当前位置:育文网>教学文档>教案> 比与比例的优秀教案

比与比例的优秀教案

时间:2022-12-18 15:34:22 教案 我要投稿
  • 相关推荐

比与比例的优秀教案

  作为一名教师,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。那要怎么写好教案呢?以下是小编精心整理的比与比例的优秀教案,仅供参考,大家一起来看看吧。

比与比例的优秀教案

比与比例的优秀教案1

  教学目标:

  知识与技能

  理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,

  能正确解答按比例分配应用题。培养学生应用知识解决实际问题的能力。

  过程与方法

  经历应用知识的过程,体验数学知识的应用价值。

  情感态度与价值观

  让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,

  体验数学知识的应用价值。

  教学重点:

  理解按比分的意义,学会运用不同的方法解决按比分配的问题。

  教学难点:

  正确分析数量关系,灵活解决按比分配的实际问题。

  小学六年级上册数学公开课 按比例分配优秀教学设计教案

  教学准备:

  多媒体课件

  一、 热身练习

  1、 修一段路,已经修的米数与剩下的米数的比是4 ∶5,可以把已修的米数看作( )份,剩下的就有( )份。这段路共有( )份已经修的是剩下的( ),剩下的是已修的(),已经修的.占这段路的()剩下的占这段路的( )。

  2、 李明、张强与黄华合办股份制食品有限公司,张强出资10万,李明出资20万元,黄华出资30万元,两年后盈利180万元,怎样分配利润才合理?

  3、 拿自己配制的饮料,导出课题在工农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫做按比例分配。揭示课题

  二、 新课探究

  (一)展示例题:我把蜂蜜和水按1:4的比配制了一瓶500ml稀释液,其中蜂蜜的浓缩液和水的体积分别是多少?

  1、 学生读题,找出不理解的语句,老师解释(浓缩液 稀释液)

  2、 找出已知条件:500mL 1:4

  (1)师:500是什么? (浓缩液体积和水的体积之和)

  (2)师:1:4什么意思?能不能用自己的方式表示出这个比(3)从1:4这个比中可以得到什么信息?

  3、 学生尝试解题。

  4、 汇报

  方法一:总份数:1+4=5每份:500÷5=100ml浓缩液:100×1=100ml水:100×4=400ml

  方法二、总份数:1+4=5浓缩液:500× =100ml水:500×=400ml

  5、 师评讲,小结方法

  (二)做一做

  1、 如果有140个橘子,按3︰2的比分给两个班,应该怎样分?

  2、 学校把栽70棵树苗的任务按照六年级的三个班级的人数分配给各班,一班有46人,二班有44人,三班有50人。三个班各应栽多少棵?

  (三)师生总结

  这些都是“按比例分配”的问题。分配问题的一般思考步骤是:分什么?有多少?怎样分?

比与比例的优秀教案2

  教学目标

  1.使学生理解比例的意义,掌握组成比例的条件。

  2.使学生能正确地判断两个比能否组成比例。

  3.认识比例的各部分名称,掌握比例的基本性质。

  教学重点和难点

  比例的意义和性质的理解与应用。

  教学过程设计

  第一部分:比例的意义

  (一)复习准备

  1.求比值:

  2.请你找出比值相等的两个比。

  1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

  (二)学习新课

  1.一辆汽车第一次2小时行80千米,第二次6小时行240千米,请你说出第一次行驶路程和时间的比。

  板书:80∶2

  再请你说出第二次行驶路程和时间的比。

  板书:240∶6

  师:现在你分别求出两个比的比值。(学生口述,师板书:80∶2=40,240∶6=40)

  师:你们观察一下两个比的比值怎么样?这两个比之间有没有关系?(学生互说)

  得出:第一个比的比值是40,第二个比的比值也是40。因为比值相等,所以比就相等。(老师板书:两个比相等,可以用等号把两个比连起来。)

  教师把80∶2和240∶6中间用等号连起来,然后边指着边说:“像这样的式子在数学上是什么概念呢?这就是我们要学的新内容:比例的意义。”(老师板书课题)

  师:至于什么叫比例以及比例的各部分名称、组成比例的条件,请你结合思考题看书自学。(告诉学生页数,从第几行看到第几行。)

  思考题:

  1.什么叫比例?

  2.比例的各部分名称?

  3.组成比例的'重要条件?

  采取自学→两人讨论→集体讨论。

  师再次强调组成比例的条件:

  A.必须是两个比。

  B.两个比的比值必须相等。

  C.必须是一个式子。

  最后得出:表示两个比相等的式子叫比例。(老师将板书完整化)两个比表面上看不同,其实质是相同的,也就是比值相同。那么判断两个比能不能组成比例式,关键是看比值是否相等,只要比值相等就可以组成比例。

  师:上面那些比符合比例的意义吗?能否组成比例?(学生说,老师连线或让学生连线。)

  比例还有其它书写格式吗?请同学们看,老师怎样写。

  (三)巩固反馈

  1.判断下面两个比能否组成比例?

  (1)1∶3和3∶9( )

  (2)60∶30和160∶80( )

  (4)0.2∶0.4和1.6∶4( )

  并组成比例。(学生先写再说)

  3.随意写比例,互相查看。(至少写2个)

  第二部分:比例的性质

  (一)讲授比例的性质

  让学生观察:在比例里有几个数?这几个数叫什么?这几个数有没有区别?

