圆的面积教案
作为一名教学工作者,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?以下是小编为大家整理的圆的面积教案,欢迎阅读与收藏。
圆的面积教案1
第一单元圆的周长和面积
一.本单元的基础知识
本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。
二.本单元的教学内容
P2~22.本单元教材内容包括圆的认识、圆的周长、圆的'面积,扇形和扇形统计图,对称图形。
三.本单元的教学目标
1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。
2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。
四.本单元重难点和关键
1.教学重点:求圆的周长与面积。
2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。
3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。
五.本单元的教学课时
13课时
圆的面积教案2
一、以旧引新(6分钟)
1.复习正方形的面积公式和圆的面积公式。
2.回答下面各圆的面积。
1.说出S正=a2、S圆=πr2
2.左圆面积=π×22=4π
右圆面积=π×(2÷2)2=π
1.边长是5cm的正方形面积是多少?
5×5=25(cm2)
2.如果r=4cm,则圆的面积是多少?
3.14×42
=3.14×16
=50.24(cm2)
二、动手操作,感知特点。(15分钟)
1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,
思考:
(1)外方内圆的图形是怎样组成的?它有什么特点?
老师明确:外方内圆的图形称为圆外切正方形。
(2)外圆内方的图形是怎样组成的?它有什么特点?
老师明确:外圆内方的图形称为圆内接正方形。
2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。
3.引导学生在圆内画一个最大的正方形。
4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。
1.
(1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。
(2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。
2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的`圆心。
3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。
4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。
3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。
三、探究思考,解决问题。(10分钟)
1.计算圆外切正方形与圆之间部分的面积。
(1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。
(2)组织学生算出正方形和圆之间部分的面积。
2.计算出圆内接正方形与圆之间部分的面积。
课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。
1.
(1)观察图形的特点,讨论计算方法并尝试汇报交流。
(2)分别算出这个圆和正方形的面积:
S圆=3.14×12=3.14m2
S正=2×2=4m2
S阴=S正-S圆
=4-3.14
=0.86m2
2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。
4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?
四、拓展应用。(5分钟)
1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。
2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?
1.读题,审题,明确题意后,尝试独立完成。
2.独立完成,然后全班汇报。
5.计算阴影部分的面积。
×102π-102≈57(cm2)
五、全课总结。(5分钟)
1.谈谈这节课你有哪些体会。
2.布置作业。
学生谈本节课学习的收获。
教学过程中老师的疑问
圆的面积教案3
教学目标
(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。
(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。
教学重难点
教学重点:组合图形的`认识及面积计算。
教学难点:对组合图形的分析。
教学工具
多媒体课件,各种基本图形纸片
教学过程
一、创设情境,谈话引入
同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)
师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)
师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究
1、教师出示例3的两幅图并出示自学提示出示自学提示:
(1)上面两幅图有什么不同之处?
(2)右图中的正方形的对角线和圆得直径有什么关系?
(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?
2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动
生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。
生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积
( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )
师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:
左图;(2r)-3.14r =0.86r
右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致
答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。
四、总结引导,知识生成这节课你有什么收获?
师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业
七、作业布置P73第10、11、
课后小结
这节课你有什么收获?
课后习题
1、出示教材P70做一做
2、完成教材P72第9题
板书
含有圆的组合图形的面积
左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )
S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )
4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )
圆的面积教案4
设计说明
1.利用圆内知识间的内在联系,解决实际问题。
学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。
2.重视图示的作用。
结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。
课前准备
教师准备 PPT课件
学生准备 圆片 剪刀
教学过程
一、创设情境,激发兴趣
师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的`是什么图形?(圆)
师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)
师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]
设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。
二、探究新知,建构模型
1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。
师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)
教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。
2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)
(1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)
(2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)
(3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]
3.探究推导圆的面积计算公式的其他方法。
(1)引导学生观察所拼成的图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)
(2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。
圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2
设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。
圆的面积教案5
教学目标:
1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;
2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;
3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分解和组合、实际问题数学模型的建立.
教学活动设计:
(一)概念与认识
弓形:由弦及其所对的弧组成的图形叫做弓形.
弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.
(二)弓形的面积
提出问题:怎样求弓形的面积呢?
