小数的意义教案 15篇
作为一位优秀的人民教师,就不得不需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?下面是小编整理的小数的意义教案 ,仅供参考,大家一起来看看吧。
小数的意义教案 1
[教学目标]
1.理解小数乘以整数的意义,掌握它的计算方法。
2.通过运用迁移的方法学会新知识,培养类推的能力。
3.培养学生认真观察、善于思考的学习习惯。
[教学过程]
本节课分四个环节进行。
课前谈话:同学们已学习了小数加法和减法的意义及计算方法,这学期要在这个基础上,继续学习小数乘法和除法的意义及计算方法等知识。今天,我们先学习小数乘以整数的意义和计算方法。出示课题:小数乘以整数
(一)复习旧知,引入新知
1.指名板演。(用竖式计算)65×5=976×14=订正时,可让学生说说整数乘法的意义及计算方法。
2.口答。(出示投影片)
(1)填空。5.6扩大()倍是56。9.76扩大()倍是976。
(2)去掉下面各数的小数点后,分别扩大多少倍?3.24.780.0370.06
(3)下面各数分别缩小10倍、100倍、1000倍后各是多少?485853450
3.填表,并说一说你发现了什么规律。(出示投影片)
订正时要注意引导学生先从左向右观察:一个因数不变,另一个因数扩大10倍、100倍、1000倍,积也随着扩大10倍、100倍、1000倍。
再引导学生从右向左观察发现:一个因数不变,另一个因数缩小10倍、100倍、1000倍,积也随着缩小10倍、100倍、1000倍。
最后归纳出:一个因数不变,另一个因数扩大(或缩小)10倍、100倍、1000倍……,积也随着扩大(或缩小)10倍、100倍、1000倍……。
教师谈话:刚才我们复习了整数乘法的意义和计算方法,小数点位置的移动引起小数大小的变化规律,及因数的变化引起积的变化规律,这些知识都是为今天学习新知识做准备。下面我们运用这些知识一起研究小数乘以整数的意义和计算方法。
教学意图:让学生充分回忆旧知识,为学习新知识进行迁移做好准备。教师要注意让全体学生参与,动口、动手、动脑。
(二)运用迁移,学习新知
1.理解小数乘以整数的意义。
出示例1:花布每米6.5元,买5米要用多少元?
读题后,请学生列出加法算式并板书:
6.5+6.5+6.5+6.5+6.5
提问:这个加法算式中的加数有什么特点?这样的加法算式怎样计算比较简便?
(几个加数相同,都是小数。求n个相同加数的和可以用乘法计算比较简便。)
提问:你能列出乘法算式吗?想一想它的意义是什么呢?
(6.5×5,表示5个6.5相加是多少,或6.5的5倍是多少)
板书:6.5×5
教师:6.5×5是小数乘以整数,小数乘以整数的意义是什么呢?
出示思考题,并组织学生讨论。
(1)小数乘以整数的意义与整数乘法的意义相同吗?(相同)
(2)它们有什么不同?(小数乘以整数中的几个相同加数是小数,而整数乘法中的几个相同加数仅限于整数)
(3)小数乘以整数的意义是什么呢?
讨论后概括出:小数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
练一练,说出下列各题的意义。0.9×463×68.4×15(4个0.9相加的和是多少?6个63相加的和是多少?15个8.4相加的和是多少?)
2.理解法则。
教师:我们学习了小数乘以整数的意义,下面继续研究它的计算方法。同学们可联系前面复习的知识,认真思考,积极发言。
出示思考题,组织学生讨论,并试做。
(1)怎样把6.5×5转化为整数乘法进行计算?
(2)把6.5×5转化为整数乘法后,积发生了什么变化?
(3)要想使积不变,应该怎么办?
讨论后,教师指名回答,并板书学生的思考过程。
答:买5米要用32.5元。
教学意图:让学生初步理解小数乘以整数的意义和计算方法。采用的方法是让学生在旧有知识的基础上运用迁移的方法,通过讨论、尝试,自己探索新知。
(三)反馈调节,归纳方法
1.反馈调节。
(1)完成“做一做”。(指名板演,其他同学在练习本上完成)14个9.76是多少?练习时,要注意行间巡视;订正时,根据学生的问题及时调节。
(2)计算。0.86×70.375×124(指名板演,其他同学在练习本上完成)订正时,要让学生说一说计算时是怎样想的。
2.归纳方法。观察并讨论:例题和练习题每题的积的小数位数与被乘数小数位数有什么关系?小数乘以整数的计算方法是什么?(积的小数位数和被乘数小数位数相同)
总结计算方法:小数乘以整数,先按整数乘法法则算出积,再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
总结后,组织看课本,让学生提问题。
教学意图:在练习的基础上,进一步理解算理,并通过学生观察、讨论,自己发现规律,总结计算方法。
(四)巩固练习,孕伏发展
1.说出下面各式的意义。0.8×43.5×719.6×12
2.下面各题的积有几位小数?看谁说得又对又快。4.3×80.72×63.726×80.54×7
3.根据282×12=3384,不用计算直接说出各式的积。28.2×12=2.82×12=0.282×12=
4.列出乘法算式,并计算。(全班动笔)(1)5个2.05是多少?(2)4.95的.7倍是多少?