  学生发言,老师小结:比例是由两个比组成的,组成比例的四个数叫比例的项(老师边指边说),靠近等号的(中间的两项)两项叫内项,两端的两项叫外项。如:

  请你指出黑板上比例中的内外项。

  现在请你做一件工作:先算出两个外项的积,再算出两个内项的积。算完以后你发现什么规律?学生说算式,老师板书:

  通过以上几道题,使学生看到,在比例里两个外项的积等于两个内项的积。这个规律我们把它叫做比例的性质。(老师把课题补充完整。)

  师:这个规律是在什么前提下成立的呢?必须是在比例里,才能两个外项积等于两个内项的积。

  师:你们说说什么叫比例的性质?这是这节课要掌握的第二个内容。

  师:比例写成分数形式时,比例的性质如何理解呢?

  80×6=2×240 1.2×8=24×0.4

  即等号两端的分子、分母分别交叉相乘,积相等,用字母这样表示:

  (二)课堂练习

  (放幻灯片)

  (1)用比例性质验证你所写的比例是否正确?

  (2)用2,8,5,20四个数组成比例。

  (3)填适当的数。

  3∶18=5∶( )

  为什么填30?有几个答案?

  4.8∶0.6=( )∶2

  为什么只能填16?

  12∶( )=( )∶5

  有几个答案?

  (4)在比例中两个外项的积是80,那么这个比例中的内项积一定是几?为什么?

  (5)在比例中两个内项分别是45和2,那么这个比例中的两个外项积应该是几?为什么?

  (三)课堂总结

  (学生小结这节课所学内容。)

  1.质疑:(学生、老师质疑)(幻灯片)

  ①表示两个相等的式子叫比例。对吗?

  2.思考题:

  (1)根据30×3=45×2写比例式。

  (2)求x:

  12∶30=8∶x

  能不能应用今天所学的内容解决?怎么解决?比例的性质还可以应用在什么问题上?

  课堂教学设计说明

  本教案是在学生学过比的意义和性质的基础上设计的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。本教案分为两部分,先教授比例的意义,再教授比例的性质。

  第一部分,首先通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,用汽车两次行驶路程和时间的比,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,老师安排了让学生写出比值相等的比,再组成比例,还安排了四个数组比例,目的在于加深对比例意义的认识和理解。

  第二部分,教学比例的性质。首先认识比例的各部分名称,认识内项和外项,然后引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。

  另外,在学生没有提出问题的情况下,老师出了两道题,目的是巩固对比例意义的认识与理解,最后老师出的思考题,为解比例做铺垫工作。

  在整个教学过程中,老师要重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,使学生学会比例的意义和性质。老师可根据本班学生的实际情况可做些调整,这一教学过程的设计,是符合学生的认知规律的,按照这个程序教学是会收到较好的教学效果的。

  板书设计

比与比例的优秀教案3

  教学目标

  1、使学生理解正比例的意义.

  2、能根据正比例的意义判断两种量是不是成正比例.

  3、培养学生的抽象概括能力和分析判断能力.

  4、使学生理解正比例的意义.

  教学难点

  引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

  教学过程

  一、复习

  出示下面的题目,让学生回答..已知路程和时间,怎样求速度?板书: =速度

  2.已知总价和数量,怎样求单价?板书:=单价

  3.已知工作总量和工作时间,怎样求工作效率?板书:=工作效率

  4.已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量

  二、导入新课

  教师:这是我们过去学过的一些常见的数量关系.这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系.(板书课题:正比例的意义.)

  三、新课

  1、教学例1.

  用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;

  时间(时) 1 2 3 4 5 6 7 8

  路程(千米) 90 180 270 360 450 540 630 720

  提问:

  表中有哪几种量?

  当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?

  这说明时间这种量变化了,路程这种量怎么样了?(也变化了.)

  教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的量).

  时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?

  让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值.教师板书出来:=90,=90,=90,=90,

  让学生观察这些比和它们的比值,看有什么规律.教师板书:相对应的两个数的比值(也就是商)一定.

  比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)

  教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量.)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的.〕

  2、教学例2.

  出示例2:在布店的柜台上,有像下面一张写着某种花布的米数和总价的表.

  数量(米) 1 2 3 4 5 6 7

  总价(元) 8。2 16。4 24。6 32。8 41。0 49。2 57。4

  让学生观察上表,并回答下面的问题:

  (1)表中有哪两种量?

  (2)米数扩大,总价怎样?米数缩小,总价怎样?

  (3)相对应的总价和米数的比各是多少?比值是多少?

  然后进一步问:

  这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)

  教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小.它们扩大、缩小的规律是:总价和米数的比的比值总是一定的.

  3、抽象概括正比例的意义.

  教师:请同学们比较一下刚才这两个例题,回答下面的问题:

  (1)都有几种量?

  (2)这两种量有没有关系?

  (3)这两种量的比值都是怎样的?

  教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定.像这样的两种量我们就把它们叫做成正比例的'量,它们的关系叫做正比例关系.

  最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书

  4、教学例3.

  出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  教师引导:

  面粉的总重量和袋数是不是相关联的量?

  面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)

  已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例.

  5、巩固练习.

