当前位置:育文网>教学文档>教案> 正数负数教案

正数负数教案

时间:2024-07-19 20:42:14 教案 我要投稿

正数负数教案

  作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,借助教案可以更好地组织教学活动。怎样写教案才更能起到其作用呢?下面是小编整理的正数负数教案,仅供参考,希望能够帮助到大家。

正数负数教案

正数负数教案1

  教学内容:人教版 七年级 上册 第一章 有理数 1.1 正数和负数

  教学目标:

  在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

  使学生经历数学化,符号化的过程,体会负数产生的必要性。

  感受正、负数和生活的密切联系,享受创造性学习的乐趣.

  教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

  教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。

  教学过程:

  一、感受相反方向的数量,经历负数产生的过程。

  1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。

  2、引入负数的概念

  3、总结正负数

  (1)这些数很特别,都带上了符号,它们是一种“新数”。 -9、-4.5等都叫负数; +7、+988等都叫正数。你会读吗?请你读给大家听。注意“-”叫负号,“+”叫正号。

  (2)读给你的同伴听。

  (3)把你新认识的负数再写两个,读一读。

  下面让我们走进正数和负数的世界,进一步了解它们。(板书课题)

  二、借助实际生活情境的'直观,丰富对正负数的认识。

  1、负数有什么用?用正数或负数表示下列数量。(1向东走200米,用+200米表示;那么向西走200米元用 表示。

  2.说说实际问题中负数的确定

  (1.)表示海拔高度

  (2.)解释温度中正负数的含义

  (3)做练习三

  3、怎样理解具有相反意义的量

  三、理解0

  1、0既不是正数也不是负数。0是正负数的分界。

  2、0只表示没有吗?

  1).空罐中的金币数量;

  2).温度中的0℃;

  3).海平面的高度;

  4).标准水位;

  5).身高比较的基准;

  6.)正数和负数的界点;

  3、总结

  0既不是正数,也不是负数;0是正数负数的分界。

  0是整数,0是偶数,0是最小的自然数。

  四、探究活动(出示课件):

  1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?

  若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为 。

  2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。

  3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是( )

  A、20xx年全球财富500强中对主要零售业的统计,大荣公司年收入为25320100万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。

  B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。

  C、收入30元与下降2米是具有相反意义的量。

  D、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。 E、收入与支出是具有相反意义的量

  F、如果收入增加18元记作+18元,那么-50元表示支出减少50元

  5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?

  答:不一定,a可能是正数,可能是负数,也可能是0

  五、探索与思考:

  1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;

  2、例2 -1小的整数如下列这样排列

  第一列 第二列 第三列 第四列

  -2 -3 -4 -5

  -9 -8 -7 -6

  -10 -11 -12 -13

  -17 -16 -15 -14

  ... ... ... ...

  在上述的这些数中,观察它们的规律,回答数-100将在哪一列.

  3、例3

  20xx年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率.

  思考 :负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?

  六、 应用与提高

  1.、有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)

  质量 497 501 503 498 496 495 500 499 501 505

  质量误差分别为:

  如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?

  七 、课堂练习

  1、下列说法中正确的个数是()

  1)、带正号的数是正数,带负号的数是负数

  2)、任意一个正数,前面加上“-”号,就是一个负数

  30、0是最小的正数、

  4)、大于0的数是正数

  5)、字母a既是正数,也是负数

  A.0 B.1 C.2. D.3

  2.判 断

  (1)0是整数( )

  (2)自然数一定是整数( )

  (3)0一定是正整数( )

  (4)整数一定是自然数( )

  3.说明下面这些话的意义:

  ①温度上升+3 ℃ ②温度下降+3 ℃

  ③收入+4.25元 ④支出—4.2元

  4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?

  5.1)向东走+5m,-6m,0m表示的实际意义是什么呢?

  (2)某水泥厂计划每月生产水泥1000t ,一月份实际生产了 950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和 负数表示每月超额完成计划的吨数各是多少?

  八、课堂小结 :

  1. 正数:以前学过的数中,除0外的数叫做正数;如:+5,+0.23, 8818??

  2.负数:在正数前面加上“-”号的数叫做负数;如:-5, -0.54, ??

  3、 0既不是正数,也不是负数。

  4、一个数前面的“+”、“-”号叫做它的符号

  5、在同一个问题中,分别用正数与负数表示具有相反 的意义的量.

