当前位置:育文网>教学文档>教案> 一次函数教案

一次函数教案

时间:2022-11-09 13:47:07 教案 我要投稿

一次函数教案

  作为一位优秀的人民教师,往往需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。教案要怎么写呢?以下是小编收集整理的一次函数教案,欢迎阅读,希望大家能够喜欢。

一次函数教案

一次函数教案1

  一、创设情境

  1.一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

  2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

  3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

  2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

  解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的.交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

  过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

一次函数教案2

  教学目标

  1、经历一般规律的探索过程,发展学生的抽象思维能力。

  2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

  教学重点

  1、一次函数、正比例函数的概念及两者之间的关系。

  2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

  课件教学过程

  一、创设问题情境,引入新课

  1、简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果,那么我们称Y是X的函数,其中X是自变量,Y是因变量)

  2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

  3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

  二、新课学习

  1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

  2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100—0.18x在形式上有什么相同之处?

  让学生分析出他们的共同点:

  ①左边都是因变量,右边都是含自变量的代数式;

  ②自变量X与因变量Y的次数都是1;

  ③从形式上看,形式都为y=kx+b,K,b为常数。

  问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

  问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

  并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

  3、例题学习

  例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

  例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的'范围是800

  三、随堂练习

  1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

  A、y= +x B、y=—0。8x C、y=0。3+2x2 D、y=6—

  2、已知函数y=(m+1)x+(m2—1),当m,y是x的一次函数;当m,y是x的正比例函数。

  四、拓展应用

  学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:

  (1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x—500,y乙=180x)

  (2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20—500=3500(元);y乙=180×20=3600(元);

  y甲< y乙,所以到甲旅行社合算。)

  (3)在什么情况下,选择乙旅行社?(依题意得,y甲— y乙>0,即(200x—500)—180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)

  五、课堂小结

  让学生归纳本节课学习内容:

  1、一次函数、正比例函数概念以及它们之间的关系。

  2、会根据已知信息写出一次函数的关系式。

  六、作业读一读:

  中国古代漏刻必做题:161页习题6.2第1、2、3题选

  做题:161页试一试

一次函数教案3

  教学目标

  1.知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

  2.过程与方法

  经历探索一次函数的应用问题,发展抽象思维.

  3.情感、态度与价值观

  培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.

  重、难点与关键

  1.重点:一次函数的应用.

  2.难点:一次函数的应用.

  3.关键:从数形结合分析思路入手,提升应用思维.

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

  教学过程

  一、范例点击,应用所学

  例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的.跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

  y=

  例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

  拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习.

  三、课堂,发展潜能

  由学生自我本节课的表现.

  四、布置作业,专题突破

  课本P120习题14.2第9,10,11题.

  板书设计

  14.2.2一次函数(4)

  1、一次函数的应用例:

  练习:

一次函数教案4

  学习目标:(学习重点)

  1.能根据k、b的符号说出一次函数y=kx+b的图象(直线)的大致情况.

  2.理解并掌握一次函数y=kx+b的性质.

  补充例题:

  例1.在同一直角坐标系中画出下列函数的图象.

  ①y=2x-4y=12x+1

  观察直线y=2x-4:

  (1)图象与x轴的交点坐标是,与y轴的交点坐标是

  (2)图象经过这些点:(-3,);(-1,);(0,);(,-2);(,2)

  (3)当x的值越来越大时,y的值越来越

  (4)整个函数图象来看,是从左至右(填上升或下降)

  (5)当x取何值时,y>0?

  ②y=-2x+2y=-13x-1

  观察直线y=-2x+2:

  (1)图象与x轴的交点坐标是,与y轴的交点坐标是

  (2)图象经过这些点:(-3,);(-1,);(0,);(,-4);(,-8)

  (3)当x的值越来越大时,y的值越来越

  (4)整个函数图象来看,是从左至右(填上升或下降)

  (5)当x取何值时,y<0?

  小结:一次函数y=kx+b有下列性质:1.当k>0时,y随x的增大而______,这时函数的图象从左到右_____;当k<0时,y随x的增大而______,这时函数的图象从左到右_____.

  2.当b>0时,这时函数的图象与y轴的`交点在______

  当b>0时,这时函数的图象与y轴的交点在_____.

  当b=0时,这时函数的图象与y轴的交点在_____.

  3.当k>0,b>0时,一次函数图像经过______________象限.

  当k>0,b<0时,一次函数图像经过______________象限.