  让学生试做第13页做一做中的题目.其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以

  四、课堂练习

比与比例的优秀教案4

  【学习目标】

  1、让学生在实践活动中体验生活中需要比例尺。

  2、 通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。

  3、 运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  【教学重点】正确理解比例尺的含义。

  【教学难点】运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题

  【教学过程】

  一、画图产生疑问、引入新知

  1、画图

  师:同学们,今天我们在上新课前先来画一画图,请同学们翻开课堂练习本,拿出尺子。

  请在本子上画出一条长5厘米的线段。

  请在本子上画出一条长12厘米的线段。

  请大家在本纸上画一条长1米的线段。(生面有难色)

  师:怎么不画了?有什么疑问吗?(本子没有1米长)那该怎么办呢?

  (把1米长的线段缩短后,画在本子上)(生画)

  2、引入新知

  师:说一说,你是怎么画的?(生:10厘米、5厘米、或1厘米长的表示(板书)

  师:看来同学们的表示方法各不相同,像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

  师:但是如果把黑板上的数据1米擦去,只把本子上的2厘米、5厘米线段图给别人看,别人能知道你表示的实际距离是1米吗??那么今天,我就向大家介绍一位新朋友,它就是《比例尺》!(板书)

  二、自主探究,理解比例尺的意义

  1、理解比例尺意义

  师:大家请看笑笑同学就根据比例尺的知识画出了他家的平面图,你看他图中的比例尺是?你知道1:100是什么意思吗?同学们思考一下,把你的想法跟同桌说一说(生思考交流)

  生汇报:1表示图上距离、100表示实际距离

  图上的1厘米的线段,表示实际的100厘米,

  实际距离是图上距离的100倍。

  师:对,图上的1厘米,表示实际的100厘米,因此比例尺实际上就等于图上距离与实际距离的`比(板书:比例尺=图上距离/实际距离)生读一读

  2、生活中的比例尺

  师:生活中,你在哪些地方有见过比例尺?)黄老师也收集了一些,请同学们看一看(出示各图,分别让学生读出图中的比例尺并说出它们表示的意义)

  3、自己写一个比例尺

  师:现在你们自己在本子上写一个比例尺,并向同桌说一说它表示的意思

  生汇报

  4、总结比例尺的特点

  师:我们现在初步的认识了比例尺,你有没有发现比例尺有什么样的特点?(生说)总结:是一个比; 图上距离和实际距离的单位是统一的;比例尺的前项一般为1

  三、运用知识,尝试解决问题。

  1、解决第2小题

  师:同学们,笑笑按比例尺1:100画出了她家的平面图,他想带我们看看他的卧室,请大家把书翻到30页,先请大家量出他卧室长宽的图上距离是多少吧?(课件)

  (1) 量出笑笑卧室的长和宽

  师:你们量出了笑笑卧室长是?宽是?那你们算出笑笑卧室实际的长和宽吗和面积吗?(课件出示)试一试,并把你的解题思路写在练习本上。

  (2)算出笑笑算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。

  a : 学生独立完成。(师巡视)

  b : 学生汇报计算方法。(展示仪展示)

  小结回顾

  想一想,我们刚才在求笑笑卧室面积的过程中都经历了哪些程序?(先量出图上距离,在求出实际距离,然后才能算出面积)

  2、解决笑笑家的总面积是多少平方米?

  先让学生讨论一下,再汇报方法,然后再计算

  学生汇报计算方法。(展示仪展示)

  3、解决第4题

  师:笑笑在设计图时还遇到了难题,我们一起来帮帮她吧!

  (课件出示在父母卧室的南墙正中有一扇宽为2米的窗户,在平面图上标出来。)

  (1)分析题意,让学生说一说(这道题什么意思呢?谁来说一说)

  (1) 学生交流想法。

  (2) 学生独立完成。

  生1:2米=200厘米 200/100=2厘米

  生2:200÷100=0。02米 0。02米=2厘米

  师:同学们的表现都非常的出色,笑笑还为我们出了道难题,大家敢于应战吗?

  4、解决第5题

  (课件出示:笑笑的卧室长4米,画在图纸上,她用8厘米表示自己卧室的长。)

  1、 图上1厘米表示的实际距离是多少厘米?

  2、 她画的平面图的比例尺是多少?

  生:小组合作、讨论、探究、反馈汇报。

  四:全课总结

  师:通过前面的学习,你能谈谈自己的收获

比与比例的优秀教案5

  教学目标:

  1、通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

  2、培养学生的逻辑思维能力

  3、感知生活中的数学知识

  重点难点

  1、通过具体问题认识反比例的量。

  2、掌握成反比例的量的变化规律及其 特征

  教学难点:

  认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

  教学过程:

  一、课前预习

  预习24---26页内容

  1、什么是成反比例的量?你是怎么理解的?

  2、情境一中的两个表中量变化关系相同吗?

  3、三个情境中的两个量哪些是成反比例的量?为什么?

  二、展示与交流

  利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

  情境(一)

  认识加法表中和是12的直线及乘法表中积是12的曲线。

  引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

  情境(二)

  让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

  两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考

  同桌交流,用自己的语言表达

  写出关系式:速度×时间=路程(一定)

  观察思考并用自己的语言描述变化关系乘积(路程)一定

  情境(三)

  把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系

  写出关系式:每杯果汁量×杯数=果汗总量(一定)

  5、以上两个情境中有什么共同点?

