当前位置:育文网>教学文档>教案> 圆的周长教案

圆的周长教案

时间:2022-07-10 13:04:28 教案 我要投稿

圆的周长教案集锦5篇

  作为一名无私奉献的老师,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。教案要怎么写呢?下面是小编为大家收集的圆的周长教案5篇,仅供参考,大家一起来看看吧。

圆的周长教案集锦5篇

圆的周长教案 篇1

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:正确计算圆的周长。

  教学难点:理解圆周率的意义,推导圆周长的计算公式。

  教具准备:多媒体课件三套、系绳的小球。

  学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

  教学过程:

  一、以旧引新,导入新课

  1.复习长方形、正方形的周长。

  我们学过长方形、正方形的周长。回想一下,它们的周长各指的'是什么?

  2.揭示圆的周长。

  (1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

  (2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

  二、动手操作,引导探索

  1.测量圆周长的方法。

  (1)提问:你知道了什么是圆的周长,还想知道什么?

  我们先研究怎样测量圆的周长,请同学们分组讨论一下。

  把你们讨论的结果向大家汇报一下?学生边回答边演示。

  (2)教师甩动绳子系的小球,形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

  2.认识圆周率。

  (1)探讨圆的周长与直径的关系。

  ①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

  请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

  课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

  提问:你们是怎么看出来的圆周长跟直径有关系?

  ②学生测量圆周长,并计算周长和直径的比值。

  圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

  生测量、计算、填表。在黑板上出示一组结果。

  请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  ③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

  这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

  (2)揭示圆周率的概念。

  通过以上的观察你发现了什么?

  任何圆的周长总是直径的3倍多一些。

  那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用表示。(指导读写。)

  (3)了解让中国人引以为自豪的圆周率的历史。

  关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

  很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。=3.141592653

  3.推导圆周长的计算公式。

  根据刚才的探索,你能总结出圆周长的计算公式吗?

圆的周长教案 篇2

  【本课内容在教材中的地位和作用】

  学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。

  【教学目标】

  1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。

  2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备课件、带绳小球,圆规,尺子,保温杯。

  【教学过程】

  (一)复习旧知、创设情境、引出新知

  1、复习:圆心、半径、直径、直径与半径的关系(略去)

  2、课件出示问题情境:龟兔赛跑

  师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)

  师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?

  提问引导:

  (1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)

  (2).正方形的周长怎么求?用字母怎样表示?

  (3).正方形的周长与谁有关?有什么关系?

  生:正方形的周长与边长有关。周长是边长的4倍。

  (4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)

  3引出课题:

  那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

  [设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]

  (二)教学新课

  1.认识圆的周长。

  (1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。

  (2)同桌互相说一说:什么是圆的周长?

  生:围成圆的曲线的长叫做圆的周长。

  (3)电脑出示圆的周长概念 ,读一遍。

  [设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]

  2.化曲为直,引发求知欲。

  (1)我们想知道你课桌的周长怎么办?

  生:用直尺量出课桌的长和宽。

  (2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?

  生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

  (3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?

  ①用围的方法。指名演示。(板书:围)

  问:要注意什么?

  生:先拉直后,只能量围的一周的长度。

  ②用滚的方法。指名演示。(板书:滚)

  问:要注意什么?

  生:在圆上先作了记号,沿直尺滚动一周。

  师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?

  (4)谁能用围的方法量一量黑板上圆的周长?

  两名学生量。说一说自己的感觉。

  (5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

  问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)

  [设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]

  3寻找关系,创设情景,测量圆的周长

  (1)出示探究:a:正方形的周长和谁有关?有什么关系?

  (板书:c=4a)

  b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)

  c、根据学生回答,教师板书:圆的周长 直径

  (2) 问题情景:是不是圆的'周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。

  (3)小组合作,测量数据。

  ①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)

  ②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。

  (4)比较验证,揭示规律:

  ①汇报交流:通过测量和计算,你发现什么规律?

  生:直径不同,周长也不同,但周长总是直径的三倍多一些。

  ②问:是不是所有圆的周长都是直径的3倍多一些呢?

  电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。

  [设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]

  4.介绍圆周率,推导公式,探求新知(重点和难点)。

  (1)引导得出圆周率概念:

  师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:

  补充板书:圆的周长÷直径=圆周率π(固定)

  教师讲解:π=3.141592653 ‥‥(无限不循环小数)

  π≈3.14

  (2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。

  师:现在,我们根据这个规律能否探究出圆的周长公式呢?

