,这样,将问题的讨论转化为求不定方程的正整数解.

  【例5】 如图,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A'B'C'D'E'.

  (1)图中5块阴影部分即四边形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一个五边形吗?说明理由.

  (2)证明五边形A'B'C'D'E'的周长比五边形ABCD正的周长至少增加25个单位.

  (江苏省竞赛题)

  思路点拨 (1)5块阴影部分要能拼成一个五边形须满足条件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三点分别共线;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周长等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圆的周长逼近估算.

  1.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 ?,周长最小的是 cm.

  (选6《荚国中小学数学课程标准》)

  2.如图,∠1+∠2+∠3+∠4+∠5+∠6= .

  3.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围是 .

  4.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:

  (1)第4个图案中有白色地面砖 块;

  (2)第n个图案中有白色地面砖 块.

  (江西省中考题)

  5.凸n边形中有且仅有两个内角为钝角,则n的最大值是( )

  A.4 B.5 C. 6 D.7

  ( “希望杯”邀请赛试题)

  6.一个凸多边 形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是( )

  A.9条 B.8条 C.7条 D. 6条

  7.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖( )

  A.216块 B.288块 C.384块 D.512块

  ( “希望杯”邀请赛试题)

  8.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC和△ACD拼成一个凸四边形ABCD.

  (1))画出四边形ABCD;

  (2)求出四边形ABCD的对角线BD的长.

  (上海市闵行区中考题)

  9.如图,四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数.

  (北京市竞赛题)

  10.如图,在五边形A1A2A3A4A5中,Bl是A1的对边A3A4的中点,连结A1B1,我们称A1B1是这个五边形的一条中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条对角线和它平行.

  (安徽省中考题)

  11.如图,凸四边形有 个;∠A+∠B+∠C+∠D+∠E+∠F+∠G= .

  (重庆市竞赛题)

  12.如图,延长凸五边形A1A2A3A4A5的各边相交得到5个角,∠B1,∠B2,∠B3,∠B4,∠B5,它们的和等于 ;若延长凸n边形(n≥5)的各边相交,则得到的n个角的和等于 .

  ( “希望杯”邀请赛试题)

  13.设有一个边长为1的正三角形,记作A1(图a),将每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A 2(图b),再将每条边三等分,并重复上述过程,所得到的图形记作A3(图c);再将每条边三 等分,并重复上述过程,所得到的图形记作A4,那么,A4的周长是 ;A4这个多边形的面积是原三角形面积的 倍.

  (全国初中数学联赛题)

  14.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA—CD=3,则BC+DC= . (北京市竞赛题)

  15.在一个n边形中,除了一个内角外,其余(n一1)个内角的和为2750°,则这个内角的度数为( )

  A.130° D.140° C .105° D.120°

  16.如图,四边形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,则CD的长为( )

  A.4 B.4 C.3 D. 3 (江苏省竞赛题)

  注 按题中的方法'不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称——雪花曲线或 科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是新兴学科“混沌”的重要分支.

  17.如图,设∠CGE=α,则∠A+∠B+∠C+∠D+∠C+∠F=( )

  A.360°一α B.270°一αC.180°+α D.2α

  (山东省竞赛题)

  18.平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.

  19.一块地能被n块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需n+76块这样的地砖才能覆盖该块地,已知n及地砖的边长都是整数,求n. (上海市竞赛题)

  20.如图,凸八边形ABCDEFGH的8 个内角都相等,边AB、BC、CD、DE、EF、FG的长分别为7,4,2,5,6,2,求该八边形的周长.

  21.如图l是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A、B、C、D各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.

  如果已知四边形ABCD中,AB=6,CD=15,那么BC、AD取多长时,才能实现上述的折叠变化?

  (淄博市中考题)

  22.一个凸n边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸n边形各个内角的大小,并画出这样的 凸n边形的草图.

  图形的平移与旋转

  前苏联数学家亚格龙将几何学定义为:几何学是研究几何图形在运动中不变的那些性质的学科.

  几何变换是指把一个几何图形Fl变换成另一个几何图形F2的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、旋转是常见的合同变换.

  如图1,若把平面图形Fl上的各点按一定方向移动一定距离得到图形F2后,则由的变换叫平移变换.