  反比例意义

  引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

  活动四:想一想

  二、 反馈与检测

  1、判断下面每题是否成反比例

  (1)出油率一定,香油的质量与芝麻的质量。

  (2)三角形的.面积一定,它的底与高。

  (3)一个数和它的倒数。

  (4)一捆100米电线,用去长度与剩下长度。

  (5)圆柱体的体积一定,底面积和高。

  (6)小林做10道数学题,已做的题和没有做的题。

  (7)长方形的长一定,面积和宽。

  (8)平行四边形面积一定,底和高。

  2、教材“练一练”P33第1题。

  3、教材“练一练”P33第2题。

  4、找一找生活中成反比例的例子,并与同伴交流。

  板书设计: 反比例

  两个相关联的量,乘积一定,成反比例

  关系式:X×Y=K(一定)

  课后反思:

  本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。

比与比例的优秀教案6

  设计说明

  1.注重培养学生学习的自主性。

  引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

  2.培养学生的解题能力。

  本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的`解题能力、合作能力及归纳能力得到提高。

  课前准备

  多媒体课件

  教学过程

  ⊙创设情境,提出问题

  1.介绍“物物交换”的背景知识。

  人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。

  2.呈现问题。

  同学们算一算,14个玩具汽车可以换多少本小人书?

  设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

  ⊙尝试解决,体会联系

  1.想一想。

  师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。

  2.说一说。

  教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。

  预设

  方法一 14÷4=3.5,3.5×10=35(本)。

  方法二 10÷2=5,14÷2=7,5×7=35(本)。

  方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。

  方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。

  ⊙自主学习,探究新知

  1.提出新的要求。

  师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?

  2.学生尝试列式。

  预设

  方法一 4∶10=14∶x。

  方法二 10∶4=x∶14。

  方法三 14∶4=x∶10。

  方法四 4∶14=10∶x。

  3.交流汇报写出比例的主要依据。

  4.学生独立解比例。

  5.汇报结果。

  预设

  生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。

  生2:我是这样计算的:

  4∶10=14∶x

  解:4x=140

  x=35

  6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。

  (师巡视,适时指导)

  7.验算:把求出的结果代入比例验算一下,看等式是否成立。

  (学生自主验算)

  8.教师小结。

  解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

  设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

比与比例的优秀教案7

  教学目标:

  1、掌握用正比例的方法解答相关应用题;

  2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;

  3、培养学生分析问题、解决问题的能力;

  4、发展学生综合运用知识解决简单实际问题的能力。

  教学重点:

  掌握用正比例的方法解答应用题

  教学难点:

  能正确判断两种相关联的量成什么比例,正确列出比例式。

  教学过程:

  一、复习:出示

  二、谈话导入:

  1、在上新课之前,先考考大家我们的楼房有多么高?

  2、怎样测量它大概的高度呢?

  刚才同学们想出了很多的方法去测量大概高度。今天我们学习一种新的方法──正比例应用题,学完后,我们试着用这种方法去计算楼房的大概高度。看谁学得最棒。

  三、新课教学:

  先来研究这样一个问题。

  1、出示例1

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  2、分析解答应用题

  (1) 请一位同学读一读题目

  (2) 这道题要求什么?已知什么条件?

  (3) 能不能用以前学过的方法解答?

  (4) 让学生自己解答,边订正边板书:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、激励引新

  这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

  四、探讨新知

  1、提出问题

  师:请同学们结合课本上的例题,讨论以下问题。

  (1) 题目中相关联的两种量是________和________。

  (2) ________一定,_________和_________成_______比例关系。

  (3) ______行驶的_____ 和 _____的 ________相等。

  2、学生自学例题后小组讨论。

  3、组间交流:小组代表把讨论结果在班内交流

  4、学生尝试解答后评价(指名学生板演)

  5、怎样检验?把检验过程写出来。

  6、概括总结

  (1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  (2) 明确解题步骤。(板)

  用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

  1.分析判断

  2.找出列比例式所需的相等关系

  3.设未知数列等式

  4.求解

  5.检验写答语

  五、练习提高

  1、 变式练习,出示

  (1)例题改编

  ① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

  ② 让学生解答改编后的应用题,集体订正。

  ③ 小结 :比较一下改编后的题和例1有什么联系和区别?

  例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

  140/2=350/x

  (2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

  2、基本练习,出示

  3、实践运用

  (1)汇报数据:刚才我们上课时提到怎样测量和计算楼房的大概高度,课前我请几位同学去测得一些数据。现在请这些同学跟我们汇报一下。

  (2)能用这些数据编一道正比例应用题吗?

  (3)小组合作编题

  六、总结

  今天我们学习的`是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

  七、课后反思

  1、还有部分学生不理解正比例的意义

  2、不会判断是不是成正比例的关系

  3、列出的比例式不是正比例的形式

比与比例的优秀教案8

  教学目标

  1.理解比和比例的意义及性质.

  2.理解比例尺的含义.

  教学重点

  整理比和比例、求比值及比例尺.

  教学难点

  正、反比例概念和判断及应用.

  教学步骤

  一、基本训练

  43-27

  5。65+0。5 4。8÷0。4 1。25÷ 100×1%

  0。25×40

  二、归纳整理

  (一)比和比例的意义及性质.

