- 相关推荐
起跑线教案
作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?以下是小编为大家整理的起跑线教案,仅供参考,大家一起来看看吧。
起跑线教案1
教材分析:
本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。
学生分析:
在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。
学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。
教学目标:
1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。
2、通过活动培养学生利用小组合作,探究解决问题的能力。
3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
教学重点:
运用圆的有关知识计算。
教学难点:
结合具体问题,让学生独立思考,提高解决简单问题的能力。
关键:体会数学知识在体育中的应用。
教学过程:
一、汇报调查,引入课题(8分钟)
1、汇报调查情况
课前,我让大家调查运动场的情况,你们得到了哪些信息?
2、课件显示如下情境图:
师:图上画的'是什么?指名学生回答,并引导得出:运动员进行跑步比赛。
师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。
3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。
二、结合实例、探究问题(24分钟)
实例一:
课件显示:
淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?
(1)笑笑所走路线的半径为10米,她走过的路程是()米。
(2)淘气所走的路线半径为()米,他走过的路程为()米。
(3)两人走过的路相差()米。
1、理解题意
根据这幅情境图,你能获得哪些信息?指名回答。
2、小组讨论
先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。
3、全班交流
抽生汇报,教师板书。
实例2:
课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)
1、观察跑道由哪几部分组成?
2、在跑道上跑一圈的长度可以看成是哪几部分的和?
(板书:跑道一圈长度=圆周长+2个直道长度)
(二)简化研究问题:
1、85.96米是指哪部分的长度?一条直道吗?
2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?
3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)
(三)寻求解决方法:
1、左右两个半圆形的弯道合起来是一个什么?
2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
(四)、动手解决问题:
1、计算圆的周长要知道什么?(直径)
2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?
3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。
引导学生将3.14159换成进行计算
汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。
4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米
师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。
三、巩固练习、实践应用(3分钟)
400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?
四、拓展延伸、自我评价(5分钟)
1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?
2、课后自学课本第45页你知道吗?
五、全课小结:
谈一谈,这节课你有什么收获?
六、布置作业
起跑线教案2
学材分析
教学重难点:会计算跑道的弯道(半圆)长,能解决有关起跑线的设置问题。
学情分析
学生在开运动会时,在上体育课时,经常会接触到200米、400米赛跑的起跑问题,起跑时每条跑道上运动员的位置有前后之分,而不是在同一条水平线上。所以学生理解起来不是很难,具体的计算可能会比较难。
学习目标
1、会利用已有知识和技能解决圆弧长的相关计算问题。
2、通过起跑线问题的解决,体会数学知识在体育中的应用,培养学生的应用数学意识和解决问题的能力。
导学策略
启发、引导、讨论、练习
教学准备
情景图
教师活动
学生活动
一、情景引入
出示教材第44页起跑线图。
问一:为什么每条起跑线都不在同一条水平线上呢?(因为跑道的弯道部分,外圈比内圈长一些)
问二:半径为10米的半圆有多长,你会计算吗?
11米呢?
二、讲解实例
6名运动员进行200米赛跑,怎么设置每条跑道的起跑线?(每条跑道宽约1.2米,弯道部分为半圆)
⑴最内圈的弯道半径为31.7米,这个弯道的全长为(米)。
⑵靠内第二圈的弯道半径为(米),这个弯道的全长为(米)。
⑶相邻两条跑道的弯道部分相差(米)。
总结:相邻两条弯道部分的差等于每条跑道的宽与圆周率的积。
(想法:此块内容教材不作要求,但我想通过对相邻弯道长的计算、比较,得出起跑线设置的规律,给学生一种收获感。)
三、练一练
进行200米赛跑,如果最内圈跑道的起跑线已经画好,那么以后每条跑道的起跑线应依次提前多少呢?
四、实践活动
量一量,学校操场跑道最内圈的弯道半径,计算出最内圈跑道的总长度约为多少米。
五、思考题
国际标准田径运动场跑道全长400米,最内圈弯道半径为36.5米,每条跑道宽为1.2米。
⑴最内圈弯道长为多少米?
⑵若最内圈跑道的起跑线已画好,那么400米赛跑的以后每条跑道的起跑线应依次提前多少米?
学生解决书本笑笑和陶气所走过的路程问题。
解:⑴圆的'周长C=2
半径为31.7米的圆的周长为231.7米
半径为31.7米的半圆的长为231.7/2米,即31.7米,所以这个弯道的全长为31.7米。
⑵因为每条跑道宽约1.2米,所以靠内第二圈的弯道半径为(31.7+1.2)米,这个弯道的全长为(31.7+1.2)米。
⑶(31.7+1.2)-31.7
=31.7+1.2-31.7
=1.2
3.770米
学生尝试着进行计算。
板书:
起跑线
教学反思
学生在开运动会时,在上体育课时,经常会接触到200米、400米赛跑的起跑问题,起跑时每条跑道上运动员的位置有前后之分,而不是在同一条水平线上。这到底是为什么呢?每条跑道的起跑线的位置到底是怎样设置出来的呢?学生通过学习解决了这个问题,并从中进一步体会到数学与现实生活的紧密联系,学以致用,学习起来更有兴趣、更有动力,培养了学生的数学应用意识,更深刻地体会到数学的现实。
起跑线教案3
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的.周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、课外延伸
m跑道如何确定起跑线?
【起跑线教案】相关文章:
确定起跑线教学反思04-04
《确定起跑线》教学反思02-26
确定起跑线优秀教学反思01-31
教案中班教案02-23
中班教案教案04-15
小班教案安全教案03-16
《大班教案》大班教案11-02
大自然教案教案01-23