  (3)公式推导:

  师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:

  板书:C÷d=π

  师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。

  板书:C=πd

  师:已知半径怎么求圆的周长呢?

  板书:C=2πr

  问:知道什么条件就可以计算圆的周长?(强调:d、r)

  师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。

  5、应用公式解决实际问题。

  (1)解决龟兔赛跑问题:

  问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?

  ? 学生尝试解答

  ? 指名板演,

  ? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?

  ? 教师课件演示规范步骤。

  (2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?

  [学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]

  (三)课堂小结

  这堂课你有什么收获?(出示填空)

  1、基础练习:(略)

  2、知识延伸:(略)

  3、课后思考:(略)

  [巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]

  (五)作业:

  1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  2、钟面分针长10厘米,求针尖一天走过多少厘米?

  3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  (六)板书设计(略)

圆的周长教案 篇3

  教学设想:

  利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

  教学内容:

  小学数学义务教育教材十一册第137~138页“圆的周长”

  教学目标:

  1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2. 培养学生的观察、比较、分析、综合及动手操作能力;

  3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

  教学重点:

  推导总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学准备:

  电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

  教学过程:

  一、创设情境,引起猜想

  (一)教师播放课件 激发学生兴趣

  黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周

  1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

  师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

  3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

  4.反馈:你是用什么方法测出来的?

  生1:“滚动”——把实物圆沿直尺滚动一周;

  生2:“缠绕”——用绸带缠绕实物圆一周并打开;

  5.小结各种测量方法:(板书)化曲为直

  6.创设冲突,体会测量的局限性

  教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的'周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

  (三)合理猜想,强化主体

  1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

  生:我猜圆的周长跟直径有关。

  2.师课件演示:直径越大,周长越长;直径越小,周长越小。

  3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?

  (生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

  4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  二、实际动手,发现规律

  (一)分组合作

  1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

  2.反馈数据

  生1:我们小组算出圆的周长大约是直径的3.4倍。

  生2:我们小组算出圆的周长大约是直径的3.2倍。

  生3:我们小组算出圆的周长大约是直径的4倍。

  师:课件演示:圆的周长总是直径的三倍多一些。

  (二)介绍祖冲之

  这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  板书 :圆周率=圆的周长÷直径

  早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

  这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  (三)总结圆周长的计算公式

  1. 如果知道圆的直径,你能计算圆的周长吗

  板书:圆的周长 = 直径× 圆周率

  C = πd

  2. 如果知道圆的半径,又该怎样计算圆的周长呢?

  板书: C = 2πr

  3.应用

  (1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

  生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

  (2)课题外的圆的直径是20厘米,用哪个公式计算?

  生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

  (3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

  三、巩固练习,形成能力

  1.判断

  (1)圆的周长是直径的π倍。 ( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π=3.14 ( )

  2.出示例1,学生自己计算。

  3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

  四、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维

  一个茶杯口的直径你有什么方法知道?

圆的周长教案 篇4

  【教学目标】

  1、让学生知道什么是圆的周长。

  2、理解并掌握圆周率的意义和近似值。

  3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

  4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

  5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

  6、培养学生的观察、比较、分析、综合及动手操作能力。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备图片。

  【教学过程】

  一、引课

  (课件出示特克斯八卦城图片)同学们,你们知道这是哪吗?

  对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。

  今年夏天,老师有辛来到了这里,照片上的就是八卦城中心广场的太极坛,老师绕太极坛的第一外环走了一圈,要想知道老师走这一圈是多少米?你们知道是要求什么吗?

  对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)

  二、认识周长

  1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)

  师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。

  2、那你们说说,什么是圆的周长?(生:圆一周的长度是圆的周长)看他多勇敢,谁还能说一说

  3、那你们想圆是由什么线围成的呢?(曲线)

  师:那我们可以说围成圆一周的曲线的长,就是圆的周长。

  4、那谁有测量圆周长的方法?(绕线发,滚动法)

  5、小组合作

  请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?

  要求:

  1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。

  2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的第一栏里,只需要完成第一栏就可以,不用写单位。

  3)请同学们小组分工,合作完成(3分30秒)

  6、我想问问大家,你们是怎样得到圆的周长的?