5.计算。0.45×1081.056×25(可分组进行)
订正:0.45×108=48.6,1.056×25=26.4,这两题的积的末尾是0,应先数好积的小数位数,点上小数点,再消去“0”。
6.小明看到远处打闪以后,经过4秒钟听到雷声,已知雷声在空气中每秒传播0.33千米,打闪的地方离小明多远?(从打闪起到看到闪电的时间略去不算)解题前,要向学生说明看见的闪电是光,光在空气中的速度是每秒传播30万千米,远远大于声音在空气中的速度。因此从打闪起到看到闪电的时间可略去不记。订正:0.33×4=1.32(千米)
7.课堂小结。小结前,可先让学生提出问题,解疑后,再总结。
8.孕伏发展。
计算6.5×0.56.5×0.82
教师:你们知道这两个算式的意义吗?应该怎样计算呢?这是下节课要研究的内容。同学们如有兴趣,课后可以想一想。
小数乘以整数的意义和计算方法由收集及整理,转载请说明出处
小数的意义教案 2
一、教学内容:小数的意义P32——P33
二、教学目标:
1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
三、教学重难点
重点:理解小数的意义。
难点:会用小数表示计量单位换算的结果。
四、教学准备
多媒体、米尺。
五、教学过程
(一)导入新授
师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)
师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的.知识。
板书:小数的意义。
(二)探索发现
1、认识一位小数。
(1)出示教材第32页例1米尺图。
把1平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:“十分之一”米还可以写成0.1米。
那2分米、3分米呢? 学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义
教师根据学生的回答板书:
1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米 ……
(2)观察上面的等式你能发现分数和小数之间的联系吗?
学生观察并在小组内讨论。
师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
2、认识两位、三位小数。
我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。
(1)教师继续出示米尺的放大图。
学生思考、小组交流后进行反馈:
把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。
1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一) 米,用小数表示就是0.001米。
(2)小结。
分母是100的分数,可以写成两位小数。两位小数表示百分之几。
分母是1000的分数,可以写成三位小数。三位小数表示千分之几。
3、小数的意义。
分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的进率是多少?
学生交流说说对小数的理解。
师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。
4、阅读“你知道吗?”。
师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?
学生自学教材第33页“你知道吗?”。
师生交流时,让学生说说小数的发展史。
(三)巩固发散
1、指导学生完成教材第33页“做一做”。
让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。
2、在括号内填上合适的小数。
新人教版数学四年下第四单元小数的意义和性质教案(一)
( )元 ( )千克 ( )厘米
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。
(五)板书设计
小数的意义
分母是10、100、1000……的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位间的进率是10。
六、教学后记
小数的意义教案 3
教学内容:
P32-33
教学目标:
1、在升生活情境中了解小数的产生,体会数学与生活的联系,了解数学的价值,增强对数学的理解和应用数学的信心。
2、探究小数与分数、整数的内在联系,理解小数的意义。
3、通过分析、对比、概括、小结培养学生的思维能力。
教学重难点:
在学生初步认识一位小数、两位小数的基础上,进一步把认识范围扩展到三位小数,分母是10,100,1000的的分数,写成小数是几个0.1,几个0.01,几个0.001,并了解小数的计数单位及单位间的进率。
教学准备:
PPT,小软尺,习题纸。
教学过程
一、谈话引入新课,激发学习兴趣
师:同学们,老师给大家准备了一些关于小数和分数的小书签,我想把它们送给上课积极发言的孩子,想得到它吗?想得到就积极发言吧。
二、创设情境,导入新课
1、同学们在前面的学习中,我们已经初步的认识了小数和分数,这节课,老师想让大家用小数表示自己所测量的物体,请大家拿出大家准备好的软尺,请第1组的同学测量课桌的长度;请第2,3组的同学测量笔袋的长度;请第4,5组的同学测量数学书的厚度,请将你的测量结果记录在老师发给你的纸里。
2、每生测量活动。
3、每组派代表汇报测量结果。
学生汇报预测:
学生1:我测量的课桌的长度是0.6米。
学生2:我测量的笔袋的长度是0.11米。
学生3:我测量的数学书的厚度是0.01米。
4、展示学生的汇报结果,有质疑的请举手。
5、根据同学们的测量结果你有什么发现?(都是小数)
6、在平常的生活中你还见过哪些这样的小数?请举例说明。
生例举一些常见的小数,师补充一些常见的小数。观察这些数你有什么发现?