  附板书:

  正数和负数

  正数> 0 > 负数

  + 既不是正数-

  正号 也不是负数 负号

  课后反思:

  本节课是让学生在现实情境中了解正负数的意义,会用正、负数描述日常生活中相反意义的量。

  1、 练习贴近生活实际,促进学生对所学知识的有效应用联系生活实际的练习,如“分析质量问题,温度问题。“调查体重”使学生体会到数学源于生活,又应用于生活,让学生感受到数学的作用,又对数学产生亲切感。

  2、这节课可以用信息技术来创设情境,激发学生的学习兴趣。用一个相对完整的事把温度、收入支出和海拔三个关键词串在一起。这样,学生对所学的知识会更有兴趣。

  3、这节课还可以借助信息技术来理解相对意义的量。例如:,出示珠穆朗玛峰和吐鲁番盆地的照片,与海平面比,一高一低。这些都是相对意义的量。有了这些形象的照片,就更有利于学生相对意义的量的理解。

  4、 融入多种学习方式,促进有效教学的开展

  引导学生自主探索学习,给学生充足时间去尝试,交流方法,让学生从不同角度去分析和解决问题,做到学生间的思想沟通,集思广益,寻找答案,解决问题,体现了学生解决数学问题思维的多样化,个性化。另外,在课堂教学中努力做到:师生互动,生生互动,全班交流,共同学习。

  5、在本节课的教学中,还存在着诸多不足,比如如何更好地安排时间,将知识落到实处?”“交流时,如何选择个别交流与集体交流?老师的评价怎么才能更到位。”我想这些都是今后我要努力的方向。

正数负数教案2

  教学目标:

  1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

  2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

  教学重点:

  深化对正负数概念的理解.

  教学难点:

  正确理解和表示向指定方向变化的量.

  教与学互动设计:

  (一)知识回顾和理解

  通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的`量,为了区分它们,我们用正数和负数来分别表示它们.

  [问题1]:“零”为什么既不是正数也不是负数呢?

  学生思考讨论,借助举例说明.

  参考例子:用正数、负数和零表示零上温度、零下温度和零度.

  思考“0”在实际问题中有什么意义?

  归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

  如:水位不升不降时的水位变化,记作:0 m.

  [问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

  (二)深化理解,解决问题

  [问题3]:(课本P3例题)

  【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

  【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,

  法国减少2.4%,英国减少3.5%,

  意大利增长0.2%,中国增长7.5%.

  写出这些国家这一年商品进出口总额的增长率.

  解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

  巩固练习

  1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

  2.让学生再举出一些常见的具有相反意义的量.

  3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

  中国减少866,印度增长72,

  韩国减少130,新西兰增长434,

  泰国减少3247,孟加拉减少88.

  (1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

  (2)如何表示森林面积减少量,所得结果与增长量有什么关系?

  (3)哪个国家森林面积减少最多?

  (4)通过对这些数据的分析,你想到了什么?

  阅读与思考

  (课本P6)用正数和负数表示加工允许误差.

  问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

  2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

  (三)应用迁移,巩固提高

  1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是.

  2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

  3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

  星期一二三四

  增减-5 +7 -3 +4

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  类比例题,要求学生注意书写格式,体会正负数的应用.

  (四)课时小结(师生共同完成)

正数负数教案3

  教学目标

  1。使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;

  2。会初步应用正负数表示具有相反意义的量;

  3。使学生初步了解有理数的意义,并能将给出的有理数进行分类;

  4。培养学生逐步树立分类讨论的思想;

  5。通过本节课的教学,渗透对立统一的辩证思想。

  教学建议

  一、重点、难点分析

  本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

  正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

  关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

  二、教法建议

  这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的'基础上,对有理数的概念的理解就简便多了。

  为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

  三、正数与负数概念的理解

  1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。

  2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…

  3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

  4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

  四、有理数的分类

  整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。

  2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。

  3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。

  4)分数和小数的区别:

  分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

  5)到目前为止,所学过的数(除π外)都是有理数。

正数负数教案4

  学习目标1、了解负数是从实际需要中产生的;

  2、能判断一个数是正数还是负数,理解数0表示的量的意义;

  3、会用正负数表示实际问题中具有相反意义的量.

  重点

  难点重点:正、负数的概念,具有相反意义的量

  难点:理解负数的概念和数0表示的量的意义

  教学流程师生活动时间复备标注

  一、导入新课

  我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活.

  老师刚才的介绍中出现了一些数,它们是些什么数呢?

  [投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数.所以,数产生于人们实际生产和生活的需要.

  在生活中,仅有整数和分数够用了吗?

  二、新授

  1、自学章前图、第2页,回答下列问题

  数-3,3,2,-2,0,1.8%, -2.7%,这些数中,哪些数与以前学习的数不同?

  什么是正数,什么是负数?

  归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+1/3,…,就是2、0.5、1/3,….

  这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

  如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

  2、自学第2—3页,回答下列问题

  大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?

  0有什么意义?

  归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.

  0的`意义已不仅仅是表示“没有”,它还可以表示一个确定的量.