  当k<0,b>0时,一次函数图像经过______________象限.

  当k<0,b<0时,一次函数图像经过______________象限.

  当k>0,正比例函数图像经过______________象限.

  当k<0,正比例函数图像经过______________象限.

  补充例题:

  例1.(1)一次函数y=kx+b的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.

  (2)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,且mn≠0)的图象是()

  例2.(1)若k>0,b>0,则直线y=kx+b的图象经过第___________象限.

  (2)若k<0,b>0,则直线y=kx+b的图象经过第___________象限.

  (3)已知函数y=kx+b的图象不经过第二象限,则k______,b______.

  例3.已知一次函数y=(m+5)x+(2-n).①m为何值时,y随x的增大而减少?②m、n为何值时,函数图像与y轴的交点在x轴上方?③m、n为何值时,函数图像过原点?④m、n为何值时,函数图像经过二、三、四象限?

  例4.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象与y轴的交点在x轴下方,求m的取值范围.

  课后续助:

  一、填空题:

  1.已知一次函数y=kx+5的图象经过点(-1,2),则k=_________.

  2.一次函数y=kx+b的图象如图所示,则k=_______,b=________.

  3.若k<0,b<0,则一次函数y=kx+b的图象经过第______________象限.

  4.已知直线l1:y=ax+b经过第一、二、四象限,那么直线l2:y=bx+a所经过的象限是.

  5.(1)一次函数y=x-1的图象与x轴交点坐标为__________,与y轴的交点坐标为__________,y随x的增大而____________.

  (2)一次函数y=-5x+4的图象经过___________象限,y随x的增大而________.

  (3)一次函数y=kx+1的图象过点A(2,3),则k=_______,该函数图象经过点B(-1,____)和C(0,_____)

  (4)已知函数y=mx+(m+2),当m________时,的图象过原点;当m________时,函数y值x随的增大而增大.

  (5)写出一个y随x的增大而减少的一次函数_______.

  二、选择题:

  1.直线y=x+1不经过的象限是( )

  A.第一象限B.第二象限C.第三象限D.第四象限

  2.下列函数中,y随x的增大而增大的函数是()

  A.y=-3xB.y=-2x+1C.y=x-3D.y=-x-2

  3.若函数y=(m-1)x+1是一次函数,且y随自变量x的增大而减小,那么m的取值为()A.m>1B.m≥1C.m<1D.m=1

  4.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则它的大致图象是()

  ABCD

  三、解答题:

  1.已知一次函数y=(p+8)x+(6-q).

  ①p、q为何值时,y随x的增大而增大?

  ②p、q为何值时,函数与y轴交点在x轴上方?

  ③p、q为何值时,图象过原点?

  2.若一次函数y=(2k-3)x+2-k的图象与y轴的交点在x轴上方,且y随x的增大而增大,求k的取值范围.

  3.已知一次函数y=ax+1+a2的图象与y轴的交点的纵坐标为5,且图象经过第一、二、三象限,求此函数的解析式.

  4.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.

  (1)求m的值;

  (2)当x取何值时,0<y<4?

一次函数教案5

  教学目标

  1.知识与技能

  理解一次函数与一元一次不等式的关系,发展学生的认知体系.

  2.过程与方法

  经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.

  3.情感、态度与价值观

  培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.

  重、难点与关键

  1.重点:一次函数与一元一次不等式的关系.

  2.难点:如何应用一次函数性质解决一元一次不等式的解集问题.

  3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的.范围.

  教具准备

  采用“问题解决”的教学方法.

  教学过程

  一、回顾交流,知识迁移

  问题提出:请思考下面两个问题:

  (1)解不等式5x+6>3x+10;

  (2)当自变量x为何值时,函数y=2x-4的值大于0?

  学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.

  教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”

  思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,这条直线上的点在x轴的上方,即这时y=2x-4>0.

  问题探索

  教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?

  学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题.

  师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围.

  教学形式师生互动交流,生生互动.

  二、范例点击,领悟新知

  例2用画函数图象的方法解不等式5x+4<2x+10.

  教师活动激发思考.

  学生活动小组合作讨论,运用两种思维方法解决例2问题.

  解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.

  解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2.

  评析两种解法都把解不等式转化为比较直线上点的位置的高低.

  三、随堂练习,巩固深化

  课本P216练习.

  四、课堂,发展潜能

  用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的.

  五、布置作业,专题突破

  课本P129习题14.3第3,4,7,8,10题.