根据学生的回答,师小结:在进行测量和计算时往往不能正好得到整数,这时候通常用小数来表示。
这节课我们就来学习《小数的意义》。
二、尝试探究,理解意义
1、认识一位小数
教师:出示一米长的纸条,把它平均分成10份,取其中的'一份是多少分米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1分米,分数表示:米,用小数表示:0.1米。
师:取其中的3份呢?取其中的6份呢?生独立思考。
生汇报:取其中的3份是3分米,分数表示:米,用小数表示:0.3米。
取其中的6份是6分米,分数表示:米,用小数表示:0.6米。
2、认识两位小数
我们都知道了一位小数表示十分之几,那么老师现在把这一米长的纸条平均分成100份,取其中的一份是多少厘米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1厘米,分数表示:米,用小数表示:0.01米。
师:取其中的40份呢?取其中的75份呢?生独立思考。
生汇报:
取其中的40份是40厘米,分数表示:米,用小数表示:0.40米。
取其中的75份是75厘米,分数表示:米,用小数表示:0.75米。
3、认识三位小数
我们都知道了一位小数表示十分之几,两位小数表示一百分之一,那么老师现在把这一米长的纸条平均分成1000份,取其中的一份是多少毫米?写成分数是多少米?写成小数的多少米?说出你的想法。
生汇报:取其中一份1毫米,分数表示:米,用小数表示:0.001米。
师:取其中的59份呢?取其中的125份呢?
生汇报:
取其中的59份是59毫米,分数表示:米,用小数表示:0.059米。
取其中的125份是125毫米,分数表示:米,用小数表示:0.125米。
4、对比直观描述,小数的意义
师:结合我们刚刚学过的一位小数、两位小数、三位小数完成表格
生独立思考,汇报研究结果,根据学生的回答进行板书。
通过研究,你有什么发现?
学生1:我发现,分母是10的可以写成一位小数,用分数表示是十分之几,用小数表示几个0.1.
师:这位同学总结的非常好,还有谁想来说一说?
学生2:我发现,分母是100可以写成两位小数,,用分数表示是百分之几,用小数表示几个0.01.
学生3:我发现,分母是1000的可以写成三位小数,用分数表示是千分之几,用小数表示几个0.001
师:同学们说的都非常的好,那小数点在这里表示什么意思?(表示想这样的小数和分数还有很多很多,等我们以后再学习)
5、小数之间的进率
1毫米→1厘米→1分米→1米,它们之间的进率发生什么变化?
0.001米→0.01米→0.1米→1米,它们之间的进率发生了什么变化?
师:在小数中,每相邻两个计数单位之间的进率是10.
三、课堂练习,巩固深化
1、把分数化小数(生独立完成,再汇报)。
2、填一填。
3、书本33页做一做。
4、找朋友(将老师发的小书签,根据书签上的小数或分数说出你的朋友小数或分数是几,请起立,展示给全班是不是朋友)。
5、生活中的数学,让数学贴近生活。
四、能力提高,聪明屋
用5,4,0,1,3这五张卡片摆出不同的数。
1、小于1且小数部分是三位的小数。
2、小于1且最大的三位小数。
3、小于1且最小的三位小数。
五、全课小结,今天你有什么收获?
板书设计
教学后记
本课结合具体的情境,进一步体会小数的意义及其与生活的广泛联系。在创设情境中,我尽量让学生多说说自己在生活中看到过的小数。如测量自己身边物体的长度,自己的身高、体重、物体的大小或长度等。让学生感受到小数实际在生活的应用是非常广的,因此我们有学习小数的必要性和重要性。
在掌握简单的小数和分数的基础上,体会十进分数与小数的关系并能进行转化,明确小数的计数单位,理解并掌握小数的意义。小数是十进分数的另一种表示形式,十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示。从一位小数入手,让学生经历具体分析一位小数的意义的过程,为后面理解二位、三位小数的意义作铺垫,在此基础上再实现对小数的整体意义的概括,降低了教学难度。
小数的意义教案 4
教学目标
1.使学生理解小数除法的意义.