  平移前后的图形全等,对应线段平行且相等,对应角相等.

  如图2,若把平面图Fl绕一定点旋转一个角度得到图形F2,则由Fl到F2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角.

  旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等.

  通过平移或旋转,把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,促使问题的解决.

  注 合同变换、等积变换、相似变换是基本的几何变换.等积变换,只是图形在保持面积不变情况下的形变'而相似变换,只保留线段间的比例关系,而线段本身的大小要改变.

  例题求解

  【例1】如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APD= .

  思路点拨 通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形.

  【例2】 如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN= x,DN=n,则以线 段x、m、n为边长的三角形的形状是( )

  A.锐角三角形 B.直角三角形

  C.钝角三角形 D.随x、m、n的变化而改变

  思路点拨 把△ACN绕C点顺时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、 x、n 集中为△DNB,只需判定△DNB的形状即可.

  注 下列情形,常实施旋转变换:

  (1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;

  (2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;

  (3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.

  【例3】 如图,六边形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED?AB=AF?CD>0,求证:该六边形的各角相等.

  (全俄数学奥林匹克竞赛题)

  思路点拨 设法将复杂的条件BC?FF=ED?AB=AF?CD>0用一个基本图形表示,题设中有平行条件,可考虑实施平移变换.

  注 平移变换常与平行线相关,往往要用到平行四边形的性质,平移变换可将角,线段移到适当的位置,使分散的条件相对集中,促使问题的解决.

  【例4】 如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1. (西安市竞赛题)

  思路点拨 本例实际上就是证明2EF≥BC,不便直接证明,通过平移把BC与EF集中到同一个三角形中.

  注 三角形中的不等关系,涉及到以下基本知识:

  (1)两点间线段最短,垂线段最短;

  (2)三角形两边之和大于第三边,两边之差小于第三边;

  (3)同一个三角形中大边对大角(大角对大边),三角形的一个外角大于任何一个和它不相邻的内角.

  【例5】 如图,等边△ABC的边长为 ,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA、PB的长. (“希望杯”邀请赛试题)

  思路点拨 题设条件满足勾股关系PA2+PB2=PC2的三边PA、PB、PC不构成三角形,不能直接应用,通过旋转变换使其集中到一个三角形中,这是解本例的关 键.

  学历训练

  1.如图,P是正方形ABCD内一点,现将△ABP绕点B顾时针方向旋转能与△CBP′重合,若PB=3,则PP′= .

  2.如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB .

  3.如图,四边形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长为 .

  4.如图,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB= ,则此三角形移动的距离AA'是( )

  A. B. C.l D. (2002年荆州市中考题)

  5.如图,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点C、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF= S△ABC;④EF=AP.

  当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( )

  A.1个 B.2个 C .3个 D.4个

  (2003年江苏省苏州市中考题)

  6.如图,在四边形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四边形ABCD d=8,则BE的长为( )

  A.2 B.3 C . D. (2004年武汉市选拔赛试题)

  7.如图,正方形ABCD和正方形EFGH的边长分别为 和 ,对角线BD、FH都在直线 上,O1、O2分别为正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线 上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有变化.

  (1)计算:O1D= ,O2F= ;

  (2)当中心O2在直线 上平移到两个正方形只有一个公共点时,中心距O1O2= ;

  (3)随着中心O2在直线 上平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程). (徐州市中考题)

  8.图形的操做过程(本题中四个矩形的水平方向的边长均为a,竖直 方向的边长均为b):

  在图a中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B1B2(即阴影部分);

  在图b中, 将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B1B2B3(即阴影部分);

  (1)在图c中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;

  (2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1= ,,S2= ,S3= ;

  (3)联想与探索:

  如图d,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的.

  (2002年河北省中考题)

  9.如图,已知点C为线段AB上一点,△ACM、△CBN是等边三角形,求证:AN=BM.

  说明及要求:本题是《几何》第二册几15中第13题,现要求:

  (1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上,请对照原题图在图中画出符合要求的图形(不写作法,保留作图痕迹).

  (2)在①所得的图形中,结论“AN=BM”是否还成立?若成立,请证明;若不成立,请说明理由.

  (3)在①得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并证明你的结论.

  10.如图,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是 cm2.