一次函数教案6

  教材分析

  在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。 在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

  1 .注重“类比教学” 在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由 “ 学会 ” 到 “ 会学 ” ,真正实现 “ 教是为了不教 ” 的目的.

  2. 注重“数学结合”的教学

  数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

  ( 1 )让学生经历绘制函数图象的具体过程。

  ( 2 )切莫急于呈现画函数图象的简单画法。

  ( 3 )注意让学生体会研究具体函数图象规律的方法。

  知识技能

  目标

  1、理解直线y=kx+b与y=kx之间的位置关系;

  2、会选择两个合适的点画出一次函数的图象;

  3、掌握一次函数的性质.

  过程与方法目标

  1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

  2、通过一次函数的图象总结函数的'性质,体验数形结合法的应用,培养推理及抽象思维能力。

  情感态度目标

  1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

  2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  教学重点

  一次函数的图象和性质。

  教学难点

  由一次函数的图像归纳得出一次函数的性质及对性质的理解。

一次函数教案7

  一、目的要求

  1、使学生初步理解一次函数与正比例函数的概念。

  2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

  二、内容分析

  1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

  2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

  3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

  三、教学过程

  复习提问:

  1、什么是函数?

  2、函数有哪几种表示方法?

  3、举出几个函数的例子。

  新课讲解:

  可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

  (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

  (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

  (3)在这些函数式中,表示函数的.自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

  (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的层层设问,最后给出一次函数的定义。

  一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

  对这个定义,要注意:

  (1)x是变量,k,b是常数;

  (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

  由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

  在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  写成式子是(一定)

  需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

  其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

  课堂练习:

  教科书13、4节练习第1题.

一次函数教案8

  一、教材的地位和作用

  本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

  (一)教学目标的确定

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

  1、知识目标

  (1)能用两点法画出一次函数的图象。

  (2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

  2、能力目标

  (1)通过操作、观察,培养学生动手和归纳的能力。

  (2)结合具体情境向学生渗透数形结合的数学思想。

  3、情感目标

  (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

  (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

  (二)教学重点、难点

  用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

  二、学情分析

  1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

  2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

  3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  三、教学方法

  我采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  四、教学设计

  一、设疑,导入新课(2分钟)

  师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

  生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

  生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k0。

  生3:正比例函数也是一次函数。

  师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

  这节课让我们一起来研究 一次函数的图象。(板书)

  二、自主探究小组交流、归纳问题升华:

  1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

  生:不知道。

  师:那就让我们一起做一做,看一看:(出示幻灯片)

  用描点法作出下列一次函数的图象。

  (1) y= 0.5x (2) y= 0.5x+2

  (3) y= 3x (4) y= 3x + 2

  师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

  然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

  小组汇报:一次函数的图象是直线。

  师:所有的一次函数图象都是直线吗?

  生:是。

  师:那么一次函数y=kx+b(其中k、b为常数,k0),也可以称为直线y=kx+b(其中k、b为常数,k0)。(板书)

  师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

  讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

  小组1:正比例函数图象经过原点。

  小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

  师出示幻灯片3(使学生再一次加深印象)

  师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k0)的图象直线,你认为有没有更为简便的方法?

  (一边思考,可以和同桌交流)(2分钟)

  生1:用3个点。

  生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

  生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

  师:我们都认为画一次函数图象,只过两个点画直线就行。

  (幻灯片4:师,动画演示用两点法画一次函数的过程)

  师:做一做,请你用两点法在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)

  师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

  组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,1)点。这样找的坐标都是整数。

  组2:我们组认为尽量都找整数。

  组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)

  组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

  师:同学们说的都很好。我觉得可以根据情况来取点。

  2、师:我们现在已经用:两点法把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

  问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察学生回答)(3分钟)

  ①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

  生1:①y=0.5x与y=0.5x+2;两直线平行。

  生2:②y=3x与y=3x+2;两直线平行。

  生3:③y=0.5x与y=3x;两直线相交。

  生4:④y=0.5x+2与y=3x+2;两直线相交。

  师:其他同学有没有补充?

  生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

  生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

  师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

  师:问(2),直线y=kx+b(k0)中常数k和b的值对于两个函数的图象的位置关系平行或相交,有没有影响?说说你的看法。(5分钟)

  (学生自主探究小组交流、归纳师生共同总结)

  组1:我们组发现,常数k和b的值对于两个函数的图象的位置关系平行或相交,有影响,当k的值相同时,两直线平行;当k的值不同时,两直线相交。

  生:我认为他的说法不确切,当k值相同,且b值不同时,两直线相交。因为当k值相同,且b值也相同时,两个函数关系式不就成为一个函数关系式了吗?