2.初步学会较容易的除法是整数的小数除法的计算方法.
教学重点
使学生学会除数是整数的小数除法的计算方法.
教学难点
理解商的.小数点要和被除数的小数点对齐的道理.
教学过程
一、铺垫
(一)列式计算:一筒奶粉500克,3筒奶粉多少克?
教师板书:500×3=1500(克)
(二)变式:
1.3筒奶粉1500克,一筒奶粉多少克?
2.一筒奶粉500克,几筒奶粉1500克?
教师板书:1500÷3=500(克)
1500÷500=3(筒)
(三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.
二、探究新知
(一)理解小数除法的意义.
1.课件演示:小数除法的意义
2.小结:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.
3.练习:根据小数除法的意义,写出下面两个除法算式的商.
1.8×0.5=0.9
0.9÷0.5= 0.9÷1.8=
(二)教学小数除法的计算方法.
例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?
1.理解题意,并列式:21.45÷15
2.小组讨论,理解算理,尝试计算.
3.课件演示:除数是整数的小数除法(例1)
4.练习:68.8÷4 85.44÷16
5.总结计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐.
三、全课小结
这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?
四、课堂练习
(一)计算下面各题.
42.84÷7 67.5÷15 289.8÷18
(二)只列式不计算.
1.两数的积是201.6,一个因数是72,另一个因数是多少?
2.把86.4平均分成24份,每份是多少?
3.64.6是17的多少倍?
(三)判断下面各题是否正确.
五、布置作业
(一)计算下面各题.
101.7÷9 79.2÷6 716.8÷7
(二)一台拖拉机5小时耕5.55公顷地,平均每小时耕地多少公顷?
六、板书设计
小数除法的意义
例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?
小数的意义教案 5
教材分析:
人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。
学情分析:
根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:
图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。
教学目标:
1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。
2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。
3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。
教学重点:通过整理和练习,巩固本单元知识。
教学难点:通过整理和练习,对知识的进一步领悟。
教学预设:
一、梳理知识
1、回顾知识。
(1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)
(2)引导回顾:回忆一下,这一单元我们学了哪些知识?
根据生说师相机板贴知识点。
2、整理知识。
(1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?
(2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)
(3)回答一生,理解要求
评价:这样的介绍符合要求吗?
(4)知识归类:他用到了这儿的什么知识?
3、独立思考
(5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?
(6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。
学生记录。
师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。
(7)汇报,根据生说师相机板书内容。
预设:
①意义:3个0.1;画图;十分位上是3,个位是0等。
②大小比较:比0.2大比0.4小的一位小数。
③小数点的移动规律:如3的小数点左移一位是几。
④近似数:如0.29保留一位小数。
⑤单位换算:如300千克等于几吨。
(8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。
【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】
二、查漏补缺
1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)
2、根据生说,课件相机出示相应内容并分析。
预设:
(1)小数与单位换算。
①出示错例。
②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?
学生总结方法,师板书。
③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。
④汇报,师相机书写过程。
(2)小数的近似数。
①出示错例。
②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?
生分析原因。
③引导总结:对于做这样的题你有什么要提醒大家的?
(3)小数的性质与大小比较。
①课件:恭喜你们,你们做得很棒!
②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?
③同桌交流:想好的跟同桌说一说。
④汇报。
(4)小数点的移动规律。
①课件:恭喜你们,你们做得很棒!
②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。
出示题,做题,问:仔细观察,你有什么发现?
(5)小数的意义和读写法。
①课件出示:找0、4题
②学生判断:图2、
③激疑:图1为什么不可以?(0.04)图3呢?(0.8)
④总结:都涂了4格,为什么表示的小数却不一样?
图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的`总份数。
⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?
⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。
【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】
三、巩固提升
1、猜数。
(1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。
(2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?
生猜。
师:有多少种可能?(无数种)
(3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?
生猜,师相机板书。
师:那这个数最小是几?
最大是几?(1、74,1、749……)(师板书)
师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)
师:那找得到这个最大的数吗?(找不到)
师:那有多少种可能?(无数种)
(4)第三猜:那再给你一个信息:它是一个两位小数。
生猜,师判断:大了,小了。
(5)揭晓答案:1.66
2、找位置。
(1)那你能在这条线上找到1、66的位置吗?
(2)那要准确地找到它,谁有好方法?