学生以小组的形式研究,交流归纳出结论:
(1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;
(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;
(3)当弓形弧是半圆时,它的面积是圆面积的一半.
理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.
(三)应用与反思
练习:
(1)如果弓形的弧所对的圆心角为60°,弓形的`弦长为a,那么这个弓形的面积等于_______;
(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.
(学生独立完成,巩固新知识)
例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)
教师引导学生并渗透数学建模思想,分析:
(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?
(2)求截面上有水的弓形的面积为你提供什么信息?
(3)扇形、三角形、弓形是什么关系,选择什么公式计算?
学生完成解题过程,并归纳三角形OAB的面积的求解方法.
反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.
例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.
解:∵ ,
有∵ ,
, ,
∴ .
组织学生反思解题方法:图形的分解与组合;公式的灵活应用.
(四)总结
1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;
2、应用弓形面积解决实际问题;
3、分解简单组合图形为规则圆形的和与差.
(五)作业 教材P183练习2;P188中12.
圆的面积教案6
1、基础练习:计算下面各图形的周长和面积。只列式,不计算。(P128图略)
2、火眼金睛。(判断对错)
①一个三角形,底6分米,高5分米,它的面积是30平方分米。()
②一个边长5米的正方形,它的面积是20平方米。()
③一个圆,直径是2厘米,它的面积是12.56平方厘米。()
3、对号入座。
①边长是4米的正方形,()
A周长面积;B周长面积;C周长=面积;D周长和面积无法比较
②一个平行四边形和一个三角形等底等高,已知平行四边形的面积是25平方厘米,那么三角形面积是()平方厘米。
A、5B、12.5C、25D、50
4、走进生活。
①假如你家里要在一块边长2米的正方形木板上,剧一个最大的圆用来做饭桌面,请你算出这个圆面的面积并说出理由。
②设计比演,时间3分钟。现在请你来当小设计师,发挥你的`设计才能,运用这几种平面图形对学校正门前的空地的布局进行重新规划设计,我们看看谁的设想既美观又合理。(注:设计时可以把图形进行组合)
(1)小组在白纸上进行设计。汇报:用什么图形设计出了什么?
(2)你准备怎样计算你设计中这些图形的周长和面积呢?
七、全课小结。通过同学们的认真学习,大胆创新设计,我相信你们当中有很多同学会成为杰出的设计师。
八、作业。把你的设计完成,并写出每个图形的周长和面积的计算。
九、板书设计:(电脑演示)
平面图形的周长和面积
贴卡片ac=4a
s=a2hbc=a+b+h
aas=ah2
b
ac=2(a+b)
c=2(a+b)s=ahac=a+b+c+d
s=abcd
bs=(a+b)h2
c=2лr;s=лr2
(联系转化应用)
圆的面积教案7
教学目标
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重、难点:圆面积公式的推导与运用。
学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片
教学过程
一、设疑导入,激发动机
1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。
2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)
3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。
二、动手操作,探索新知
1.猜想、引导,确定方法
师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?
(学生可能会想到长方形、平行四边形、三角形、梯形等。)
师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?
(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)
2.动手操作,尝试探究
师请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作,小组合作探究)
师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)
3.课件演示,突破难点
师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:
(1)圆与有近似的长方形有什么关系?
(2)把圆16等份和32等份后,拼成的图形有什么区别?
(3)如果等分份数仅需增加,结果会怎样?
师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。
4.观察比较,导出公式
师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?
学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2
(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)
5.尝试运用
出示例3,读题列式,学生尝试练习,反馈评价。
提问:如果这道题告诉的.不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
2.完成第116页做一做的第1题。
3.看书质疑。
三、运用新知,解决问题
1.求下面各圆的面积,只列式不计算。
直径50分米
2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?
3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、课堂作业
第118页的第3题和第4题。
圆的面积教案8
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的`面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
<<<12>>>
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
圆的面积教案9
教学目标
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。
教学重点
圆面积的计算公式推导和运用。
课前准备
一个大圆、剪刀、小正方形。
课时安排:1课时
授课人
授课时间
教学过程
一、复习引入,导入新课。
教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。
学生说出自己的见解。
教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎
样表示?
学生做出回答。
教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?
二、探索尝试,解释交流。
教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。
大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?