  1.回忆所学知识,填写表格【演示课件“比和比例”】

  2.分组讨论:

  比和分数、除法有什么联系?

  比的基本性质有什么作用?比例的基本性质呢?

  3.总结几种比的化简方法.【继续演示课件“比和比例”】

  比

  前项

  ∶(比号)

  后项

  比值

  除法

  分数

  (1)整数比化简,比的前项和后项同时除以它们的最大公约数.

  (2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

  (3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

  (4)用求比值的方法化简,求出比值后再写成比的形式.

  解比例:12 :x=8 :2

  4.巩固练习

  (1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

  (2)甲数除以乙数的商是1。4,甲数和乙数的比是多少?

  (3)解比例: ∶ =8∶2

  (二)求比值和化简比.【继续演示课件“比和比例”】

  1.求比值:4∶

  化简比:4∶

  2.比较求比值和化简比的区别.

  一般方法

  结果

  求比值

  根据比值的意义,用前项除以后项是一个商,可以是整数、小数或分数

  化简比

  根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外)

  是一个比,它的前项和后项都是整数

  3.巩固练习.

  (1)求比值

  45∶72 ∶3

  (2)化简比

  0.7∶0.25

  (三)比例尺【继续演示课件“比和比例”】

  1.出示中国地图

  教师提问:

  (1)这幅地图的比例尺是多少?(比例尺是 )

  (2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

  (3)比例尺除了写成 ,以外,还可以怎样表示?

  2.巩固练习

  在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

  在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

  (四)正比例和反比例【继续演示课件“比和比例”】

  1.回忆正、反比例意义

  2.巩固练习

  (1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

  ①收入一定,支出和结余

  ②出米率一定,稻谷的重量和大米的重量.

  ③圆柱的侧面积一定,它的底面周长和高.

  (2)木料总量、每件家具的用料和制成家具的件数这三种量

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成反比例.

  (3)如果 =8 , 和 成( )比例.

  如果 = , 和 成( )比例.

  (4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

  三、全课小结

  这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的问题?

  四、课堂练习

  1.填空.

  (l)根据右面的线段图,写出下面的比.

  ①甲数与乙数的比是( ). 甲数:

  ②乙数与甲数的比是( ). 乙数:

  ③甲数与甲乙两数和的比是( ).

  ④乙数与甲乙两数和的比是( ).

  (2)( )24= =24 ∶( )=( )%.

  (3) ∶6的比值是( ).如果前项乘上3,要使比值不变,后项应该( ).如果前项和后项都除以2,比值是( ).

  (4)把(1吨):(250千克)化成最简整数比是( ),它的比值是( ).

  (5) 与3。6的最简整数比是( ),比值是( ).

  (6)如果a×3=b×5,那么a∶b=( )∶( ).

  (7)如果a∶4=0。2∶7,那么a=( ).

  (8)把线段比例尺 改写成数值比例尺是( ).

  (9)甲数乙数的比是4∶5,甲数就是乙数的( ).

  (10)甲数的 等于乙数的 ,甲乙两数的比是( ).

  2.选择正确答案的序号填在( )里.

  (1)1克药放入100克水中,药与药水的比是( ).

  ①1∶99 ②1∶100 ③1∶101 ④100∶101

  (2)一项工程,甲队单独做要10天,乙队单独做要8天.甲队和乙队工作效率的最简整数比是( ).

  ①10∶8 ② 5∶4 ③4、∶5 ④ ∶

  (3)在下面各比中,与 ∶ 能组成比例的.是( ).

  ①4∶3 ②3∶4 ③ ∶3 ④ ∶

  (4)有一无,某班的出勤率是90%,出勤人数和缺勤人数的比是( ).

  ①9∶10 ②10∶9 ③1∶9 ④9∶1

  (5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( ).

  ①1∶5 ②1∶5000 ③1∶500000

  (6)用3、5、9、15这四个数组成的比例式是( ).

  ①15∶3=5∶9 ②3∶15 ③15∶9=5∶3 ④9∶3=5∶15

  (7)在比例尺 的地图上,2厘米表示( ).

  ①0.4千米 ②4千米 ③40千米

  (8)大小两圆半径的比是3∶2,它们的面积的比是( ).

  ①3∶2 ②6∶4 ③9∶4

  五、布置作业

  1.化简下面各比

  0.12∶56

  2.写出两个比值都是3的比,并组成比例

  3.写出一个比例,使它两个内项的积是12

  4.如图是用1∶20的比例尺画的一个机器零件的截面图,量出图中两个圆的半径,并计算这个零件截面的实际面积.

  六、板书设计

  比和比例

比与比例的优秀教案9

  教学内容:

  成反比例的量。

  教学目的:

  使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。

  教学重点、难点:

  反比例的意义和正确判断成反比例的量。

  教具准备:

  小黑板、投影片。

  教学过程

  一、 复习

  1、 口答正比例的意义。

  2、 怎样判断两种量成正比例?

  3、 写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

  (1) 已知每小时加工零件数和加工时间,求加工零件总数。

  (2) 已知每本书的价钱和购买的本数,求应付的钱。

  (3) 已知每公亩产量和公亩数,求总产量。

  二、引新

  在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)

  三、 新授

  1、 教学例4。

  (1)出示例4。

  引导学生观察上表内数据,然后回答下面的问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?