3、说关系。
(1)出示1、0、1、0、01。
(2)问:1、0、1、0、01之间有着怎样的关系?
【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】
四、课堂小结
这节课我们是怎么复习的?对你以后的学习有什么启示?
【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】
374650285750小数的意义和性质整理和复习
小数的意义和性质整理和复习
742950228600意义和读写
意义和读写
板书(部分):
63500057150
742950114300性质和大小比较
性质和大小比较
74295025400小数点的移动规律
小数点的移动规律
768350273050单位换算
单位换算
768350203200近似数
近似数
教学反思:
这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。
1、制定任务,高效梳理。
学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。
2、基于学情,有效复习。
复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。
小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。
本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。
这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。
3、精选练习,合理拓展。
复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。
小数的意义教案 6
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的'分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。
(2)1里面有( )个0.1和( )个0.01。
(3)0.52是由( )个0.1和( )个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )
(2)1毫米写成小数是0.01米。 ( )
第三层练习: 猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
小数的意义教案 7
教学内容:
小数的意义P32P33
教学目标:
1、理解小数的意义,知道一位小数、两位小数、三位小数分别表示十分之几、百分之几、千分之几
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
教学重点:
理解小数的意义。
教学难点:
会用小数表示计量单位换算的.结果。
教学准备:
多媒体课件、米尺。
教学过程:
一、导入新授
师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按整米数和非整米数两类板书)
师:这些不够整米数的部分,如果仍然要用米作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
板书:小数的意义。
二、探索发现
1、认识一位小数。
(1)课件出示教材第32页例1米尺图。
把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:十分之一米还可以写成0.1米。
那2分米、3分米呢? 学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义
教师根据学生的回答板书
1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米
(2)观察上面的等式你能发现分数和小数之间的联系吗?
小数的意义教案 8
教学目标
1.使学生理解小数降法的意义,理解小数除以整数的算理,并能够正确计算.
2.提高学生迁移的能力.
3.培养学生合作探究的意识.
教学重点
理解小数除法的意义、掌握小数除以整数的计算方法.
教学难点
理解小数除以整数中“商与被除数小数点对齐”的道理.
教学过程
复习铺垫
(一)填空
1.0.32里面含有32个( )
2.1.2里面含有12个( )
3.0.25里面含有( )个百分之一
4.2.4里面含有( )十分之一
5.8里面含有( )十分之一
(二)列竖式计算2145÷15
二、指导探究
(一)理解小数除法的意义.
1.(课件演示:小数除法的意义)
板书课题:小数除法的意义
2.练习:(继续演示课件:小数除法的意义)
(二)除数是整数的小数除法.
1.(课件演示:除数是整数的小数除法)
2.练习
68.8÷4 85.44÷16
三、质疑小结
(一)教师提问
1.商的小数点与被除数的小数点为什么要对齐?
2.今天学习的'除法与过去学习的除法有什么不同?它与整数除法有什么联系?
将课题补充完整:除数是整数的小数除法
(二)组织学生对今天所学的知识质题答疑.
四、反馈练习
(一)列竖式计算(分组完成)
42.84÷7 67.5÷15 289.8÷18 79.2÷6
(二)列式计算.
1.两个数的积是201.6,一个因数是72,另一个因数是多少?
2.把86.4平均分成24份,每份是多少?
3.64.6是17的多少倍?
(三)应用题
一台拖拉机5小时耕3.55公顷地,平均每小时耕多少公顷?
五、课后作业
计算下面各题
42.21÷18 6.6÷4 37.5÷6 15.36÷12
小数的意义教案 9
教学目标
知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。
过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。
情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的`自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:理解小数的意义及每相邻两个单位时间的进率是十。
教学难点:概括和理解小数的意义。
教法:启发引导法
学法:合作交流
教具学具准备:直尺。
教学过程
一、定向导学(5分)
1、判断下面哪些数是整数?
4、12、38、3.01、105、0.007、20xx、100.06。
整数每相邻的两个计数单位之间的进率都是( )。
板书课题
2、揭示目标:
理解小数的意义及每相邻两个单位时间的进率是十。
二、自主学习(10分)
自学内容:课本p32-33上半页
方法:边看书边完成下面的要求。时间:5分钟
要求:
1、把1米平均分成10份,每份是( )米,写成小数是( )米;
把1米平均分成10份,3份是( )米,写成小数是( )米。
2、把1米平均分成100份,每份是( )米,写成小数是( )米;
把1米平均分成100份,15份是( )米,写成小数是( )米。
3、把1米平均分成1000份,每份是( )米,写成小数是( )米;
把1米平均分成1000份,27是()米,写成小数是( )米。
(1--6组的4号发言,1号评价)
三、合作交流:5分钟
1、什么是小数?