  组2:我们组同意生的看法,当k值相同,且b值不同时,两直线平行;当k值不同时,两直线相交当k值相同,且b值不同时,两直线相交。

  组3:我们组还发现,当k值相同,且b值不同时,两直线相交;当k值相同,且b值也相同时,两直线相交的交点特殊。如③y=0.5x与y=3x;相交,交点是(0,0)④y=0.5x+2与y=3x+2,相交,交点是(0,2)。我们认为,当k值相同,且b值也相同时,两直线相交的交点是(0,b)。

  师:(出示小规律)同学们观察的都很仔细,回答很好,要继续努力!

  师:刚才同学说的,当k值相同,且b值也相同时,两个函数图象又是什么样的位置关系?(因为两直线的位置关系学生都会,所以学生很容易回答)

  生:重合。

  师:老师考一考你,有没有信心?

  生:有。

  师:(出示幻灯片6)不画图象,你能说出下列每对函数的图象位置上有什么关系吗?

  ①直线y=-2x-1与直线y=-2x+5; ②直线y=0.6x-3与直线y=-x-3。

  生1:①两直线平行。②两直线相交,交点是(0,-3)。

  生2:①两直线平行。②两直线相交,交点是(0,-3)。

  师:一次函数的图象都是直线,它们的形状都 ,只是位置 。

  问(3):我们能不能将其中一条直线通过平移、旋转或对称性,使它们和另一条直线重合。你试试看。(自主探索同桌交流)(3分钟)

  生1:(幻灯片5)①y=0.5x与y=0.5x+2;将y=0.5x平移能得到y=0.5x+2。

  生2:③y=0.5x与y=3x;将y=0.5x旋转后能得到y=3x。

  生3:②y=3x与y=3x+2;通过平移能得到y=3x+2。④y=0.5x+2与y=3x+2。通过旋转能得到y=3x+2。

  师:同学们规律找得都很好,我们这节课只研究平移。

  问(4):①y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 (向上或向下),平行移动 单位得到y=0.5x+2?组②呢?(5分钟)

  (学生动力操作尝试小组交流归纳小组汇报)

  组1:直线y=0.5x与y=0.5x+2平行,观察图象,直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。

  组2:直线y=3x向上平移2个单位能得到直线y=3x+2。

  组3:直线y=3x+2向下平移2个单位能得到直线y=3x。

  生4:老师,我发现直线y=0.5x+2向下平移2个单位能得到直线y=0.5x。

  生5:老师,我们组发现直线y=0.5x沿y轴向 上 (向上或向下),平行移动2个单位得到y=0.5x+2。在这个过程中,都是0.5,却加上了个2。

  师:(同学们说的都很好,生5的发现更好,)

  师:出示幻灯片7,然后按来通过动画演示平行移动的过程。

  问(5):在上面的2个变化过程中,观察关系式中k和b的值有没有变化?有什么样的变化?(生独立思考,回答)(3分钟)

  生1:k值不变,b值变化。

  生2:k值不变,b值变化;当向上平移几个单位,b值就加上几;当向下平移几个单位,b就减去几。

  师:出示幻灯片7上的小规律。

  做一做:(独立完成小组交流师生总结)(4分钟)

  (1)将直线y= -3x沿 y轴向下平移2个单位,得到直线( )。

  (2)直线y=4x+2是由直线y=4x-1沿y轴向( )平移( )个单位得到的。

  (3)将直线y=-x-5向上平移6个单位,得到直线( )。

  (4)先将直线y=x+1向上平移3个单位,再向下平移5个单位,得到直线( )。

  组1汇报结果。

  师:在这些问题中还有没有需要老师帮忙解决的?

  生:没有。

  三、你能谈谈你这节课的收获吗?(2分钟)

  生1:我知道了一次函数图象是直线,所以可以说直线y=kx+b(k0)

  我还学会了用两点法画一次函数的图象。

  生2:我觉得学习一次函数,既离不开数,也离不开图形。

  生3:我知道当k值相同,b值不同时,两个一次函数图象平行,当k值不同时,两个次函数图象相交。

  生4:我知道一条直线通过平移可以得到另一条直线,函数关系式中k,b值的变化情况。

  四、测一测:(6分钟)

  师:老师觉得你们学的不错,你们认为自己学的怎么样?