  3、用正负数表示具有相反意义的量:自学课本3—4页

  有哪些相反意义的量?

  请举出你所知道的相反意义的量?

  “相反意义的量”有什么特征?

  归纳小结:一是意义相反,二是有数量,而且是同类量.

  完成3页练习

  4、例题

  自学例题,完成归纳。寻找问题。

  完成4页练习

  三、课堂达标练习

  课本第5页练习1、2、3、4、7、8.

  四、课堂小结

  1、到目前为止,我们学习的数有哪几种?

  2、什么是正数、负数?零仅仅表示“没有”吗?

  3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用.明确目标

正数负数教案5

  单元教学内容

  1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。

  引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。

  2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

  (1)数轴能反映出数形之间的对应关系。

  (2)数轴能反映数的性质。

  (3)数轴能解释数的某些概念,如相反数、绝对值、近似数。

  (4)数轴可使有理数大小的比较形象化。

  3.对于相反数的概念,从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部分。

  4.正确理解绝对值的概念是难点。

  根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

  (1)任何有理数都有唯一的绝对值。

  (2)有理数的绝对值是一个非负数,即最小的绝对值是零。

  (3)两个互为相反数的绝对值相等,即│a│=│-a│。

  (4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.

  (5)若│a│=│b│,则a=b,或a=-b或a=b=0.

  三维目标

  1.知识与技能

  (1)了解正数、负数的实际意义,会判断一个数是正数还是负数。

  (2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解。

  (3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值。

  (4)会利用数轴和绝对值比较有理数的大小。

  2.过程与方法

  经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。

  3.情感态度与价值观

  使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。

  重、难点与关键

  1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值。

  2.难点:准确理解负数、绝对值等概念。

  3.关键:正确理解负数的意义和绝对值的意义。

  课时划分

  1.1 正数和负数 2课时

  1.2 有理数 5课时

  1.3 有理数的加减法 4课时

  1.4 有理数的乘除法 5课时

  1.5 有理数的乘方 4课时

  第一章有理数(复习) 2课时

  1.1正数和负数

  第一课时

  三维目标

  一。知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

  二。过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

  三。情感态度与价值观

  培养学生积极思考,合作交流的意识和能力。

  教学重、难点与关键

  1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2.难点:正确理解负数的概念。

  3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪。

  教学过程

  四、课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的'。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

  五、讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

  (4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量

  (5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。

  (7)、 你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

  六、巩固练习

  课本第3页,练习1、2、3、4题。

  七、课堂小结

  为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。

  八、作业布置

  1.课本第5页习题1.1复习巩固第1、2、3题。

  九、板书设计

  1.1正数和负数

  第二课时

  1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

  2、随堂练习。

  3、小结。

  4、课后作业。

  十、课后反思

正数负数教案6

  学习目标:

  1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛

  2、数学思考:体会数学符号与对应的思想。

  3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。

  重点:进一步理解正、负数及零表示的量的意义。

  难点:理解负数及零表示的量的意义。

  课前准备

  卷尺或皮尺

  教学流程安排

  活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。

  活动2、活动安排 使学生进入问题情境,加深对负数的理解。

  活动3、举例说明 提高解决实际问题的能力。

  活动4、巩固练习 掌握正数和负数。

  教学过程设计

  活动1

  1、 给出一组数,请学生说说哪些是正数、负数。

  2、 学生举例说明正、负数在实际中的应用。

  师生行为及设计意图

  通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。

  活动2

  1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。

  2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的`部分用负数表示。)

  师生行为

  1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。

  2、各小组派一名同学汇报完成的情况。

  设计意图

  通过学生的活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。

  活动3

  问题展示

  1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。

  2、 20xx年 商品进出口总额比上年的变化情况是:

  美国减少6.4%% , 德国增长1.3%,

  法国减少2.4% , 英国减少3.5%,

  意大利增长0.2 %, 中国增长7.5%,

  师生行为及设计意图

  在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。

  活动4

  1、 P6 练习

  2、 总结:这堂课我们学习了那些知识?你能说一说吗?

  3、 作业 P7习题1 .1 4、7、8

  师生行为及设计意图

  教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。

  教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。

  学生课后巩固、提高、发展。

正数负数教案7

  教学目标

  1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2, 能区分两种不同意义的量,会用符号表示正数和负数;

  3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点 正确区分两种不同意义的量。

  知识重点 两种相反意义的量

  教学过程

  (师生活动) 设计理念

  设置情境

  引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考。。

  师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中·共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解。

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

  这阶段主要是让学生学会正数和负数的表示。

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的`量。 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

  问题4:请同学们举出用正数和负数表示的例子。

  问题5:你是怎样理解“正整数”“负整数,’正分数”和“负分数”的呢?请举例说明。

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习 教科书第5页练习

  小结与作业

  课堂小结

  围绕下面两点,以师生共同交流的方式进行:

  1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

  本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

  作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  密切联系生活实际,创设学习情境。本课是有理数的第一节课时。引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的。为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的。

  负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的的负数就是让学生去感受和体验这一点。使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了。。

  这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

正数负数教案8

  教学目标:

  知识与技能:通过实例,感受引入负数的必要性;会判断一个数是正数还是负数;会用正负数表示互为相反意义的量。

  过程与方法:通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。

  情感态度与价值观:通过归纳,让学生体会思维的一般过程是从具体到抽象;从特殊到一般的过程,使他们培养良好的思维习惯和探索精神,通过对学生进行爱国主义思想教育,培养学生良好的个性品质。

  教学重点:会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义。

  教学难点:理解负数、数0表示的量的意义。

  教村分析:会判断正数、负数及理解对数0表示量的意义,能为下一节课讲述有理数的分类,大小的比较等打下基础,因此成为本节课的重点,由于用负数表示实际问题对学生来说很不习惯,因此成为本节课的教学难点。本节课是在小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接,而且是以后学习数轴、相反数、绝对值以及有理数运算的基础。本节课从学生熟悉的实例出发,通过一系列探索和讨论过程,着重培养学生学会观察、分析、总结和归纳,使传授知识与培养能力融为一体,使学生不仅学到科学探究的方法,而且让他们在学习过程中获得愉快和进步,同时培养他们爱国主义精神。

  教学方法:情境教学法、启发式教学法、讨论法

  课时安排:一课时

  教具:投影仪(电脑)

  环节教师活动学生活动设计意图

  创设情境导入新课

  鼓励每组派两名同学到讲台前,按照教师的指令进行表演活动,看哪一组获胜。

  教师说出指令:

  向前一步,向后一步;

  向前两步,向后两步;

  向前三步,向后一步;

  向前四步,向后两步;

  教师根据学生的活动情况,也参与表演,适当加以引导启发,用符号(加减号)表示。

  活动后,评选出速记最快,方法最好的同学。

  一、初步了解,认识具有相反意义的量

  启发学生举出生活中常遇到的一些具有相反意义的量,教师针对学生列举的例子给予适当点评,鼓励。

  判断一些量是否具有相反意义:(出示幻灯片一)

  例1、判断下面各对量是不是具有相反意义的量

  (1)温度是零上25℃和零下18℃;

  (2)某条河的水位上升0.7米和下降1.2米。

  (3)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米。

  教师针对学生的答题情况给予评价。

  二、具有相反意义的量的表示方法:

  教师综上进行引导:

  一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正,并在表示这量的前面放上一个“+”(读作“正”)来表示;把与它意义相反的量规定为负的,并在表示这个量的前面放上一个“-”(读作“负”)来表示(零除外)

  鼓励学生任意结组,举例说明,巩固练习。

  做一做:(出示幻灯片二)

  1、请你仿照天气预报中对气温的表示方法,完成下表:

  意

  义向东走1.8千米向西走3千米收入14200元支出4745元水位上升30厘米水位下降50厘米

  表

  示+1.8千米+14200元+30厘米

  2、请你把下面句子中的量用“+”或“-”的数表示出来

  (1)一辆公共汽车在一个停车站下去10个乘客

  (2)珠穆朗玛峰高于海平面8844.43米和吐鲁番盆地最低点低于海平面155米

  (3)商品价格上涨10%和下降15%.

  教师对学生的回答,给予鼓励性评价,最后板书答案。

  三、观察归纳、理解正数和负数

  议一议:(出示幻灯片三)

  观察由前面的问题得到的数:

  -3,4745,50,18,+8844。43,-155,+10%,-15%哪些数的形式与以前学过的数有区别?

  教师根据学生的回答,归纳总结,同时板书课题及正、负数的概念。

  在已学过的数(0除外)的前面添上“-”得到的这样的数叫做负数;在已学过的数(0除外)的前面添上一个“+”得到的,这样的数叫做正数。

  教师强调两点:

  1、0既不是正数,也不是负数。

  2、正数中的“+”可以省略不写。

  四、巩固训练(出示幻灯片四)

  1、下面哪对量是具有相反意义的?

  (1)在知识竞赛中,加20分和扣10分。

  (2)一座水库水量增加10000立方米和减少12000立方米。

  (3)某汽车站开进汽车28辆和开出汽车24辆。

  (4)长方形的周长是24厘米和面积是27平方厘米。

  2、写出与下列各量具有相反意义的量:

  (1)飞机上升200米,____________________

  (2)铅球的质量低于标准质量2克,_________

  (3)木材公司购进木材20xx立方米,________

  3、判断下列各数哪些是正数,哪些是负数

  +12,-3,19,+0.4,0,3.14,+,-,-0.01

  五、应用迁移,拓展升华

  (出示幻灯片五)

  填空:-1,2,-3,4,-5,_____,_____,

  _____,_____……

  第81个数是_______,第20xx个数是_______.