全班汇报交流:谁想先来展示一下?(学生回答)
教师引导交流:你能让平行四边形的底再直一点吗?
学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。
学生领悟:多分几份,平行四边形的底就会直一些。
教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?
教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?
教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。
教师引导交流:若把其中的.一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?
师:这样就把求圆转化成了求长方形。
教师引导交流:你认为转化成的长方形与圆有什么关系?
生:他们的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
教师引导交流:你能根据它们的关系,推出圆的面积公式吗?
长方形的面积=长×宽
圆的面积=c÷2×r=πr×r=πr2
教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:
s=πr2
教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。
三、巩固练习
1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。
建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。
2、自主练习第1题。
3、 自主练习第2题。
给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。
4、 自主练习第3题。
总结:通过这节课的学习,你有什么收获?
课后札记:
圆的面积教案10
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的.侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是1.6米,高是0.7米
2。底面直径是2分米,高是45分米
3。底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
圆的面积教案11
教学内容:
教科书第67-68页。
教学目标:
1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;并能运用公式解答一些简单的实际问题。
2、通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。
德育目标:
渗透极限思想,进行辩证唯物主义观念的启蒙教育。
教学重点:
正确计算圆的面积
教学难点:
圆面积公式的推导
学具准备:
水彩笔、剪刀、附页1
教具准备:
多媒体课件
教学过程:
一、 导入新课
请看一幅图,从图中你发现了什么信息?
只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。
二、新授
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的.图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1) 转化后长方形的长相当于什么?宽相当于什么?
2) 你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果,师板书
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
3)书P703.
三、总结:
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
板书设计:
圆的面积
剪、拼==》转化
圆的面积=长方形的面积
=长×宽
=πr×r
=πr2
S圆=πr2
教后反思:
本课的教学首先让学生在实践中操作感知,理解圆的面积的具体含义。接着让学生回忆旧知,引导学生应用旧知类比迁移。这样,既实现了有意识地学法指导,又帮助学生找到了解决问题的策略。然后给学生提供了自主剪拼的时间,也是有意识地给学生提供了解决问题的方法和途径。然而尽管给了比较充足的时间,学生能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进而加深对圆面积公式推导过程的理解。引导学生通过实验,采用转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,讨论推导圆面积计算公式。最后安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。
圆的面积教案12
教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=r2
3.1473.1432
=21.98(厘米)=3.149
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打,错的打3。
(1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()
(2)半径为2厘米的圆的'周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()
(4)面积:3.1462=3.1412=37.68()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?(2)半圆的面积:
3.14223.142+22
r=2cm=3.144=6.28+4
=12.56(平方厘米)=10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米求:S=?
r=25.12(23.14)S=r2
=4(米)=3.1442
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米r=0.5分米求:S=?
S环=(R2-r2)
3.14(0.72-0.52)
=3.140.24
=0.7536(平方分米)
三、巩固发展.
1、思考题p71(8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:31.42=15.7(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.
(2)围成圆形
直径:31.43.14=10(m)
半径:102=5(m)
面积:3.1452=78.5(m2)
(3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2
围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
圆的面积教案13
教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
学生回答,教师予以肯定。
2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1、教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的`几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积/
圆的半径/
圆的面积/
圆面积大约是正方形面积的几倍
(精确到十分位)
2、交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的兀倍。
3、教学例8。
(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?
(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?
初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,教师板书
长方形的面积一长×宽
圆的面积=
(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
4、教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转X器?
(2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。
(3)学生独立完成计算。
(4)集体交流。
5、教学例10。
(1)请同学读题,解读题意。
(2)找出题中的已知条件。
(3)分析解题过程。
(4)明确各个量之间的转化关系。
三、巩固练习,加深理解
1、完成“练一练”。
(1)学生独立解答。
(2)集体交流。
2、完成练习十五第1题。
(l)学生独立解答。
(2)集体交流。
3、完成练习十五第3题。
(1)学生列式后用计算器计算。
(2)集体交流。
4、完成练习十五第4题。
(1)学生独立解答。
(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。
5、作业:练习十五第2、5题。
四、课堂小结
师:通过今天的学习,你有什么收获?
学生发言,教师点评。
圆的面积
长方形的面积=长×宽
圆的面积
圆的面积教案14
教学目标:
1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;
2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;
3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分析.