  生:好

  师:让我们比一比,看一看谁是这节课学得最好的`?哪个小组是最优秀的小组?

  师出示幻灯片,提出要求:独立完成测试题,不能偷看别人的,也不能别人看,否则按作弊处理,给个人和小组都扣分)

  一、填空:1、一次函数y=kx+b(k0)的图象是( ),若该函数图象过原点,那么它是( )。

  2、如果直线y=kx+b与直线y=0.5x平行,且与直线y=3x+2交于点(0,2),则该直线的函数关系式是( )。

  3、把直线y=2/3x+1向上平行移动3个单位,得到的图象的关系式是( )

  4、直线y=-2x+1与直线y=-2x-1的关系是( ),直线y=-x+4与直线y=3x+4的关系是( )。

  5、直线y1=(2m-1)x+1与直线y2=(m+4)x-3m平行,则m的取值是( )。

  二、选择:6、在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( )

  A、交于同一个点 B、互相平行

  C、有无数个不同的交点 D、交点的个数与k的具体取值有关

  7、函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( )

  A、交于同一个点 B、互相平行的直线

  C、有无数个不同的交点 D、交点个数的多少与b的具体取值有关

  在做完之后,师:小组之间交换测试题,老师出示幻灯片上的答案。

  师:看完之后,统计出其小组的成员的成绩以及平均分数,就是该小组的成绩。(老师对优秀个人和小组给予表扬!)

  师:同学们,个人更正错题,可以小组帮助,也可以请老师帮助。

  师给予学生一定的时间,问:同学们对于这节课还有没有疑问?

  生:没有。

  四、作业:

  在同一坐标系中画出下列函数的图象,并说出它们有什么关系?

  (1)y=2x与y=2x+3

  (2)y=-x+1与y=-3x+1

  五、课外延伸:

  直线y=0.5x沿x轴向 (向左或向右),平行移动 个单位得到直线y=0.5x+2。

  六、教后反思:

  在本节课的教学中,我坚持以学生为主体,采用自主探究小组合作、交流问题升华的教学模式。既注重学生基础知识的掌握,又重视学生学习习惯、自主探究、合作学习能力的培养,同时每一个问题都向学生渗透数学形结合的数学思想。每一个问题的解决我都坚持做到:给学生自主探究问题的机会;在学生想展示自己的做法时,给学生充足的时间让他们去合作交流当学习达到高潮时,引导学生将问题延伸,升华思想;最后,精心设计问题,拓宽学生知识面,培养创造性思维。

一次函数教案9

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的'规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  [设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  [设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  2、旅游问题

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  1、数学日记

  2、布置作业

  [设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

  四、教学设计反思

  1、贯穿一个原则——以学生为主体的原则

  2、突出一个思想——数形结合的思想

  3、体现一个价值——数学建模的价值

  4、渗透一个意识——应用数学的意识

一次函数教案10

  一、课程标准要求:

  ①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

  ②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(h0或b0时,图象的变化情况)。

  ③理解正比例函数。

  ④能根据一次函数的图象求二元一次方程组的近似解。

  ⑤能用一次函数解决实际问题。

  二、识方法回顾:

  1.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是 _.

  2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .

  3.正比例函数的图象与直线y= - 3(2)x+4平行,则该正比例函数的解析式为 ____ .

  4.函数y= - 2(3)x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y随的增大而 .

  5.已知一次函数y= - 2(1)x+2当x= 时,y=0;当x 时y 当x 时y0.

  6.把直线y= - 2(3)x -2向 平移 个单位,得到直线y= - 2(3)(x+4)

  7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的交点和直线y=-2(1)x+3与y轴的交点关于x轴对称,那么一次函数的解析式是 .

  8. 直线y=kx+b经过点(0,3),且与两坐标轴构成的`直角三角形的面积是6,则其解析式为 .

  三、典型例题讲解:

  例1 已知一次函数y=-2x-6。

  (1)当x=-4时,则y= ,

  当y=-2时,则x=

  (2)画出函数图象;

  (3)不等式-2x-60解集是_____,

  不等式-2x-60解集是_____;

  (4)函数图像与坐标轴围成的三角形的面积为

  (5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;

  (6)如果y 的取值范围-42,则x的取值范围__________;

  (7)如果x的取值范围-33,则y的最大值是________,最小值是_______.