  11.如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是 .

  (绍兴市中考题)

  12.如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则PA+PB+PC与AB+AC的大小关系是( )

  A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.无法确定

  13.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为( )

  A. B. C .5 D.6

  (2004年武汉市选拔赛试题)

  14.如图,已知△ABC中,AB=AC,D为AB上一点,E为AC 延长线上一点,BD=CE,连DE,求证:DE>DC.

  15.如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满 ,求△ABC的面积.

  16.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米? (“五羊杯”竞赛题)

  17.如图,△ABC是等腰直角三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离都等于1,将△ABC绕 点O顺时针旋转45°,得△A1BlC1 ,两三角形公共部分为多边形KLMNPQ.

  (1)证明:△AKL、△BMN、△CPQ都是等腰直角三角形;

  (2)求△ABC与△A1BlC1公共部分的面积. (山东省竞赛题)

  18.(1)操作与证明:如图1,O是边长为a的正方形ACBD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值.

  (2)尝试与思考:如图2,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或正五边形的中心O点处,并将纸板绕O点旋转, 当扇形纸板的圆心角为 时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为 时,正五边形的边被纸板覆盖部分的总长度也为定值a.

  (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为 时,正n边形的边被纸板覆盖部分 的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系;若不是定值,请说明理由.

   《四边形》教案 篇10

  教学目标:

  1.直观感知四边形,能区分和辨认四边形,知道四边形的特征。进一步认识长方形和正方形,知道它们的角都是直角。

  2.通过画一画、找一找、拼一拼等活动,培养学生的观察比较和概括抽象的能力,发展空间想象能力。

  3.通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

  教学重点:感知四边形的特征,能判别四边形。

  教具、学具:课件一套、三角尺、四边形、格子纸等。

  教学过程:

  (一)感知四边形的特征

  1.认识四边形。

  (1)师:(板书课题)看一看,今天我们要学习什么?你见过四边形吗?你认为它是什么样的?

  根据学生回答出示长方形、正方形等四边形的图片。

  (2)出示下列学生没有说到的图形。

  师:那这个是四边形吗?它们有什么共同特征吗?

  根据学生回答板书(四条边,四个角。)

  2.判断四边形。

  (1)老师这里还有一些图形,请你判断一下它们是四边形吗?(书第35页中的图形补充4个图形,用课件展示。)

  说说为什么不是。那你觉得四边形光有四条边行吗?是怎样的四条边?(补充板书:直的。)

  (2)你有没有办法把这些不是四边形的图形改成四边形?(根据学生回答课件中操作。)

  (二)寻找四边形

  1.找生活中的四边形。

  师:同学们真能干,经过你们的修改,这些图形都成了四边形,那请你们找一找在你周围哪些物体的表面也是四边形的。请你摸给大家看。

  2.找主题图中的四边形。

  师:其实四边形在生活中的应用是非常广泛的,你看这是一幅校园图,你能从中找到四边形吗?(课件出示,根据学生的回答,相应的四边形用红色闪一闪,提取出来放在屏幕的右边。)

  (三)小结:我们找到了这么多的四边形,那么什么样的图形是四边形呢?(多指名学生说)

  (四)四边形分类

  1.指导分法。

  师:虽然这些都是四边形,可它们的样子还是有些不同的,你们看,这是长方形、正方形、梯形、平行四边形、菱形,这些都有自己的名字,而这个是任意四边形(在黑板上边指边说)。接下来请你们拿出练习纸,你能按一定的标准给这些特殊的四边形分分类吗?先想一想你打算怎么分?需要什么工具吗?

  练习纸:

  根据学生回答师:你可以用三角尺的直角去比一比这些角的大小(板书:比),你还可以用尺量一量它们的`边长(板书:量)。

  2.小组合作进行分类。

  师:下面就请你们分类,老师先给你们一些建议。(课件出示)

  友情提示:

  1.请你选择好工具,定好分类的标准。

  2.分类并用自己喜欢的方式记录。

  3.四人小组交流,说说你分类的理由。

  4.推荐一名同学发言。

  3.反馈、交流。

  各组派代表发言,(实物在黑板上移动展示)说说分法,并说明这样分的理由。

  (1)按角分:长方形、正方形一类(四个角都是直角);

  菱形、平行四边形、梯形一类(没有直角)。

  (2)按边分:长方形、正方形、菱形、平行四边形一类(对边相等、正方形的四条边都相等);

  梯形一类(对边不相等)。

  (3)长方形、平行四边形一类(对边相等);

  正方形、菱形一类(四条边相等);

  梯形一类(四条边都不相等)。

  4.小结:师:你们分的好极了,都非常有自己的想法。那么我们再来确认一下,到底什么样的图形是四边形?