  教师针对学生的回答进行点评,并适当鼓励。

  下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”)

  星期日一二三四五六

  元+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来的相比多了还是少了?

  (3)如果不用正负数的方法记账,你还可以怎样记帐?比较各种记帐方法的优劣。

  教师参与学生的讨论,对学生的回答给予鼓励性的评价。

  六、学习总结:

  这节课你有哪些收获?有什么体会?

  教师简要点评,同时对学生的总结给予适当的评价和鼓励,最后告诉学生,负数最早记载于中国的《九章算术》中,比国外早一千多年,借此向学生进行爱国主义思想教育。

  1、课堂检测(包括基础题和能力提高题)

  2、开放探究:

  同学聚会,约定在中午12点开会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?一名学生按老师的指令表演,另一名学生在黑板上速记,其他同学参与,帮助本组的同学。

  教师让多个学生自由发言

  学生独立思考,举手发表个人见解,其他同学可以互相补充。

  每组同学之间相互合作,交流,一同学说有关相反的两个量,由其他同学表示。

  让学生抢答,尽量照顾不同层次的学生参与的积极性在教师的引导下学生仔细观察,小组讨论、交流,发表个人见解,学生踊跃发言,相互补充、完善,尝试归纳。

  学生独立思考,举手回答,教师尽量选多名学生回答。

  学生分组讨论,相互交流意见,选派代表回答。

  同桌或小组学生讨论,合作探究,对于第(3)问同学们可以各抒已见。

  学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。

  综合考查学以致用

  通过活动,激发学生参与课堂教学的热情,使学生进入问题情境,让其感受到引入数学符号的必要性,引入新课。

  培养学生敢于发表自己见解的'精神,激发学生学习的兴趣。

  进一步加深巩固具有相反意义的量的意义,同时培养学生的语言表达能力

  巩固具有相反意义的量的表示方法,培养学生合作交流意识。

  在练习中进一步巩固具有相反意义的量的表示方法。

  在这一活动中有助于培养学生的观察能力,合作探究意识和语言表达能力,可调动不同层次学生的积极性。

  巩固所学的知识,让多名学生回答,可调动不同层次的学生的积极性。

  通过学生的讨论交流,培养学生合作意识及总结归纳能力。

  通过这一实际问题,有助于提高学生运用所学的知识解决实际问题的能力,同时体现了运用正、负数表示的优越性。

  学生尝试小结,自由发表学习心得,能培养学生的语言表达能力和归纳概括能力,同时向学生进行爱国主义思想教育。

  考查学生对知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力。

  附板书设计:

  2.1正数和负数(一)

  正数

  像+1.8,+14200,+30,

  +10%等在已学过的数

  (0除外)的前面添上

  “+”的数叫正数。

  教学反思:

  本节课采取启发式教学法和情感教学,创设问题情境,引导学生主动思考,总结和归纳,取得了较好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养,重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师,但在引入正负数概念时,学生由得到的具体数总结归纳时,仍然感到有些难度,教师有些包办代替,还是应该多举些实例,完全由学生得出更好。

  2.1正数和负数(二)

  教学目标:

  知识与技能:理解有理数的意义;能把给出的有理数按要求分类;了解数0在有理数分类中的作用;理解相反数的意义;给一个数,能求出它的相反数。

  过程与方法:通过本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力。

  情感态度与价值观:通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。

  教学重点:有理数的分类,理解相反数的意义

  教学难点:掌握有理数的两种分类

  教材分析:正确进行有理数的分类,理解相反数的意义,可为今后绝对值的学习,有理数大小比较及有理数的运算打下基础。同时可培养学生对事物进行分类讨论的思想,因此成为本节课的重点。两种分类是按不同标准划分的,学生很容易混淆,因此成为本节课的难点,本节课是继负数引入后的一节课,它把以前所学的数作了梳理和归纳,使得知识系统化,能培养学生分类讨论的思想。同时相反数的意义可为以后的学习作准备,本节课旨在通过学生观察、思考、探索、总结知识,培养学生的讨论、交流、总结、归纳能力和合作探究意识,树立分类讨论思想。

  教学方法:情境教学法、生生互动法

  课时安排:一课时

  教具:投影仪(电脑)

  环节教师活动学生活动设计意图

  合作探究一

  课堂反馈

  现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。大家讨论一下,到目前为止,你已经认识了哪些类型的数。

  教师板书学生说出的数。然后引出新课并板书课题:2.1正数和负数(二)

  议一议:

  你能把这些数分类吗?