  例2 在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象.

  例3 已知一次函数y=x+m和y=-x+n的图象交于点A(-2,0)且与y轴的交点分别为B、C两点,求△ABC的面积.

  例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。

  (1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;

  (2)在同一坐标系中作出它们的图像;

  (3)根据图像回答问题:

  ①印刷800份说明书时,选择哪家印刷厂比较合算?

  ②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?

  四、探究实践:

  【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).

  (1)求此一次函数的解析式;

  (2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;

  (3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式;

  (4)求这两条直线与x轴所围成的三角形面积.

  【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.设卖报人每天从报社批出x份报纸,月利润为y元.

  (1)写出y与x的函数关系式;

  (2)画出此函数的图象;

  (3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?

  五、巩固练习:

  1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.

  2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.

  3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.

  4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。已知汽车和火车从A地到B地的运输路程均为s千米。这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:

  运输工具

  行驶速度(千米/小时)

  运费单价(元/吨千米)

  装卸总费用(元)

  汽车

  50

  2

  3000

  火车

  80

  1.7

  4620

  说明:1元/吨千米表示每吨每千米1元

  (1) 请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);

  (2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?

  六、小结 本节我们主要是学习了哪些内容?

  七、教学反思

一次函数教案11

  课题:歌曲《木瓜恰恰恰》

  教学目标:

  1、能够用热情、欢快的声音演唱《木瓜恰恰恰》,感受歌曲的欢快情绪和喜悦心情。

  2、能够用打击乐器为歌曲伴奏。

  3、用叫卖的演唱形式表达歌曲,了解一些相关文化以及“叫卖”的艺术形式。

  教学重点及难点:

  1、用热情、欢快的声音演唱《木瓜恰恰恰》。

  2、正确地演唱《木瓜恰恰恰》的弱起小节及切分节奏。教学准备:多媒体(ppt)、flash动画、歌曲(mp3)、打击乐器(沙锤、双响筒、碰铃等)

  教学过程:

  一、播放《卖汤圆》和《冰糖葫芦》,学生走进教室。让学生感受叫卖调(欢快、活泼、幽默、诙谐)

  导课:师:同学们,刚才听的歌曲你们熟悉吗?你们知道是卖什么的?像这种类型的歌曲叫什么歌?介绍叫卖歌。今天,咱们学习一首印尼叫卖歌曲《木瓜恰恰恰》板书课题。

  二、走入印尼国家

  1、师:印尼是哪个国家?知道吗?(印度尼西亚)。你们想去看看吗?师:印度尼西亚,是“水中岛国”,是由许多大小岛屿组成的群岛国家,又称“千岛之国”。这里火山活跃,又被称为“火山之国”。该国家盛产水果。它的首都是雅加达,有“歌舞之邦”的美称,生活在各岛上的100多个民族都有自己独特的民歌、舞蹈和乐器,各族人民都非常热爱音乐,尤其在印度尼西亚的著名旅游胜地——巴厘岛,舞蹈已成为人民生活的一部分。

  师:你们感受到印尼美吗?(学生答)

  2、出示印尼水果市场

  师:我们又来到了哪里?(水果市场)印度尼西亚的水果特别多,集市上到处都有各种各样的水果,可真是琳琅满目。到处都有吆喝声叫卖水果声。咱们有没有兴趣来学学各种叫卖声,看谁的叫卖声最能吸引顾客来光顾。

  二、感受歌曲,解决重难点

  1、播放《木瓜恰恰恰》flash动画

  师:歌曲给你带来什么感受?(欢快、活泼、高兴等)

  2、范唱歌曲

  师:你听出来歌曲中唱到哪些水果?(番石榴、菠萝等)

  3、介绍弱起小节和切分音

  4、跟老师一起读有节奏的.叫卖声,双手拍腿

  “有番石榴,有菠萝,有芒果,有香蕉,有榴莲,还有苹果—0嗨快来吧,快来吧,快来吧,快来吧,再不买就卖完了—”。师:咱们唱一唱,边唱边拍腿,行吗?师:同学们唱得真好,给自己一个掌声。出示节奏:X X | X .X X X X X ∣X—师:你能读出来吗?咱们读一读,拍一拍

  3、再次听歌曲(mp3)感受恰恰韵律。师:同学们听出来了吗?这首歌哪儿最有特点?生:恰恰恰

  师:这个恰恰恰是轻快的还是笨重的?出现在每个乐句的前面还是末尾?(师生一起说“恰恰恰”。)