  C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?

  D、这个积表示什么?写出表示它们之间的数量关系式。

  学生口答,师板书

  小结:

  2、教学例5

  用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。

  每本的页数 15 20 25 30 40 60

  装订的本数 40

  (1) 先填表,然后观察上表,回答下列问题:

  表中有哪两种量?

  装订的本数是怎样随着每本的页数变化而变化的?

  表中相对应的每两个数的乘积各是多少?

  你从中发现什么规律?写出它们的数量关系式?

  学生回答,教师板书如下:

  每本页数装订的本数=纸的.总页数(一定)

  (2) 小结:

  从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。

  (3) 归纳反比例的意义及关系式。

  (1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)

  (2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:

  a两种相关联的量。

  b一种量变化,另一种也随着变化。

  C两种量中相对应的两个数的积一定。

  (3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)

  (4) 概括关系式。

  如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:

  XY=R(一定)

  3.教学例6。

  播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

  师:大家能不能根据反比例的意义判断一下?

  指名口述,师讲评。

  (每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)

  四、小结

  判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。

  讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?

  五、巩固练习

  课本第16页的做一做练后讲评。

  六、课内外作业

  完成练习三的第4――7题。

比与比例的优秀教案10

  教学内容:

  比例

  第五课时

  教学目标:

  1、使学生在具体情境中理解理解比例尺的意义,能看懂线段比例尺。

  2、求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。

  3、使学生在观察、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

  重点难点:

  使学生理解比例尺的含义,会求一幅图的比例尺,看懂线段比例尺。

  教学过程:

  一、复习

  1厘米= ( )毫米

  1分米= ( )厘米

  1米= ( )分米

  1千米= ( ) 米

  20米= ( )厘米

  50千米=( )厘米

  二、情境导入

  1、谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。但这么辽阔的地域却可以用一张并不很大的纸画下来。 出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习 这方面的知识比例尺。 板书课题:比例尺

  三、自主探究,理解比例尺的意义。

  1、出示例6,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪两个数量的'比?什么是图上距离?什么是实际距离?

  2、探索写图上距离和实际距离的比的方法。

  提问:图上距离和实际距离单位不同,怎样写出它们的比?

  引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出比后再化简。

  学生独立完成后,展示、交流写出的比,强调要把写出的比化简。

  3、揭示比例尺的意义以及求比例尺的方法。

  谈话:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

  提问:这张长方形草坪平面图的比例尺是多少? 启发:可以怎样求一幅图的比例尺呢? 根据学生的回答,相机板书: 图上距离:实际距离=比例尺

  4、进一步理解比例尺的实际意义,认识线段比例尺。

  提问:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。 图上距离/实际距离=比例尺

  指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。比例尺1:1000还可以用下面这样的形式来表示。 0 10 20 30米

  进一步指出:像这样的比例尺通常叫做线段比例尺。

  提问:从这个线段比例尺来看,图上的1厘米表示实际距离多少米?图上的2厘米、3厘米分别表示实际距离多少米?这与1:1000的含义相同吗?

  四、巩固练习。

  1、做练一练第1题。

  先说说每幅图中比例尺的实际意义。同样长的实际距离在哪幅图中画得长?哪幅图中1厘米的图上距离表示的实际距离长?

  2、做练一练第2题。让学生各自测量、计算,再交流思考过程。

  3、指出

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如 2.5厘米:1O千米,要把后项的千米化成厘米后再算出比例尺。

  ③为了计算简便,通常把比例尺的前项化简成1,如果写成分数形式,分子也应化简成1。

  五、全课小结。

  这节课你学会了什么?你有哪些收获和体会?计算一幅图的比例尺时要注意什么? 六、课堂作业

  六、课堂作业 补充习题35页。

比与比例的优秀教案11

  教学内容:比例的意义、基本性质,比例各部分名称,组比例。

  教学目标:

  1. 使学生理解比例的意义,认识比例各部分的名称。

  2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

  教学重点:比例的意义和基本性质。

  教学难点:理解比例的基本性质。

  教学过程:

  一、 复习

  1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

  2、 求下面各比的比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、 新授

  提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

  1、 比例的意义

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  从上不中可以看到,这辆汽车:

  第一次所行台的路程和时间的比是____;

  第二次所行驶的路程和时间的比是____;

  这两个比的比值各是多少?它们有什么关系?

  (1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

  板书:80:2=200:5 或 =

  师:这样的式子,我们给它一个名字叫做比例。

  (2) 口答

  A、把复习第2题中两个比值相等的比用等号连起来。

  B、用等号连接起来的式子叫做什么?

  C、根据刚才的回答,你能说出什么叫比例吗?

  (3) 小结。

  A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

  B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。

  (4) 练习,课本第10页做一做。

  2、 比例的基本性质。

  (1) 比例各部分的名称。

  引导学生观察黑板上的例题:80:2=200:5

  并自学课本

  提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

  (2) 说出下面各比例的外项和内项?

  6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

  (3) 计算:上面比例中的`外项积与内项积。

  (4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

  师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

  (5)你能得出什么结论?

  三、 巩固练习

  1、 完成第2页的做一做。

  2、 完成第3页的做一做第1题。

  四、 总结

  1、 比例的意义和基本性质是什么?