教学活动设计:
(一)复习(圆面积)
已知⊙O半径为R,⊙O的面积S是多少?
S=πR2
我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.
扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.
提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.
(二)迁移方法、探究新问题、归纳结论
1、迁移方法
教师引导学生迁移推导弧长公式的方法步骤:
(1)圆周长C=2πR;
(2)1°圆心角所对弧长=;
(3)n°圆心角所对的弧长是1°圆心角所对的'弧长的n倍;
(4)n°圆心角所对弧长=.
归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则(弧长公式)
2、探究新问题
教师组织学生对比研究:
(1)圆面积S=πR2;
(2)圆心角为1°的扇形的面积=;
(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;
(4)圆心角为n°的扇形的面积=.
归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则
S扇形= (扇形面积公式)
(三)理解公式
教师引导学生理解:
(1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;
(2)公式可以理解记忆(即按照上面推导过程记忆);
提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)
S扇形=lR
想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)
与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.
(四)应用
练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____.
2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.
3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.
4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.
5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=____.
( ,2,120°, , )
例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.
学生独立完成,对基础较差的学生教师指导
(1)怎样求圆环的面积?
(2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?
解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.
S=.
∵ ,∴S=.
说明:要注意整体代入.
对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.
课堂练习:教材P181练习中2、4题.
(五)总结
知识:扇形及扇形面积公式S扇形= ,S扇形=lR.
方法能力:迁移能力,对比方法;计算能力的培养.
(六)作业 教材P181练习1、3;P187中10.
圆的面积教案15
【教学目标】
知识技能:让学生理解圆面积的含义,经历猜想、操作、验证、讨论和归纳等过程,探索并掌握圆的面积计算公式的推导过程及其公式的应用。
数学思考:经历自主探索圆的面积计算公式的推导过程,体会和掌握“转化”和“极限”的数学思想方法,发展空间观念。
问题解决:培养学生发现和提出问题,分析和解决问题的能力。
情感态度:培养学习数学的兴趣,增强合作交流的意识,在提升自我的同时,尊重他人,在表现自我的同时,心中有他人。
【教学重点】
掌握圆的面积计算公式,能够正确地计算圆的面积。
【教学难点】
理解圆的面积计算公式的推导过程。
【教学准备】
(1)软硬件设备:多媒体教学课件、平板互动系统、教师和学生平板终端,
(2)教具:圆纸片、不同等分的圆卡片
(3)学具:剪刀、圆纸片、不同等分的圆卡片。
【教学过程】
学生课前完成课前导学案(后附课前导学案的内容)
一、课前互动:
师:同学们,前段时间我看到了一个很有意思绘本故事,想看吗?大家请看,其中一张图片是这样的,猜一猜最后的这一棵盆栽会长出怎样的图形呢?为什么?
生:越来越接近圆形。
生:圆形,因为从三角形开始,然后到正方形、正五边形……图形越来越接近圆形。
师:说的太好,看来我们班的同学们都是观察能力强,思维敏捷的同学。随着正多边形边数越来越多,越来越多,这个图形就会越来越接近一个圆了
师:哪一个图形最特别。
生:圆形,因为它是曲线围成的图形,其它是由线段围成的图形。
师:真棒,其实这一张图片蕴藏着一个非常重要的数学思想,这个思想帮助我们解决了一个历史难题,想知道是什么思想吗?
生:想。
师:那么希望通过这节课的学习,大家会有所感悟。下面我们就开始上课了。上课。
二、创设情境,引发问题
师:同学们,我们已经认识了圆,知道了怎样求圆的周长,今天这节课我们要研究的内容是圆的面积。(板书课题)
师:看到课题你最想研究什么问题?
(预设)生:什么是圆的面积?
(预设)生:如何求圆的面积?
师:问的好,能提出问题的一定是会思考的同学,很多伟大的发明往往从提问开始,我们来整理一下提出的问题,主要是:圆的面积是什么?如何求圆的面积?(教师板书:是什么?如何求?)
【设计意图】数学课程标准提出四基和四能,其中一项是培养学生提出问题的能力,这也是很多教师所忽视的环节,通常让学生提问题的环节让本课的研究更能激发学生的兴趣,针对性更强。
师:现在我们逐个问题来解决。请看,这里有一个圆(出示一个圆的方框)谁来说一说什么是这个圆的面积?