  教师对学生的回答给予鼓励性的评价,同时指出:我们把所有的这些数统称为有理数。

  一、讨论与交流,归纳有理数的分类:

  1、试一试:你能对以上各种类型的数作出一张分类表吗?

  教师启发诱导,参与讨论,最后师生共同完成。

  教师板书:

  2、做一做:

  以上按整数和分数来分,那么可不可以按性质(正数、负数)来分呢?

  教师对学生的回答进行适当点评和鼓励,加以引导。

  板书:

  教师强调两种分类的区别:

  第一种分类是先把有理数按“整”和“分”来分类,再把每类按“正”和“负”来分类。

  第二种分类是把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类。

  二、观察与思考:了解相反数:

  (出示幻灯片一)

  下列各组数有哪些相同点和不同点?请说说你的想法,并和同学进行交流。

  (1)4,-4(2)3,-3(3)2.5,-2.5

  教师针对学生的回答,给予鼓励性评价,并根据学生的发言讲解出相反数的概念(板书:只有符号不同的两个数,称其中一个数是另一个数的相反数,0的相反数规定为0)

  (出示幻灯片二)

  例2:(1)分别写出8和-12的相反数

  (2)指出-11.2和各是什么数的相反数。

  教师尽量照顾不同层次的学生参与的积极性,对学生的回答给予鼓励,利用幻灯片出示答案。

  三、巩固基础,加强训练

  (出示幻灯片三)

  1、把下列各数填入相应的集合内:

  ,-,0.618,+15,,-0.3,,-12

  正整数负整数正数集合负数集合

  集合集合

  2下列说法中,正确的个数为()

  ①0是最小的正整数②0是最小的有理数

  ③0不是负数

  ④0既是非正数,也是非负数

  A、1个B、2个C、3个D、4个

  3、填空:

  (1)4.5的相反数是.

  (2)-2的相反数是.

  (3)的相反数是2

  (4)的相反数是0

  教师针对学生的答题情况给予适当评价和鼓励。

  四、应用迁移,巩固提高

  (出示幻灯片四)

  1、如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数。

  2、请你在下面的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集。

  教师参与学生的讨论,启发、鼓励学生的动手尝试,对学生的答案给予鼓励性评价。在讲台上展示不同学生的答案。

  五、学习总结:

  提问:今天你获得了哪些知识?

  教师参与互动,并给予鼓励性评价

  教师简要点评:今天我们学习了有理数的意义和两种分类的方法及相反数的概念,我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法。

  1、课堂检测

  2、生活中,我们也常常对事物进行分类,请你举例说明。

  学生同桌讨论、交流,自由发言

  学生踊跃发言,相互补充

  学生观察思考,分组讨论,尝试归纳

  学生进一步讨论、交流、总结、归纳

  学生观察思考,小组讨论,交流发现和概括出“相反数”

  学生抢答

  1、3题学生抢答,尽量照顾不同层次的学生参与的积极性;

  2题学生讨论、交流选代表回答。

  1题学生可动手实际操作

  同桌或小组讨论合作研究完成

  学生相互交流自己的收获和体会

  综合考查

  学以致用

  对所学过的数作了梳理和回顾,自由发言激发了学生学习的热情和求知欲。

  为有理数的分类作准备

  培养了学生观察、思考、总结、归纳的能力,同时培养学生对数分类讨论的观点

  通过再分类培养学生树立对立与统一的思考方法,对学生进行辩证唯物主义教育。

  培养学生观察能力,合作探究意识,总结、归纳的能力和语言表达能力。

  在练习中进一步巩固相反数的概念。

  巩固所说的知识

  通过练习培养学生的动手操作能力和团结协作的精神,有助于提高学生运用所学知识解决实际问题的能力。

  锻炼学生的语言表达能力和归纳概括能力

  考查学生对本节知识的掌握情况,锻炼学生综合运用知识,独立解决问题的能力

  附板书设计:

  2.1正数和负数(二)

  1、有理数的两种分类:

  (1)(2)

  教学反思:

  本节课通过情境教学导入新课,并且在教学过程中,教师扮演的是组织者、引导者、合作者的角色,学生成为了学习的主人,主动去观察、讨论、交流、总结、归纳,体现了新课程理念,但在整个的教学过程中还缺乏与实际生活的联系,教师在此方面还须努力挖掘这方面的素材,让学生真正体会到数学知识来源于生活,又反作用于生活。

正数负数教案9

  教学目标

  1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2,能区分两种不同意义的量,会用符号表示正数和负数;

  3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点

  正确区分两种不同意义的量。

  知识重点

  两种相反意义的量

  教学过程(师生活动)

  设计理念

  设置情境

  引入课题

  上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考。

  师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是,身高1。73米,体重58。5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“—”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。