  (五)画四边形(书第36页做一做2)

  师:我们已经会认四边形,还会根据它们的特点进行分类,接下来我们来画一画四边形,你觉得怎样才能又标准又快的画出这些四边形呢?需要老师给你们提供什么工具吗?(尺、格子图)请你们把这6个四边形都画一画,一边画一边想一想,这些四边形有什么不同。

  实物投影展示,讲评。

  你觉得这些四边形有什么不同的地方吗?

  (长方形、正方形有四个直角,长方形的对边一样长,正方形的四条边都一样长;梯形有两个角是直角,但它的四条边都不一样长;菱形的四条边都一样长,但它的角不是直角;平行四边形的对边一样长,但它的角也不是直角;还有一个四边形它的四条边都不一样长,四个角也都不是直角。)

  (六)拼四边形

  师:太棒了,你们把这些四边形看的非常透彻了。信封里有一些四边形,我们来看看有些什么,请你们四人合作,选几个拼成一个四边形(信封材料准备)。

  信封里的四边形:

  交流、展示。

  还有不同拼法吗?

  (七)课堂总结

  师:同学们的动手能力太强了,老师佩服你们,在这节课里,你们认识了什么?它是什么样的?还知道了它的哪些知识?四边形还有很多知识,我们以后再学。

   《四边形》教案 篇11

  教学目标:

  1. 能从各种图形中区分出四边形,认识四边形的特征。

  2. 通过对四边形进行分类,对不同的四边形各自的特征有所了解,特别是长方形、正方形的特征。

  3. 通过实践操作活动,培养学生的空间观念。

  教学准备:课件。每人准备水彩笔一支。四人小组:一袋四边形的图片。

  一、主题图引入

  1.同学们,你们喜欢参加体育活动吗?你喜欢什么体育运动?

  2.光明小学校园里,同学们也正在进行各种活动,我们一起去看看。(课件出示主题图)

  仔细观察,在这美丽的校园里你发现了什么图形?(先自己找一找,再同桌交流)

  交流汇报,学生可能找到的图形有:(指名回答,课件单一闪动)

  3.导入课题。

  在美丽的校园里有许多的图形,像长方形、正方形、平行四边形、菱形、梯形(同时闪动这些图形)这些都是平面图形,都叫四边形。今天这节课我们就一起来研究四边形。

  板书:四边形的认识

  4.初步感知:你认为怎样的图形是四边形?

  二、探索交流、概括特征

  1.动手操作。

  (1)涂一涂(让学生感知面)

  同学们,数学书第35也有许多的图形,你能从中找出四边形吗?并涂上你自己喜欢的颜色。比一比,看谁涂得又快又好看。

  (2)涂完后,同桌交流,说说理由。

  (3)集体反馈,:为什么这些是四边形,而那些却不是?

  2.讨论,概括四边形的特征。

  仔细观察一下,这些四边形有什么特点?(先小组,再反馈)

  根据学生的反馈,板书:

  3.判断四边形。

  老师这里还有一些图形请你判断一下他们是四边形吗?(集体用手势判断,并说明理由)如果不是,你能把他变成四边形吗?(课件演示)

  4.我们知道了四边形的特征,你能说说我们生活中哪些物体的表面也是四边形?

  三、动手操作,获取新知

  1. 分一分:每一小组一信封,内有六种图形:正方形、长方形、平行四边形、菱形、

  不规则四边形和梯形。

  活动建议:小组合作,给这些四边形分分类,组长把分的结果记录在学习卡上,并说说

  你们为什么这样分?