  2、 怎样判断两个比能否组成比例?

  五、 作业

  1、 完成练习四的第1-3题。

比与比例的优秀教案12

  教学目标:

  1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。

  3.进一步体会数学与日常生活的密切联系。

  学重点:目标1、2。

  教学难点:目标2。

  教学过程:

  活动一、创设情境,引入新知

  笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。

  1.出示平面图。

  2.观察图,说说从图中知道了什么?

  3.思考:比例尺1:100是什么意思?

  (1)独立思考。

  (2)同伴交流。

  (3)汇报。

  得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。

  4.量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。直接提出“笑笑卧室实际的面积是多少平方米?

  (1)学生四人小组合作完成。

  (2)汇报交流。

  强调:必须先求出实际的长和宽,然后再算出实际的面积。

  5.笑笑家的总面积是多少平方米?

  (1)学生独立完成。

  (2)集体订正。

  6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。

  (1)理解题意。

  (2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。

  (3)进行计算。

  7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。

  (1)图上1厘米表示的实际距离是多少厘米?

  (2)她画的平面图的比例尺是多少?

  活动二、试一试

  1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是( )千米。

  (1)理解题意,独立思考。

  (2)交流自己的想法。

  (3)进行计算。

  活动三、练一练

  1.完成32页第2题。

  (1)独立完成。

  (2)汇报交流。

  (3)提出问题。

  2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。

  (1)独立计算。

  (2)汇报,全班交流。

  (3)说说自己的想法。

  活动四、实践活动

  1.找一张中国地图,量一量,算一算。

  (1)量出北京和台北之间的'距离是( )厘米,它们之间的实际距离大约是( )千米。

  (2)量出乌鲁木齐和上海之间的距离是( )厘米,它们之间的实际距离是( )千米。

  2.找一张中国地图,用▲表出你家乡的大致位置。

  (1)估一估在地图上你的家乡与北京的距离大约是( )厘米,实际距离大约是( )千米。

  (2)放暑假时,你打算从( )到( )去旅游,两地之间的实际距离大约是( )千米。

  3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。

  学生可以在家长的帮助下,在家里完成。

  课后小结:说说你今天的收获和问题。

比与比例的优秀教案13

  【教学内容】

  比和比例(1)。

  【教学目标】

  1.使学生进一步理解比和比例的含义及性质,会化简比和求比值,会解比例。

  2.经历比和比例的复习,体验对比、归纳的学习方法,培养学生归纳整理、灵活运用知识的能力。

  【重点难点】

  理解比和比例、求比值及化简比等知识。

  【教学准备】

  多媒体课件。

  【复习导入】

  教师:我们已经学习了比和比例,你知道比和比例的哪些知识?

  学生逐一说出一些知识后,教师揭示课题。

  【归纳整理】

  1.复习比和比例的意义和性质

  出示表格,通过提问进行填空。

  引导提问:

  什么叫做比?举例说明。各部分名称是什么?

  什么叫做比的基本性质?举例说明。

  什么叫做比例?举例说明。各部分名称是什么?

  什么叫做比例的基本性质?举例说明。

  (1)组织学生议一议,并相互交流。

  (2)指名学生汇报,汇报时注意举例说明,并进行集体评议。

  (3)学生汇报后,教师板书表格。

  比例的基本性质有什么用处?

  指名学生回答。

  练习:解比例:

  一人板演,其余做在草稿本上。

  2.复习比、分数、除法的关系。

  提问:比和分数有什么关系?

  比和除法有什么关系?

  出示表格:

  比、分数与除法的'关系:

  组织学生认真填写表格,并议一议,相互交流。

  用投影仪汇报学生的完成情况,并进行集体评议。

  教师根据学生的交流板书:

  教师举例:5∶6=()÷()

  由一名学生板演,其他做在练习本上。

  3.复习求比值和化简比。

  出示习题:化简下面各比并求比值。

  请四名学生板演:其余学生做在练习本上。

  做完后集体订正,请同学们说一说求比值与化简比的方法。

  出示表格。

  化简比与求比值的不同之处

  (1)组织学生独立思考,认真填写表格。

  (2)学生互相议一议,互相交流。

  (3)指名说一说,并进行集体评议。

  教师板书:

  4.复习比例尺。

  (1)什么叫做比例尺?

  指名回答后,教师板书:=比例尺

  (2)说出下面各比例尺的具体意义。

  ①比例尺1:3000000表示

  ②比例尺20:1表示

  ③比例尺表示

  组织学生先想一想,同桌相互交流。

  教师指名说。(多点一些基础较差的人说)

  (3)巩固练习。

  ①求比例尺。

  一条绿化带长350m,在平面图上用7cm的线段表示。这幅图纸的比例尺是多少?

  ②求实际距离。

  在比例尺是的地图上,量得a地到b地的距离是5cm。求ab两地的实际距离。

  学生独立作业后再集体订正。

  答案:①1∶5000②400km。

  【课堂作业】

  教材85页练习十七第1题。

  学生独立作业,然后再集体订正。

  【课堂小结】

  通过这节课的学习,你对比和比例有了更深刻的认识了吧。你学到了哪些知识,同桌之间相互说一说。

  【课后作业】

  完成练习册中本课时的练习。

比与比例的优秀教案14

  【教学内容】

  比例的基本性质(教材第41页内容)。

  【教学目标】

  1.使学生理解比例的基本性质。

  2.提高学生观察、计算、发现、验证和总结的能力。

  3.在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。

  【重点难点】

  应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。

  【教学准备】

  投影仪。

  【复习导入】

  1.教师提问:什么叫做比例?