  这个问题能激发学生探究的.欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知

  问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解。

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

  这阶段主要是让学生学会正数和负数的表示。

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展

  经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

  问题4:请同学们举出用正数和负数表示的例子。

  问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性。

正数负数教案10

  预习提示

  1、在实际问题中,为便于记录、计算引入正、负数体会其引入情境;

  2、理解正、负数表示一对具有相反意义的量,并会表示。

  知识目标:

  会用正、负数表示相反意义的量。

  能力目标:

  用正、负数表示实际生活中具有相反意义的量。

  情感目标:

  体会正、负数在实际生活中的.意义。

  学习重、难点:

  用正、负数表示实际生活中具有相反意义的量

  学习过程:

  1、比比看谁快:

  (1) 比0大的数叫___________,在___________前加上-号数叫负数;

  (2) 把下列各数写入相应集合里:

  -10, 6, ―7, 0, ―2.25, ― , 10%,

  正整数集合{ } 负整数集合{ }

  正数集合 { } 分数集合 { }

  负数集合 { }

  2、想一想:

  例1、(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出这个月他们的体重增长值;

正数负数教案11

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

  为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的`1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

正数负数教案12

  《1.1正数和负数》教学设计

  教学目标

  1. 通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

  2. 进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

  3. 激发学生学习数学的兴趣.

  [教学重点与难点]

  重点:深化对正负数概念的理解.

  难点:正确理解和表示向指定方向变化的量

  《1.1正数和负数》同步练习

  1、下列说法正确的是( )

  A、零 是正数不是负数 B、零既不是正数也不是负数

  C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数

  2、向东行进-30米表示的意义是( )

  A、向东行进30米 B、向东行进-30米

  C、向西行进30米 D、向西行进-30米

  3、零上13℃记作 +13℃,零下2℃可记作( )

  A、2 B、-2 C、2℃ D、-2℃

  4、某市20 15年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高 气温比 最低气温高( )

  A、-10℃ B、-6℃ C、6℃ D、10℃

  5、 中,正数有 ,负数有 .

  6、如 果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,

  水位不升不降时水位变化记作 m.

  7、在同一个问题中,分别用正数与负数表示的量具有 的意义.

  8、甲、乙两人同时从A地出发, 如果向南走48m,记作+48m,则乙向北走32m,记为 ,

  这时甲乙 两人相距 m. .

  9、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.

  10、20xx年我国全年平均降水量比 上年减少24㎜,20xx年比上年增长8㎜,20xx年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

  11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么 意思?这时物体离它两次移动前的位置多 远?

  12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表 示90分,正数表示超过90分,则五名 同学的平均成绩为多少分?

  13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃ ,又过7小时气温又下降了4℃,第二天0时的气温是多少?

  《1.1正数和负数》同步练习含答案

  19.体育课上,对初三(1)班的学生进行了仰卧起坐的`测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名 女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

  (1)这10名女生的达标率为多少?

  (2)没达标的同学做了几个仰卧起坐?

  解:(1)这10名女生的达标率为8÷10 ×100%=80%.

  (2)没达标的同学做仰卧起坐的个数分别是23个和27个.

正数负数教案13

  一、教学目标

  知识与技能:使学生了解正数与负数是从实际需要中产生的;

  过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;

  情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

  二、教学重点和难点

  负数的引入和意义

  三、教学过程

  创设情景,生活实例引入,观察猜想,合作探究

  (一)、从学生原有的认知结构提出问题

  大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

  为了表示一个人、两只手、,我们用到整数1,2,

  为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、

  为了表示没有人、没有羊、我们要用到0.

  但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.

  (二)、师生共同研究形成正负数概念

  某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的`数,都记作5℃,就不能把它们区别清楚.

  它们是具有相反意义的两个量.

  现实生活中,像这样的相反意义的量还有很多.

  例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,高于和低于其意义是相反的.

  又如,某仓库昨天运进货物 吨,今天运出货物 吨,运进和运出,其意义是相反的.

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了.

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

  运进纲物 吨,记作+ ;运出货物 吨,记作- .

  教师讲解:什么叫做正数?什么叫做负数.

  强调,数0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量.并指出,正数,负数的+-的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号

  (三)、运用举例 变式练习

  例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

  -11,4,8,+73,-2,7, , ,-8,12, - ;

  正数集合 负数集合

  此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合

  课堂练习

  任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

  正数集合:{ },

  负数集合:{ }

  四、课堂小结

  由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上-号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃

  五、作业布置

  1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

  2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?

  3.在下列各数中,哪些是正数?哪些是负数?

  -16,0,004,+ ,- , ,25,8,-3,6,-4,9651,-0,1.

  4.如果-50元表示支出50元,那么+200元表示什么?

  5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?

  6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?