2、小数的计数单位是多少?
(7组的4号发言,1号评价)
四、质疑探究(5分)
每相邻两个计数单位之间的进率是多少?
五、小结检测(15分)
1、小结:
谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)
2、检测:
a、填空。
(1)0.1是( )分之一,0.7里有( )个0.1。
(2)10个0.1是( ),10个0.01是( )。
(3) 写成小数是( ), 写成小数是( )。
b、判断:
(1)0.40里面有4个0.01。 ( )
(2)35克=0.35千克( )
元=0.7 元 ( )
=0.01 ( )
米 =0.3米 ( )
=0.03 ( )
=0.030 ( )
c、把小数改写成分数。
0.9 0.09 0.0359
3、堂清作业:教材p33页,p36、1.2
板书设计:
小数的意义
十分之一--------- 0.1
百分之一---------0.01
千分之一---------0.001
分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
小数的意义教案 10
教学目标
1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。
2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。
3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。
教学重点理解小数的意义
教学难点掌握小数与分数的关系,深刻理解小数的意义。
教法自主探索、合作学习
教学准备多媒体课件、卡片、米尺
教学课时1课时
一、旧知复习
二、生活中的小数
1、小数的产生
2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。
小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。
三、探究新知
探索一:一位小数的意义
把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?
小结:分母是10的分数,可以写成一位小数
板书:一位小数表示十分之几
探索二:二位小数的意义
还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学
小结:分母是100的分数,可以写成两位小数。
板书:二位小数表示百分之几
探索三:三位小数的意义
如果把1米的`尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?
小结:分母是1000的分数,可以写成三位小数
板书:三位小数表示千分之几
总结:
①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。
②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。
探索四:小数的计数单位及进率
小数的计数单位是十分之一、百分之一、千分之一。用小数写作0.1、0.01、0.001
那么相邻两个单位间的进率是多少?
板书:每相邻两个计数单位之间的进率是10
四、练习达标
1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)
2、判断题
(1)0.1、0.01、0.001…是小数的计数单位。
(2)十分之一、百分之一、千分之一…是小数的计数单位
(3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。
3。填空
0.8里面有个0.1;0.008里面有8个;
0.32里面有32个;6个是0.6;
0.5表示把整体;平均分成份,取其中的份。
0.24表示把整体;平均分成份,取其中的份。
板书设计
《小数的意义》
一位小数表示十分之几
二位小数表示百分之几
三位小数表示千分之几
每相邻两个计数单位之间的进率是10
课后反思
小数的意义教案 11
【教学内容】
【教学目标】
【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。
难点:用“四舍五入”法按要求求出小数近似数。
【教学过程】
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做期末复习第8题(1)、(2)、(3)。
(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的'数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.121
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么是小数的性质?
2、做期末复习第9题,第1竖行两题。
(1)学生在书上做,指名板演,集体订正。
(2)让学生说一说怎样比较两个小数的大小。
3、做期末复习第10题。
(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做期末复习第8题(4)、(5)。
(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
4、做期末复习第9题剩下的两题。
(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(2)学生练习,集体订正。
(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
5、做期末复习第11题。
学生在书上做,并说明理由。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“”、“”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
小数的意义教案 12
教学目标:
1.结合具体情境,掌握用“四舍五入法”求小数的近似数,会把较大的数改写成用“万”或“亿”作单位的数。
2.在学习小数意义和性质的过程中,培养探求知识的兴趣。
3.提高合作探索知识的能力。
重点难点:
用“四舍五入法”求小数的近似数。
教学方法:
启发引导、自主探究
教学过程:
一、复习导入新课
教师出示复习题,让学生板演。
372800 19000 725000000 844000000
师生共同订正,点拨“四舍五入法”求近似数。
教师引导学生观察信息窗。
二、讲授新课
1、教师提出问题:“测量同一个蛋的长度,为什么两个人的读数不一样呢?”给学生二分钟时间考虑。
一些学生可能看不出来,教师引导
教师引导学生按照整数求近似数的方法——四舍五入,解决求小数近似数的问题。
2、 教师出示数值“3.9423”让学生解决。
学生有的可能写出“3.94”。
有的可能写出“3.9”。
有的可能写出“4”。
3、教师引导学生比较探究结果的不同,分组讨论,然后让学生回答。
4、教师和学生共同归纳总结:用“四舍五入”法求小数的近似数
保留一位小数时,只看它的百分位上的数是大于5,还是小于5。如果大于或等于5,就向前一位进一,同时将百分位及百分位后面的数舍去;如果是小于5,就直接将百分位及百分位后面的数全部舍去。
5、教师引导学生分析总结:用“四舍五入法”求小数近似数应注意什么?