(预设)生:圆的大小就是它的面积,
师:说的对,是这一部分的大小吗?(课件把圆填充颜色)
师:(拿出手表)那么,什么是这个圆形手表镜面的面积?(手表镜面占平面的大小),所以圆占平面的大小就是它的面积,看来,“什么是圆的面积”这个问题大家很容易就解决了。
(课件出示)
师:接着我们来研究如何求圆的面积。请看,第一个正方形是由四个小正方形组成的,每个小正方形的边长是r,那么每个小正方形的面积大家会求吗?(会,是r×r,也就是r2),这个大正方形的面积就是4
r2,等于4个小正方形的面积之和,大家猜一猜第二个正方形的面积大约等于几个这样的小正方形的面积呢?
(预设)生:2个小正方形的面积
(预设)生:3个小正方形的面积
师:这样猜还是有一点困难,根据我们以前的经验,可以把第二个正方形重叠到第一个图像上来比比。
(预设)生:等于两个正方形的面积之和,也就是2r2,。
师:那么这个圆的面积呢?还要重叠过来吗?
师:原来这个圆的半径和小正方形的边长是相等的。谁来说说这个圆的面积是多少?
(预设)生:大约是3r2
师:能确定?为什么不估2r2和4r2
(预设)生:因为里面这个绿色的正方形的面积是2r2,圆的面积比它大,而蓝色大正方形的面积是4r2,圆的面积比它小。所以我估算是3r2.
师:分析得有道理,太棒了,通过这比较的办法,我们知道了圆的面积的范围,就是大于2个以圆的半径为边长的正方形面积之和,小于4个小正方形面积之和。这也是数学上经常说的“内外逼近”的方法。
(课件出示)两个正方形的面积<圆的面积<4个正方形的面积
2r2<S圆<4r2
师:那么圆的面积与r2(也就是与以圆的半径为边长的这个小正方形的面积),是否存在一个固定的倍数关系呢?如果有,又是几倍的关系呢?根据课前我对多个学校六年级学生的调查,发现主要有以下的几种想法。
(平板电脑出示题目和选项:那么圆的面积与它的`r2是否存在一个固定的倍数关系呢?如果存在,它是几倍的关系呢?
A:圆的面积是它的r2的3倍
B:圆的面积是它的r2的3.5倍
C:圆的面积是它的r2的π倍
D:圆的面积是它的r2存在其他的倍数关系
D:圆的面积与它的r2不存在固定的倍数关系)
师:你认同哪一种呢?请大家根据刚才的分析和昨天课前的思考,在平板电脑上独立作出选择。(学生选完后系统对数据进行统计,并出示条形统计图)
师:有30%的同学认为圆的面积是它的r2的3倍
,有50%的同学认为圆的面积是它的r2的π倍,还有少部分同学有其他的想法。太棒了,这些都是我们自己珍贵的猜想,很多伟大的发明都是来源于猜想,至于这些猜想是否正确呢?就要进行验证,最后得出结论(板书:猜想、验证、结论)现在我们一起进入验证的环节,请大家先思考一下,你打算怎样验证自己的猜想,可以独立思考或小组合作,也可以结合昨天的课前小研究、还可以利用桌面的圆纸片。比一比谁最快有思路。开始吧!
【设计意图】通过比较圆与小正方形的面积关系,不仅让学生巩固了圆面积的概念,初步了解圆的面积在2
r2与4
r2之间,还体会了“内外逼近”的数学思想。另外,在学生提出猜想的环节加入平板互动系统的统计,更加清晰和全面地反映了学生的思维困惑,更加直面学生的认知基础,既关注了全体学生的培养,又重视了学生的个性化发展,给学生提供了一个更大的学习空间,充分地体现先学后教的教学理念。
三、启发探究,尝试验证
(一)数格子验证
师:谁来说说你的想法?