  2.应用比例的意义,判断哪两个比可以组成比例。

  6∶3和8∶50.2∶2.5和4∶50

  教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?

  【新课讲授】

  1.教学比例各部分的名称。

  引导学生自学教材第41页第1行、第2行的内容。

  教师板书:2.4∶1.6=60∶40

  指名让学生指出板书的比例的`外项、内项。随着学生的回答教师接着板书:

  学生认一认,说一说比例中的外项和内项。

  2.探究比例的基本性质。

  教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

  教师板书:比例的基本性质。

  组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

  学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。

  验证其他的比例有没有这个规律,举例说明,检验发现。如:∶0.5=1.2∶,两个外项的积是×=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。

  如果把比例改成分数形式呢?如:=,3×15=5×9。等号两边的分子和分母分别交叉相乘,所得的积相等。

  教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

  3.应用比例的基本性质,判断哪两个比可以组成比例。

  6∶3和8∶50.2∶2.5和4∶50

  组织学生在小组中互相交流,然后指名汇报。

  4.教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法?

  学生讨论交流后,指名回答。

  教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。

  【课堂作业】

  教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。

  【课堂小结】

  通过这节课的学习,你有哪些收获?

  【课后作业】

  1.教材第43页练习八第5题。

  2.完成练习册中本课时的练习。

  答案:(1)不可以组成比例;(2)可以组成比例;(3)可以组成比例;(4)不可以组成比例

  第2课时比例的基本性质

  在比例里,两个外项之积等于两个内项之积。这叫做比例的基本性质。

比与比例的优秀教案15

  整体感知

  本课主要复习比和比例的意义与性质、比例尺的知识。

  本节课知识的呈现是这样的:教材先把比和比例的意义和性质归纳整理成表,通过对比使同学们弄清比和比例的概念,再通过“说一说”、“想一想”、“做一做”等形式进一步巩固所学知识。其中,求比值和化简比是同学们容易混淆发生错误的地方,复习时应从“一般方法”和“结果”两方面加以比较,以便使同学们形成清晰的概念,掌握“比较”的学习方法。

  在复习比例尺时,要使同学们理解比例尺实际上是一个比,是图上距离和实际距离的比。着重训练同学们能够应用比例的知识,求出平面图的比例尺以及根据比例尺求出图上距离和实际距离。

  教学内容:教材第101—103页,完成第101—102页和第103页上面的.“做一做”,练习二十二的第1—9题。素质教育目标

  (一)知识教学点

  1.理解比和比例的意义和及性质。

  2.理解比例尺的含义。

  (二)能力训练点

  1.会化简比和求比值,会解比例。

  2.能正确地解答有关比例尺的应用题。

  (三)德育渗透点

  引导同学们探索知识间的联系,激发同学们学习兴趣。教学步骤

  一、基本训练

  二、归纳整理

  1.比和比例的意义及性质

  (1)教师引导同学们回忆所学知识并完成下表:

  (2)说一说,比和分数、除法有什么联系?根据同学们的回答完成下表:

  (3)提问:比的基本性质有什么作用?比例的基本性质呢?

  引导同学们小结几种比的化简方法:

  ①整数比化简,比的前项和后项同时除以它们的最大公约数。

  ②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

  ③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

  ④也可以用求比值的方法化简,求出比值后再写成比的形式。

  例2解比例12∶x=8∶2

  指名同学们说出解法,教师板书。

  (4)做教材第101页的“做一做”

  ①李师傅昨天6小时做了72个零件,今天8小时做了96个零件。写出李师傅昨天和今天所做零件个数的比和所用时间的比。这两个比能组成比例吗?为什么?

  ②甲数除以乙数的商是1.4,甲数和乙数的比是多少?

  2.求比值和化简比

  同学们做完后,组织同学们比较求比值和化简比的区别,并整理成下表:

  (2)完成教材第102页“做一做”的题目,做完后集体订正。

  3.比例尺

  (1)教师出示一张中国地图,让同学们观察后提问:

  ②什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

  (2)完成教材第103页上面的“做一做”的题目,做完后集体订正。

  (3)反馈练习

  在一幅地图上,用3厘米长的线段表示实际距离900千米。这幅地图的比例尺是多少?在这幅图上量得a、b两地的距离是

  2.5厘米,a、b两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

  三、巩固发展

  1.填空。

  (1)根据右面的线段图,写出下面的比。

  ③甲数与甲乙两数和的比是()。

  ④乙数与甲乙两数和的比是()。

  不变,后项应该()。如果前项和后项都除以2,比值是()。

  (4)把(1吨)∶(250千克)化成最简整数比是(),它的比值是()。

  (6)如果a×3=b×5,那么a∶b=()∶()

  (7)如果a∶4=0.2∶7,那么a=()

  (9)甲数乙数的比是4∶5,甲数就是乙数的()

  2.选择正确答案的序号填在()里。

  (1)1克药放入100克水中,药与药水的比是()。①1∶99 ②1∶100 ③1∶101 ④100∶101