有的学生可能回答注意小数点;
有的学生可能回答注意别忘进位;
有的.学生可能回答注意四舍五入……
教师引导学生一起总结。
三、巩固运用
教师让学生做自主练习第1—3题,用多种形式巩固求小数近似数的基本练习。(学生独立完成)
四、点拨归纳
教师归纳本课的所学的数学知识,点拨疑难点。(学生小组中充分交流)
五、布置作业
自主练习题4、5、题。
板书设计:
蛋的世界——小数的意义和性质
3.9423≈3.94
≈3.9 四舍五入≈4
1754000=175.4万 1754000≈175万
小数的意义教案 13
[教材分析]
这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。
[教学内容]
义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。
[教学目标]
1.使学生经历实际测量等活动,了解小数的产生过程。
2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。
3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。
[教学重点、难点]
理解小数的意义
[课前准备]
课件,课前调查的数据资料
[教学过程]
(一)创设情境
1.感受生活中整数和分数的运用。
(1)课件出示。
一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一
(2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们
得不到正好的整数结果时,可以用分数来表示。
2.感受生活中小数的运用,质疑反思,体会小数的产生。
(1)学生介绍课前搜集到的数据信息
(2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?
(3)抓住现实信息引发思考
提问:生活中,我们在哪些时候会常常用到小数?
让学生自己动手测量桌子的长度或数学书封面的长和宽
3.揭示课题:
看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。
(设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)
(二)研究改写方法,探究小数的意义
1.1米
初步探究一位小数的改写。
(1)出示线段图。
(2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?
①(学生预设:把1米平均分成10份,每份是米。)
②也可以用小数来表示,每一份是0.1米。
③其中的两份用小数可以怎样表示,你怎么想?
(学生预设:把1米平均分成10份,每两份是米,小数是0.2米)
④图中还有哪部分表示0.1?(请学生指图)
(3)理解0.2并感知0.1与0.2有什么关系
①哪部分表示0.2?想一想对0.2你还能说些什么?
②0.2与0.1有什么关系?
(0.1+0.1=0.2,0.2是两个0.1…)
③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。
④对比:米与0.1米,米与0.2米…有怎样的关系?
⑤观察米=0.1米,米=0.2米,…你发现了什么?
⑥提问:一位小数表示什么?
2.在迁移辨析中理解两位小数的改写。
(1)出示教材中的图:如果把1米平均分成100份,其中的`1份用分数怎样表示?用小数怎样表示?
(2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。
(根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)
师:同学们你们观察上面这些算式,你们有什么发现?
(学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)
(3)练习:说出小数的意义
课件呈现:0.6、0.09、0.12、0.86、0.1
(设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)
3.深入、灵活理解三位小数的改写
(1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?
(2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?
(3)课件出示三组数据。
第一组:1/100023/100026/1000
第二组:3/100043/100089/1000
第三组:9/100065/10008/1000
(4)提出要求:请小组合作自选一组分数,一边改写一边讨论。
4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。
5.拓展:请同学们想一想四位小数表示多少?五位小数呢?
(设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)
(四)认识小数的计数单位和进率。
1.回顾整数的计数单位
师:回忆一下,我们都已经学习了哪些计数单位?
(个、十、百、千、万、十万、百万、千万、亿)
2.说说它们之间有什么关系?
3.1个一是10个(),是100个(),是1000个(),是10000个()…
4.提问:所以小数的计数单位应该是什么?
5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。
6.依照这一体系,你能说说小数的计数单位间的进率吗?
(五)巩固练习
1.填数(数学书第51页“做一做”)
2.比一比(数学书第55页练习九第1题)
3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。
(六)畅谈收获
通过这节课的学习,你有哪些收获?还想了解什么?