  (教师巡视指导。学生交流分法时,把长方形、正方形分为一类的.分法最后出现)

  学生可能出现的分法:

  (1)按角分:长方形、正方形(四个角都是直角)

  菱形、平行四边形、不规则四边形、梯形(没有直角)

  (2)按边分:长方形、正方形、平行四边形、菱形(两组对边相等)

  梯形、不规则四边形(两组对边不相等)

  (3)长方形、平行四边形(对边相等)

  正方形、菱形(四边相等)

  不规则四边形、梯形(四边都不相等)

  (4)按对角分:长方形、正方形、平行四边形、菱形(对角相等)

  不规则四边形、梯形(对角不相等)

  在学生分的过程中,一步一步解决一些最基本的四边形的特征。

  (对边的引导:上下为一组对边,左右为另一组对边)

  2.进一步掌握长方形、正方形的特征。

  我们来看把长方形、正方形分成一类的这种分法:

  (1)长方形、正方形和其他的四边形相比,又有什么不同呢?小组内说一说,可以借助三角板和直尺。

  (2)小组汇报,得出结论。(在黑板上贴出正方形和长方形)

  板书:

  我们请电脑博士来演示一下。

  长方形和正方形同其他的四边形相比,有一定的特殊性,所以长方形和正方形是特殊的四边形。

  四、(机动)拓展应用

  1.谁来帮帮我。

  是一个( )形,也是一个( )边形。

  是( )边形,有( )角,其中有( )个直角。

  图中有( )个四边形。

  2. 自己拿出一个四边形,剪去一个角后,它会变成什么形状,请你动手试一试。

  五、课堂总结

  今天,老师和同学们一起认识了四边形。这节课你有什么收获吗?

   《四边形》教案 篇12

  教学目标:

  1.直观感知四边形,能区分和辨认四边形。进一步认识长方形和正方形知道它们的角都是直角。

  2.通过围一围、涂一涂、说一说、找一找等系列活动,培养学生的观察比较和概括抽象能力。

  3.通过情景图和生活中的事物,使学生感受生活中的四边形无处不在,进一步激发学生的学习兴趣,并将数学知识用于生活中。

  教学重点:能直感知四边形,能区分和辨认四边形。

  教学难点:能根据四边形的特点对其进行分类。

  教具、学具准备:多媒体课件、卡纸、三角板、直尺、钉子板、学具袋(各种形状的学具)

  教学过程:

  一、导入部分

  (课前问候语)师:同学们你们好!欢迎来到谢老师的课堂。我知道你们已经是多次出席这样的公开课了,这表明你们都是非常优秀与出色的。同样,老师希望你们在这节课当中能表现得更加积极、勇敢。让我们一起把自己最好的一面展现给大家好吗?

  生:好!

  师:嗯,好,上课。

  生:起立,老师好!

  师:同学们好!请坐。

  (多媒体出示情境图)师:同学们这是我们熟悉的场景,知道这是哪里?什么地方吗?嗯,对了。这里是一所学校的操场,那同学们你们在操场发现了什么?

  生:回答多种多样。(引导学生回到图形上)师:嗯,除了这些之外,你们有没有发现操场里面有很多的图形,你们找一找,看能不能找到你们学过的或者知道的图形。

  生:长方形、三角形、正方形….

  师:嗯,小眼睛真亮,这都被你发现了。

  师:同学们真不错都观察的非常仔细。那么现在请你们跟着老师一起来看一下这里面都藏着那些图形。(逐个点击)遇到没学过的图形略作介绍说这是咱们以后会学到的图形。这里的图形真多呀!那除了这些图形朋友之外,老师今天打算把一个朋友圈里的朋友介绍给你们认识,说不定这朋友圈里会有些你认识的朋友呢。想不想进去看看啊?

  生:想!

  师:想进去可以,但说了你必须先认识它拿到通关密码才能进得去。所以咱们先去认识认识这位管理员。它叫做“四边形”(点击课件,板书课题)——四边形的认识

  二、教学过程

  师:好了,管理员我们已经见过了,通关密码也拿到了。可是,还有其他图形朋友也想跟“四边形”这个大家族做朋友,他们已经提前得到密码进去了。那么接下来就得请同学们自己找一找“四边形”的家族成员了。(点击课件)看看谁的火眼金睛最厉害。

  师:你认为那些是四边形?