(预设)生:可以利用数格子的方法。
(学生的课前研究单上有一个半径是3厘米的圆)
(预设)生:我数了半径是3厘米的圆,不满一个的算半格,每个格子是1平方厘米,圆的面积大约26格。所以面积大约是26平方厘米。
师:数格子(板书:数格子),很好的思路,数出圆的面积再除以半径的平方就可以知道它们之间的倍数关系了。26除以半径的平方大约等于3,大家觉得这个思路怎样?这样数出来的得数有误差吗?
(预设)生:有,这些不满格的要估算。
师:有道理,你看,这些不满格的还有这么大面积需要估算(指着图),那么,有什么办法提高数格子的精准度?如果把格子变小一点,像这样(课件出示下图)估算的误差会不会小一点。
(预设)生:会,因为这样需要估算的面积就会越少,所以更准确。
(课件展示)
师:如果继续把格子变小,无限地变小,想象一下,这样数出来的结果就会(就会很准确了)。
师:讲得太棒了,像这样把格子无限地平均分,其实相当于把圆平均分成无数个格子,这种思想就是我们数学常说的极限思想。(板书:数格子
极限思想)
师:但是,如果格子分得太细的话,我们能数得过来吗?(不能),看来,通过数格子的办法也很难准确地求出圆的面积,还有没有别的思路?
【设计意图】数格子是学生计算新图形面积的常用办法,通过汇报“课前研究单”中数圆的面积,并比较格子的大小对估算圆面积大小的影响,让学生初步感受数格子中的极限思想,同时引出了数格子的不足,为下一步把圆平均分成无数个近似三角形埋下伏笔。
(二)“对折”验证
(预设)生:我用对折的办法,把圆对折、再对折、再对折,折到这么小,就很像一个三角形,这样就可以求出三角形的面积,再乘以三角形的数量就是圆的面积了。
师:真棒,思路非常独特,你觉得同学们都听懂了吗?你觉得哪个地方同学们不是很理解,还要重点再讲讲?
(预设)生:要尽量折得小一点,这样圆的这条曲边就会越来越直(边操作,边说),这样就会越来越近似于三角形。
师:大家同意吗?太厉害了,我觉得这里应该有掌声。这个同学用对折的办法,相当于把圆平均分成若干份,(拿着学生的圆)平均分成4份的时候,这个近似三角形的底边还是比较弯曲的,对折几次后这个近似三角形的底边就会越来直了,如果让这条边变得更直的话,我们要怎样做?
(预设)生:再对折。
师:折一折,看一看,这条边是不是更直了,再对折看看
(预设)生:太小了,折不了,
师:没关系,纸片折不了,我们可以利用平板电脑帮忙,请大家打开平板,继续把圆平均分,看看有什么发现(学生利用平板电脑点击把圆平均分成32、64、128份)
师:(学生展示平均分成128份)这是大家平板上的画面,你来说说。
(预设)生:随着平均分的分数越多,这条边就会越直,128等分的时候,这条边已经很直了。
师:请大家闭上眼睛想象一下,如果继续无限地平均分,这条底边就会(简直就变成直线了)
师:太棒了,刚才同学们想到了,把圆平均分(板书:平均分)成无限个近似的三角形,这样每个近似三角形的这条曲边就会无限的接近于直线,这就是极限思想的魅力,它能画曲为直(板书:化曲为直),然后只要求出一个近似三角形的面积,再乘三角形的数量就等于圆的面积了。
【设计意图】这一环节很多教师的做法是让学生折纸以后再用课件展示,这种做法中学生的体验是不足的,因此在这里引入平板电脑的手段,让学生不但可以通过折一折,还能利用平板电脑把圆平均分成更多等分,再结合分享和展示,增加学生在操作中的体会和经历,更加直观地理解化曲为直和极限数学思想。
(三)等积转化验证
师:还有其他的思路吗?
(预设)生:把圆平均分后再拼成我们学过的图形,就像把平行四边形剪拼成长方形。
师:说得好,你的思维很敏锐,厉害,转化,把未知转化成已知,像求平行四边形面积的时候,把它剪拼转化成长方形,然后再推导出计算公式,这样就不用数近似三角形的数量了,直接就能求出圆的面积就,不如我们一起来试试看。(板书:转化
、推导)
师:在每人的平板电脑上里都有4等分、8等分、16等分的圆,也可以利用等分圆的学具,还可以利用圆纸片进行任意的剪拼,请以小组为单位展开探索
活动要求:1.拼一拼。将等分后的圆拼成一个我们学过的图形。
2.比一比,拼成的图形中哪一个更接近于我们学过的图形。
(学生在小组内操作的画面在讲台的一体机中流动显示)
师:谁来说说你的发现,你是几号平板(马上在一体机中调出学生的画面)
(预设)生:16等分的圆拼成的图形更接近于我们学过的平行四边形。因为16等分拼成的图形的底边是最直的。
师:为什么会最直呢?