  4、师生一起随着歌声唱唱轻快的“恰恰恰”。(“恰恰恰”声音要求轻巧、有弹性)

  5.如果让你给这段歌声加上伴奏的话,你觉得在哪儿加比较合适?(生略)让我们拿起自己制作的沙锤或其他打击乐器为音乐加上伴奏。

  6、师:除了用乐器还可以用什么来表现恰恰恰韵律(扭胯)

  7、我们一起边说边做,看谁的动作既能合上音乐的感觉又和别人都不一样(师生共同扭胯)。(发现较好学生,请她上台带领同学们再来一次。)

  8、师:刚才我们又唱又跳,真开心!师:下面我们来学唱这首歌

  四、学唱歌曲

  1、让学生用“啦”哼唱歌曲

  2、跟琴学唱歌谱

  3、完整演唱歌谱

  4、按节奏读歌词

  5、教唱歌词

  6、完整演唱歌曲

  五、用多种形式表演歌曲

  分组唱:一组唱,另一组打节奏。

  师生合作:跟伴奏,边唱边表演打节奏。

  教师小结

  师:今天,我们通过对叫卖歌曲的学习,了解了叫卖歌曲的特点,这些极富情趣的演唱给了我们极大的艺术享受。其实啊,这些音乐都来源于我们的生活,只要你多做有心人,你也一定可以创作出动听有趣的音乐。好,今天的音乐课我们就上到这里,下课。

一次函数教案12

  一、学生起点分析

  八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系.

  二、教学任务分析

  《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节.本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质.本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识.

  为此本节课的教学目标是:

  1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.

  2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.

  3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.

  4.理解一次函数的代数表达式与图象之间的一一对应关系.

  教学重点是:

  初步了解作函数图象的一般步骤:列表、描点、连线.

  教学难点是:

  理解一次函数的代数表达式与图象之间的一一对应关系.

  三、教学过程设计

  本节课设计了七个教学环节:

  第一环节:创设情境引入课题;

  第二环节:画一次函数的图象;

  第三环节:动手操作,深化探索;

  第四环节:巩固练习,深化理解;

  第五环节:课时小结;

  第六环节:拓展探究;

  第七环节:作业布置.

  第一环节:创设情境引入课题

  内容:

  一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗? S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?

  我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

  目的:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.

  效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.

  第二环节:画正比例函数的图象

  内容:首先我们来学习什么是函数的图象?

  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).

  例1请作出正比例函数y=2x的图象.

  第三环节:动手操作,深化探索

  内容:做一做

  (1)作出正比例函数y= 3x的图象.

  (2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y= 3x.

  请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.

  (1)满足关系式y= 3x的x,y所对应的点(x,y)都在正比例函数y= 3x的图象上吗?

  (2)正比例函数y= 3x的图象上的`点(x,y)都满足关系式y= 3x吗?

  (3)正比例函数y=kx的图象有什么特点?

  明晰

  由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.

  议一议

  既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?

  因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.

  4.3一次函数的图象:同步测试

  14若直线经过第一.二.四象限,则k.b的取值范围是( ).

  A.k>0,b>0 B.k>0,b<0

  C.k<0,b>0 D. k<0,b<0

  2.已知一次函数y=3-2x

  (1)求图像与两条坐标轴的交点坐标,并在下面的直角坐标系中画出它的图像;

  (2)从图像看,y随着x的增大而增大,还是随x的增大而减小?

  (3)x取何值时,y>0?

  3.已知一次函数y=-2x+4

  (1)画出函数的图象.

  (2)求图象与x轴、y轴的交点A、B的坐标.

  (3)求A、B两点间的距离.

  (4)求△AOB的面积.

  (5)利用图象求当x为何值时,y≥0.

  《函数的图象》课后练习

  1.一根弹簧原长12cm,它所挂物体的质量不超过10kg,并且每挂重物1kg就伸长1.5cm,挂重物后弹簧长度y(cm)与挂重物x(kg)之间的函数关系式是()

  A.y=1.5(x+12)(0≤x≤10)

  B.y= 1.5x+12(0≤x≤10)

  C.y=1.5x+10(x≥0)

  D.y=1.5(x-12)(0≤x≤10)

一次函数教案13

  教学目标

  1.知识与技能

  领会一次函数的概念,会从实际问题中建立一次函数的模型

  2.过程与方法

  经历探索一次函数的过程,感受一次函数的解析式的特征

  3.情感、态度与价值观

  培养数形结合的数学,体会一次函数在实际生活中的应用价值

  重、难点与关键

  1.重点:一次函数的概念.