(设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)
[板书设计]
小数的产生和意义
1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米
2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米
3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米
一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几
小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……
每相邻两个计数单位之间的进率为10。
小数的意义教案 14
设计说明
本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:
1、注重学生已有的知识经验。
在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的现实情境,启发学生从多个角度通过解释1.11元、1.11米是什么意思,认识到0.1与,0.01与是同一个数的不同形式,为探究小数的`意义奠定了基础。
2、给学生创设自主探究的空间。
本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几……充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几……直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。
课前准备
教师准备 PPT课件 正方形纸
学生准备 正方形纸 水彩笔 直尺
注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。
教学过程
⊙创设情境,导入新课
1、出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)
2、谈话引入。
同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
预设 生1:测量身高时,我的身高是1.42米。
生2:跳远比赛时,我的成绩是2.1米。
……
3、过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。
设计意图:从学生熟悉的商品的价格引入小数,既激发了学生的学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。
⊙动手操作,自主探究
活动:探究小数的意义。
1、做一做,说一说。
(1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,1.11元和1.11米分别是什么意思?(学生以小组为单位,合作学习)
(2)全班交流:1.11元是1元1角1分,1角是1元的,也可以写成0.1元,1分是1元的,也可以写成0.01元。
1、11米是1米1分米1厘米,1分米是1米的,也可以写成0.1米,1厘米是1米的,也可以写成0.01米。
2、画一画,涂一涂。
(1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。
(学生展示操作成果并汇报)
师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是0.1。0.1表示把“1”平均分成10份,取其中的1份。比较一下“1”和“0.1”的大小,“1”里面有几个“0.1”?
预设 生:1比0.1大,1里面有10个0.1。
(2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?
①学生先独立思考,然后独立完成。
②汇报交流。
小数的意义教案 15
教学目标:
1、了解小数的产生和理解小数的意义。
2、掌握小数的计数单位及单位间的进率。
教育方面:
1、培养学生的观察、分析能力和抽象概括能力。
2、感受数学与生活的联系及其价值,体验数学学习的乐趣。
教材分析:
1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。
2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。
3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。
4、教学目标:
(1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。
(2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(3)培养学生的观察、分析、推理能力。
5、教学重点、难点。
教学重点:使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。
教学难点:
小数意义的探究过程和相邻两个计数单位间的'进率。
教学准备:
多媒体课件 、测量工具(米尺)。
教学过程:
(一)操作导入:
1、让两名学生测量黑板、课桌长度。(用米作单位)
2、交流测量结果,展开讨论。
3、引导小结:
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)
【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。
(二)引导探究:
1、认识一位小数。(出示米尺)
(1)在米尺上找出1分米的地方。
①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。
③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)
板书:1分米= 米=0.1米.
(2)讨论:
①用米作单位,3分米怎样用分数和小数表示?7分米呢?
②分别说说0.3米、7分米表示什么意思?
2、认识两位小数。(出示米尺)
(1)在米尺上找出1厘米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.01米。
③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)
板书:1厘米= 米=0.01米.
(2)讨论:
①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?
②分别说说0.03米、0.06米各表示什么意思?
3、认识三位小数。(出示学生尺)
(1)在尺上找出1毫米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.001米。
③谁来说说0.001米表示什么?
板书:1毫米= 米= 0.001米。
(2)讨论:
①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?
②说说0.003米和0.006米各表示什么意思?
照这样分下去,还可以得到万分之一米??也可以写成0.0001米。
象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??
(三)概括:
1、概括小数与分数的关系。
(1)什么样的分数可以用一位、两位、三位??小数来表示?
(2)一位、两位、三位??小数分别表示几分之几?举例说说。
2、概括小数的意义。
师:分母是10、100、1000??的分数可以用小数表示。
【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。
(四)小数的计数单位和进率
(1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)
(2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?
(3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。
【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。
(五)巩固应用
1、学生看书并完成例1的空白。
2、P51 “做一做”用分数、小数表示涂色部分。
3、闯关练习:
(1)括号里能填几?你是怎么知道的?
0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。
(2)下面的括号里能填几?
0.1米里面有()个0.01米 ;
0.01米里面有()个0.001米 ;
0.001米里面有()个0.0001米。
(3)找朋友:(用线把上下两组数连起来)
0.045 0.13 0.0001 0.9
4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?
0.3 0.18 0.250.036
【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。
(六)课堂总结
这节课我们学习了什么?你知道了什么?你还有什么问题?
【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。
(七)板书设计:
小数的产生和意义
小数的产生:在进行计算和测量时,往往得不到整数的结果。
【小数的意义教案 】相关文章:
《小数的意义》教案07-11
小数的意义教案08-02
《小数的意义》的教案02-17
人教版小数的意义教案03-27
小数的意义教案5篇01-27
小数的意义教案9篇02-12
《小数的意义》教案6篇02-12
精选小数的意义教案4篇01-21
【精选】小数的意义教案三篇01-23
小数的意义教案四篇01-31