(预设)生:像刚才一样,平均分成的分数越多,每一份就越近似于一个三角形,底边就越直,拼成的图形就越近似于平行四边形。
师:如果像这样继续平均分,会变成怎样呢?请打开平板系统,继续试一试(每人的平板出示32、64、128等分的圆)
师:谁来讲讲发现。
(预设)生:你看,等分圆的份数越多,拼成的图形的底边会越来越直,而且(指着图形的两条宽)左右两条边跟底边就越接近于垂直,所拼成的图形越接近于长方形。
师:请大家闭上眼睛想象一下,如果像这样继续无限地平均分,平均分成256分等等……,然后再拼起来,拼成的图形就会无限的接近一个长方形了,这个极限思想太了不起了,不仅能画曲为直,还能化圆为方。(板书:化圆为方)
我建议我们要把这个过程留在板书上,我们通过把圆平均分成若干个近似的小三角形,然后拼成近似的长方形,随着无限地平均分,这样拼成的图形就会无限地接近一个真正的长方形。(板书:16等分的圆拼成的图形和一个长方形)
【设计意图】这一环节融合信息技术手段能有效打破传统学具的限制,传统的学具最多把圆平均分成32份,这样拼起来的图形与长方形还是有很大的区别,理解化圆为方的思想有些困难。当信息技术与传统学具融合后,学生不仅能更直观、更方便地探究,而且又避免了信息化手段容易固化学生研究思维的缺点,让学生还能利用常规学具进行随意剪拼,这样学生研究的素材更多元化。另外,通过平板系统,学生在探究和分享、师生互动、学生间互相学习的过程中都能随时调用画面到屏幕上进行互动。让教学更加直观形象,让交流分享更加充分和完善,让学生的互相学习更加有效。
师:研究到这里,到了最关键的一步了,就是推导计算公式,这个过程是老师教你,还是大家自己来。
(预设)生:自己来。
师:真的,我就站在旁边,有困难就举手。
四、寻找联系、推导公式
要求:
想一想:近似长方形的长和宽与圆的什么有关呢?
试一试:把推导的过程写下来。
师:我把这个画面(圆形转化成长方形的过程的画面)发到大家的平板上,大家可以结合我们刚刚的发现来推导。
学生分享:
(预设)生:因为拼成的长方形的面积等于圆的面积,拼成的长方形的长近似于圆周长的一半,宽近似于圆的半径,而且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
师:我真没想到我们班同学能把这个问题讲的这么清楚,你觉得大家在哪一部分的理解还是有点欠缺呢?要不要再讲讲?