  2.难点:从实际生活中建立一次函数的模型.

  3.关键:把握好实际问题中的两个变量之间的相等关系,建立模型

  教学方法

  采用“情境──探究”的方法,让学生在实际问题中感悟一次函数的概念

  教学过程

  一、创设情境,揭示课题

  问题思索1:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用解析式表示y与x的关系.

  思路点拨y随x变化的规律是,从大本营向上当海拔加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x(或y=-6x+5),当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是x=0.5时函数y=-6x+5的值,即y=2(℃).

  学生活动合作探究,寻找解题途径,踊跃发言,发表各自看法.

  问题思索2:下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?

  (1)有人发现,在20~30℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差;(C=7t-35)

  (2)一种计算成年人标准体重G(单位:千克)的'方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(G=h-105)

  (3)某城市市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取;(y=0.01x+22)

  (4)把一个长10cm,宽5cm的长方形的长减少x,宽不变,长方形的面积y(单位:cm2)随x的值而变化.(y=-5x+50)

  教师活动提出问题,引导学生思考.

  学生活动独立思考,列出函数关系式,并进行比较,得到这一类型函数的共同特征:这些函数的形式都是自变量x的k(常数)倍与一个常数的和

  形成概念一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数

  二、随堂练习,巩固深化

  课本P11.4第练习1,2,3题.

  三、课堂,发展潜能

  1.y=kx+b(k,b是常数,k≠0)是一次函数.

  2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例

  四、布置作业,专题突破

  选用课时作业设计

  板书设计

  14.2.2一次函数(1)

  1、一次函数的概念例:

  2、一次函数与正比例函数的关系练习:

一次函数教案14

  一、教材分析

  1、地位和作用

  这一节内容是初中数学新教材八年级上册第十四章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

  2、活动目标

  ①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。

  ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

  ③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

  ④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。

  总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。

  3、教学重点

  (1).理解一元一次不等式与一次函数的转化关系及本质联系

  (2).掌握用图象求解不等式的'方法.

  教学难点:图象法求解不等式中自变量取值范围的确定.

  二、学情分析

  八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

  三、学法分析

  1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

  2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

  四、教法分析

  由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

  ⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。

  ⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

  教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

  1、“动”———学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

  2、“探”———引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

  3、“乐”———本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

  4、“渗”———在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

一次函数教案15

  学习目标(学习重点):

  1. 针对函数及其图象一章,查漏补缺,答疑解惑;

  2. 一次函数应用的复习.

  补充例题:

  例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系

  (1)B出发时与A相距 千米;

  (2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;

  (3)B出发后 小时与A相遇;

  (4)求出A行走的路程S与时间t的函数关系式;

  (5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.

  例2.在平面直角坐标系中,过一点分别作坐标轴的.垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.

  (1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

  (2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.

  例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.

  (1)求s与t之间的函数关系式.

  (2)与图③相对应的P点的运动路径是: ;P点出发 秒首次到达点B;

  (3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.

  课后续助:

  1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.

  (1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式

  ①用水量小于等于3000吨 ;②用水量大于3000吨 .

  (2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.

  (3)若某月该单位缴纳水费1540元,则该单位用水多少吨?

  2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

  (1)有月租费的收费方式是 (填①或②),月租费是 元;

  (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;

  (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

  3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:

  (1)在y轴( )内填入相应的数值;

  (2)沙尘暴从发生到结束,共经过多少小时?

  (3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.

  (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?

  4.如图所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得的指距与身高的一组数据.

  指距d/cm 20 21 22 23

  身高h/cm 160 169 178 187

  (1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)

  (2)某人身高为196cm,一般情况下他的指距应是多少?

  5.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

  (1)请问汽车行驶多少小时后加油,中途加油多少升?

  (2)求加油前油箱剩余油量y与行驶时间t的函数关系式;

  (3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

【一次函数教案】相关文章:

一次函数教案人教版08-30

一次函数的图象教案11-23

一次函数的图象和性质教案03-07

一次函数的图象和性质教案设计08-26

一次函数说课稿11-12

一次函数教学反思04-01

一次函数图像教学反思10-27

二元一次方程与一次函数教案04-01

一次函数图象的应用说课稿11-09