  谁愿意到前面来给大家讲一讲,拿着你手里的圆

  生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)

  生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)

  生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)

  7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。

  8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。

  (生;非常大的和非常小的'都不可以)

  9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)

  其实,我们大家都做过这个实验是不是?看好了!(转动小球)

  10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)

  三、探究周长与直径的关系

  1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长

  2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)

  有说半径,有说直径,能说说你的理由吗?(指名说一说)

  同学们都觉得和半径或直径有关系。

  3、课件:请同学们认真的看大屏

  这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)

  对,是这个直径是1分米的圆的周长。

  再看(展开直径是0.8、0.6分米圆的周长)

  4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)

  那看来确实直径可以决定圆的周长,是这样吗?

  5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)

  6、为什么找倍数关系?(因为正方形的周长是边长的4倍)

  你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。

  (这个小组非常好,有人测量,有人记录,有人计算,分工明确)

  填完之后,互相说一说你发现了什么。

  7、展示一个小组的数据

  1)其他组也计算出来了是吧,我们不再往黑板上写了。

  2)有没有算出来和黑板上不一样的?

  3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)

  四、圆周率

  1、那你们讨论出周长和直径的关系了吗?(3倍多一些)

  2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)

  这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系

  3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)

  4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)

  5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母 来表示

  6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。

  通过刚才的资料你有什么收获?( 取3.14、无限不循环小数)

  7、师:刘徽:也是研究出了圆周率的关系

  祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?

  8、板书:圆周率用希腊字母 来表示,一般保留两位小数(3.14)

  那现在谁知道怎么计算圆的周长?能得出什么样的公式?

  字母公式:C=d

  知道半径怎么求周长?C=2r

  小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?

圆的周长教案 篇5

  【教学内容

  教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。

  【教学目标

  1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。

  2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。

  【教学重、难点

  掌握并理解圆的周长计算公式及其推导过程。

  【教具、学具准备

  圆规、直尺、课件、圆纸片、线。

  【教学过程

  一、导入新课

  出示情境图:谁的铁环滚一圈的距离长一些?为什么?

  教师:铁环滚动一周的距离我们就叫做铁环的周长。

  教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。

  板书课题:圆的周长。

  二、感知圆的周长与直径的关系

  1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?

  学生指出并回答。(略)

  2.观察。

  课件演示右图:

  问题:这两个圆周长有什么关系?你是怎么知道的?

  小结:直径相等,圆的周长就相等。

  3.课件演示右图:

  问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。

  4.小结。

  问题:通过刚才的观察,你有什么发现?

  学生:圆的周长和直径有关系。

  三、探究圆的周长与直径的倍数关系

  圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。

  1.小组讨论,制定探究步骤。

  出示探究建议:

  (1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。

  2.说明活动要求。

  每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。

  圆的直径圆的周长周长除以直径的商(保留两位小数)

  3.小组合作,进行探究。

  4.汇报交流。

  (1)交流测量的方法。

  提问:谁来介绍一下,你们组是怎样测量圆的周长的?

  学生汇报测量的方法。(绳绕法、滚动法……)

  教师:在这些方法中,最欣赏哪个组的方法?

  小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)

  (2)交流计算方法和结论。

  提问:观察这些计算结果,你有什么发现?你还有哪些了解?

  学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。

  5.介绍圆周率。

  圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的`周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到20xx亿位。

  6.总结圆周长的计算方法。

  问题:你怎样理解周长/直径=π?你还能知道什么?

  结论:c=πd,d=c/π,c =2πr,r=c/2π。

  说明:为了计算方便,我们把π近似的取为3.14。

  7.教学例2。

  让学生独立列式计算,提示用估算检查计算结果。

  [评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

  四、巩固练习

  (一)判断。

  1.π=3.14。()

  2.计算圆的周长必须知道圆的直径。()

  3.只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1.较大的圆的圆周率()较小的圆的圆周率。

  a.大于b.小于c.等于

  2.半圆的周长()圆周长。

  a.大于b.小于c.等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。

  五、课堂小结

  通过这堂课的学习,你有什么收获?你还有什么问题?

  六、课堂作业

  1.课堂活动第1、2题。

  将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。

  2.练习五第1~5题。

  在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。

  七、课后作业

  1.求下面各圆的周长。

  (1)d=2米(2)d=1.5厘米(3)d=4分米

  2.求下面各圆的周长。

  (1)r=6分米(2)r=1.5厘米(3)r=3米

  [评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]

【圆的周长教案】相关文章:

圆的周长教案04-09

圆的周长教案07-05

《圆的周长》教案07-13

圆的周长教案【精】04-29

圆的周长教案【荐】03-27

圆的周长教案【热门】03-27

【热】圆的周长教案03-30

圆的周长教案【推荐】03-25

【荐】圆的周长教案03-25

【精】圆的周长教案03-25