(预设)生:我觉得长方形的长近似于圆周长的一半这点是比较难发现的,要这样来看,在圆平均分成若干份后,把这些近似的小三角形分成了上下两部分,例如下面这部分,这些小三角形的底边就是原来圆的边,它们的总长就是原来圆的周长的一半。
【设计意图】通过平板系统的引入,在推导公式的过程中,每个小组不仅可以把推导的过程发送到互动平台让其他小组互相学习,而且在分享中也能随时调出其他小组的作品加以质疑和评价,从而提高了学习的深度学习。
师:太棒了,见过厉害的,但是没见过这么厉害的,掌声鼓励一下。
师:经过大家的研究我们似乎把公式推导出来了,我们一起来整理一下,
师:拼成的近似长方形的面积等于圆的面积,长方形的长近似于圆周长的一半,宽近似于圆的半径,长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=C÷2×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
(板书)
S长方形=长×宽
S圆=周长的一半×半径=C÷2×r=2πr÷2×r=πr2
师:太好了,终于把公式推导出来了,原来圆的面积就等于它半径的平方再乘π,圆的面积与它半径的平方之间是π倍的关系,哪些同学猜对了(学生举手),掌声表扬,你们有数学家的眼光。没猜对的同学也不要紧,因为你们已经把公式推导出来了,也掌声鼓励。你知道吗,在古代,曾经有很多的数学家对圆的面积做了详细的研究,其中比较著名的就是魏晋数学家刘徽的千古绝技
“割圆术”请看。
五、感受数学文化的魅力
(展示魏晋数学家刘徽割圆术视频)
师:刘徽在当时这么简单的条件下计算了正3072边形面积。他提出的计算圆周率的科学方法,奠定了此后一千多年来,中国圆周率计算在世界上的领先地位。此时此刻我再一次为我国古代的数学文化感到震撼和自豪。而且,这也是我们课前小游戏的奥秘,无限分割和极限思想。所以我也为大家在这节课上的发现和总结感到骄傲。
【设计意图:通过介绍魏晋数学家刘徽的割圆术,让学生进一步感受优秀传统中国数学文化,不仅增加了民族自豪感,还培养了数学素养】
六、巩固知识,实际应用
师:既然已经我们推导出圆的面积公式,接着来尝试运用公式来解决实际的问题(板书:运用),你会吗?(会)
1.一个圆形沙井盖的半径是30厘米,这是沙井盖表面的面积是多少?
2.一个圆形花坛的周长是12.56米,这个花坛的面积是多少?
七、全课总结,课堂延伸
师:大家请看(指着板书),我们班的同学太棒了,一节课下来有了那么多的总结,如果要圈出本课的重点,你觉得要圈什么?(圈出本课的核心)
(预设)生:S圆=πr2
、转化、化曲为直、极限……
师:刚才我们遇到问题的时候,采取了什么策略,(猜想、验证、结论、运用),在验证的过程中运用了什么方法(转化、化曲为直、极限思想)
师:对于圆的面积你有什么新的思考。
(预设)生:圆的面积还有其他的推导方法吗?
师:问的好,生活中还有很多的有趣的推导圆面积的方法,例如可以把它拼成一个三角形甚至是拼成梯形,大家可以带着这个问题回去继续探索,只要大家用数学的眼光和数学解决问题的方法去研究,你会有更多的发现。这节课就上到这里,下课。
八、布置作业
书本第68页做一做的第一题。
(题目:一个圆形茶几的直径是1M,它的面积是多少平方米?)
2、书本71页第4题。
(题目:小刚量得一颗树干的周长是125.6cm,这棵树干的横截面近似于圆,它的面积大约是多少?)
3、尝试用不同的方法推导出圆的面积计算公式,下一节课与同学们分享。
九、板书设计
附录:《课前导学案》
《圆的面积》课前小研究工作纸
班别:
学号:
姓名:
同学们!大家好,上一节课我们已经学习了圆的周长,接着要学习什么呢?当然是圆的面积啦!还等什么呢,赶快出发吧,马上进入数学的神奇世界……
同学们,看到《圆的面积》这个课题,你想到什么问题?请把它写下来。(写2-3个问题)
2、请大家先观察下面图,你知道圆的面积和这个小正方形的面积有什么关系?
圆的面积小于于()个小正方形的面积
我们可以这样分析:
圆的面积大于()个小正方形的面积
()<圆的面积<()
3、我们还可以通过数格子的办法数出圆的面积,试试看吧!
图中每个格子的面积是1平方厘米,圆的半径是3厘米,请你数一数,这个圆形的面积大约占了()个格子,所以圆的面积大约是()平方厘米。
(为了方便数数,你可以在格子中写数字或作记号)
4、圆可以转化成我们学过的图形吗?
(1)圆可以转化成()形,请画图说明。转化后的图形与圆有什么关系?你能尝试推导圆的面积计算公式吗?
(2)除了书本的推导办法,还有其它的办法推导出圆的面积吗?可以和家长一起探索,也可以上网搜索查询。
【圆的面积教案】相关文章:
圆的面积教案11-17
《圆的面积》教案09-01
《圆的面积》教案10-06
【热】圆的面积教案05-22
圆的面积教案【精品】12-13
圆的面积教案优秀07-27
人教版圆的面积教案10-31
圆的面积教案(精选13篇)08-01
圆的面积教案精选15篇08-15
圆的面积教案(精选15篇)09-30