  生:各种各样的回答。

  师:刚刚同学们已经找到了你们认为是四边形的图形。其实呢,在刚刚老师拿通关密码的时候,管理员就偷偷的告诉老师说:“今天他知道咱们班的同学要来看它们,特意穿了一件红色的隐形T桖。那么现在老师就用我的火眼金睛让他们立马显形。请看大屏幕。(逐个点击)

  师:同学们都找对了几个呀?

  生:1/ 2/ 3…..

  师:嗯,看样有些同学的火眼金睛很厉害呀!好,现在接着看大屏幕,这些图形都是刚刚找出的四边形。那它们都有哪些特征?(同桌之间相互讨论)讨论完之后请学生回答。(在这之前叫他们把老师课前发下去的教具拿出来摸一摸,看一看。)

  生:生1/生2…

  师:根据学生的回答做出引导。记得在引导完之后得到的结论进行板书。(板书:四边形的特征:1.有四条直的边。2.有四个角,不一定是直角。3.是封闭图形。在板书的时候注意颜色搭配。)对学生的回答给予及时的表扬。师:同学们你们现在都知道了四边形。那现在就来练一练,看看同学们是不是真的掌握了。(出示简单的.练习)让学生逐个回答。完了之后,再进一步的挑战,帮助小猴穿过迷宫吃到桃子。(出示课件)让学生以成语接龙的方式完成。

  师:好了,通过练习之后,同学们掌握的还是不错的。那么接下来再看到下面这幅画。自己读题。读完之后让学生展开讨论。(提示:拿到黑板上的图形,用三角板和直尺比一比、量一量它们的边,你能发现什么?)

  生:生1/生2….

  师:根据学生的回答之后,自己用三角尺量图形的角得出结论。(点击课件)再用直尺稍微的量下边。然后用课件来演示给学生看。从而得出结论:边相等。最后强调出长方形的特殊引出最后结论。

  师:好了,通过前面的学习,同学们已经会认四边形了,也了解了特殊的四边形,现请同学们自己动手做四边形。老师巡视并加以指导,把做的好的展示给同学们看。之后,老师还要让同学们动手围一围,看到老师手上的钉子板了吗?老师要请同学上来围一个你喜欢的四边形或者其他同学指定的四边形。老师先来示范一次。师生互动环节…….

  师:学了四边形之后,你能跟老师和其他同学说说身边有哪些物体的表面是四边形的,比如说在教室里面有没有发现四边形呢?。

  生:生1 /生2

  师:让学生说完之后在进行补充,然后呈现生活中的物体图。最后进行小结,同学们说一说你们这节课学会了什么?

   《四边形》教案 篇13

  教学目标:

  知识技能:认识平行四边形,能在方格纸上画平行四边形。

  过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。

  情感态度:鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。

  教学过程:

  一、 创设情境

  1、认识平行四边形

  (1)出示下图,认真观察。94页的一组图形,让学生仔细观察,然后提出分类的要求。

  (2)在交流的基础上,让学生了解什么样的图形叫做平行四边形。

  (3)引导学生从自动拉门、篱笆中找出平行四边形。

  2、感悟平行四边形的特征

  ⑴学会画平行四边形。

  教师掩饰在方格纸上画一个平行四边形。

  ⑵引导学生找到平行四边形的`不稳定性。

  二、实践与应用

  1.下面哪些图形是平行四边形?把它涂上色。

  2.在方格纸上画一个大一点的平行四边形。

  三、全课小结

  学生汇报本节课的收获。

   《四边形》教案 篇14

  一、教学目标:

  1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。

  2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

  3.培养学生发现问题、解决问题的能力及逻辑推理能力。

  二、重点、难点

  1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。

  2.难点:运用平行四边形的性质进行有关的论证和计算。

  3.难点的突破方法:

  本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。

  学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。

  平行四边形的定义在小学里学过,学生是不生疏的.,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。

  为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。

  讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。

  新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。

  教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。

【 《四边形》教案 】相关文章:

《四边形》教案09-09

小学教案《四边形的认识》04-29

小学四边形的认识教案03-06

《四边形》教案15篇02-16

平行四边形教案04-01

平行四边形的面积教案04-07

《认识平行四边形》教案03-30

特殊的平行四边形教案07-29

认识平行四边形教案08-26