  7.一物体可以左右移动,设向右为正,问:

  (1)向左移动12米应记作什么?(2)记作8米表明什么?

正数负数教案14

  学习目标:

  1.了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数。

  2.会用正负数表示生活中常用的具有相反意义的量;知道整数、分数的分类。

  3. 培养学生的数学应用意识,渗透对立统一的辩证思想。

  教学重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的`量。

  教学难点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。

  教学过程:

  一.自主学习(导学部分)

  1.在中国地形图上,可以看到有一座世界最高峰----珠穆朗玛峰,图上标有8848;还有一个吐鲁番盆地,图上标有-155 (单位:米)。这种数通常称为海拔高度,它是相对于海平面来说的。你知道海平面的高度通常用什么数表示吗?请说出图中所示的数8848和-155表示的实际意义。

  2.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25C,10C,零下10C,零下30C。

  为书写方便,将测量气温写成25,10,―10,―30。

  3.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?

  在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,为了表示没有,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。总之,数是为了满足生产和生活的需要而产生、发展起来的。

  二.合作、探究、展示

  1.正、负数的读法与写法:

  号读作负,如117.3,读作负五, 号是不可以省略的.

  +号读作正.如 ,读作正三分之二,+ 可以省略不写.

  2.议一议

  有位同学说一个数如果不是正数,必定就是负数. 你认为这句话对吗?为什么?

  4.例1指出下列各数中的正数、负数:

  +7,-9, ,-4.5,998, ,0

  练一练:课本P13、2 3

  5.相反意义的量:

  在日常生活中,常会遇到这样一些量(事情)具有相反意义。向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义

  你能举出几对日常生活中具有相反意义的量吗?

  例2(1)如果向北8千米记作+8千米,那么向南走5千米记作什么?

  (2)如果运进粮食3t记作+3,那么4t表示什么?

  练习:课本P13/2 3

  6. 统称为整数。

  统称为分数。

  三.巩固练习

  1.比0大的数叫做__ ____; 比0小的数叫做___ ____;

  2.既不是正数,又不是负数的数是__ ___.

  3.数 3,-0.2,1,0, 中,负数有 个,正数有 个.

  4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数

  (1)、1,-1,1,-1,1,-1,1,-1, , , ,

  (2)、1,-2,3,-4,5,-6,7,-8, , , ,

  5.小莉说:一个数,不是正数,必是负数。小明说:带有-号的数就是负数,带有+号的数就是正数 。你认为他们的说法正确吗?谈谈你的看法。

  四.课堂小结

  1、通过本节课学习,我们知道了一种新的数----负数。你是如何区分一个数是正数还是负数的?

  五.布置作业

  六.预习指导

正数负数教案15

  教学内容:

  正数和负数的初步认识,数轴的相关知识,相反数的相关知识,绝对值的相关知识。

  教学目的:

  1、 教学正数和负数的意义,会判断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。

  2、 能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。

  3、 了解相反数的概念,掌握相反数的表示法,能正确地求出一个数的'相反数。

  4、 掌握绝对值的表示法,给一个数,会求它的绝对值。

  教材分析:

  本单元教材是为进一步学习正数和负数加减法打下基础,为初中数学学习做准备,是衔接小学数学和初中数学的重要环节.教学的重点是相反数和绝对值,难点是正数和负数及数轴概念的理解。

  教学课时:

  约6课时。

  教学准备:

  小黑板、投影片。

  1、 正数和负数

  教学内容:完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。

  教学目的:

  1、 认识正数和负数,会用正数和负数表示一些常见的数量。

  2、 培养学生对相对的理解,培养创新的思维品质。

  教学重点:

  负数的认识是本课的重点。

  教学过程:

  一创设情景:

  师:我们已经学过哪些数?

  出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?

  二探究新知:

  1师:你会读这些数字吗?试一试.

  师:像-1、-4、-8……这样的数都是负数。

  师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。

  2自学课本第二页的内容。

  师:你还能举出一些正、负数的例子吗?

  3教学例题

  出示例题,读题后说一说自己的想法。

  明确:海平面以上用正数表示,海平面以下用负数表示。

  4试一试

  完成试一试的相关题目。

  三巩固拓展

  1完成练习一a组的1-7题。

  第4题要重点订正。

  2完成练习一b组的第1、2、3题。

  四小结

  师:本节课你有什么收获?

【正数负数教案】相关文章:

正数与负数教案02-20

正数和负数教案07-18

《正数和负数教案》教学设计09-20

正数和负数教案(精选10篇)05-25

《正数和负数教案》17篇08-30

正数与负数说课稿05-24

《正数与负数》教学反思08-16

正数和负数教案优秀[15篇]07-24

正数和负数教学反思10-04

正数和负数说课稿12-26