当前位置:育文网>教学文档>教案> 《小数的意义》教案

《小数的意义》教案

时间:2023-02-17 13:20:55 教案 我要投稿

《小数的意义》教案(精选15篇)

  作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。教案要怎么写呢?下面是小编帮大家整理的《小数的意义》教案,仅供参考,希望能够帮助到大家。

《小数的意义》教案(精选15篇)

《小数的意义》教案1

  [教材分析]

  这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。

  [教学内容]

  义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。

  [教学目标]

  1.使学生经历实际测量等活动,了解小数的产生过程。

  2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的.计数单位和进率。

  3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。

  [教学重点、难点]

  理解小数的意义

  [课前准备]

  课件,课前调查的数据资料

  [教学过程]

  (一)创设情境

  1.感受生活中整数和分数的运用。

  (1)课件出示。

  一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一

  (2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们

  得不到正好的整数结果时,可以用分数来表示。

  2.感受生活中小数的运用,质疑反思,体会小数的产生。

  (1)学生介绍课前搜集到的数据信息

  (2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?

  (3)抓住现实信息引发思考

  提问:生活中,我们在哪些时候会常常用到小数?

  让学生自己动手测量桌子的长度或数学书封面的长和宽

  3.揭示课题:

  看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。

  (设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)

  (二)研究改写方法,探究小数的意义

  1.1米

  初步探究一位小数的改写。

  (1)出示线段图。

  (2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?

  ①(学生预设:把1米平均分成10份,每份是米。)

  ②也可以用小数来表示,每一份是0.1米。

  ③其中的两份用小数可以怎样表示,你怎么想?

  (学生预设:把1米平均分成10份,每两份是米,小数是0.2米)

  ④图中还有哪部分表示0.1?(请学生指图)

  (3)理解0.2并感知0.1与0.2有什么关系

  ①哪部分表示0.2?想一想对0.2你还能说些什么?

  ②0.2与0.1有什么关系?

  (0.1+0.1=0.2,0.2是两个0.1…)

  ③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。

  ④对比:米与0.1米,米与0.2米…有怎样的关系?

  ⑤观察米=0.1米,米=0.2米,…你发现了什么?

  ⑥提问:一位小数表示什么?

  2.在迁移辨析中理解两位小数的改写。

  (1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?

  (2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。

  (根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)

  师:同学们你们观察上面这些算式,你们有什么发现?

  (学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)

  (3)练习:说出小数的意义

  课件呈现:0.6、0.09、0.12、0.86、0.1

  (设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)

  3.深入、灵活理解三位小数的改写

  (1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?

  (2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?

  (3)课件出示三组数据。

  第一组:1/100023/100026/1000

  第二组:3/100043/100089/1000

  第三组:9/100065/10008/1000

  (4)提出要求:请小组合作自选一组分数,一边改写一边讨论。

  4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。

  5.拓展:请同学们想一想四位小数表示多少?五位小数呢?

  (设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)

  (四)认识小数的计数单位和进率。

  1.回顾整数的计数单位

  师:回忆一下,我们都已经学习了哪些计数单位?

  (个、十、百、千、万、十万、百万、千万、亿)

  2.说说它们之间有什么关系?

  3.1个一是10个(),是100个(),是1000个(),是10000个()…

  4.提问:所以小数的计数单位应该是什么?

  5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。

  6.依照这一体系,你能说说小数的计数单位间的进率吗?

  (五)巩固练习

  1.填数(数学书第51页“做一做”)

  2.比一比(数学书第55页练习九第1题)

  3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。

  (六)畅谈收获

  通过这节课的学习,你有哪些收获?还想了解什么?

  (设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)

  [板书设计]

  小数的产生和意义

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米

  2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米

  3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米

  一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几

  小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……

  每相邻两个计数单位之间的进率为10。

《小数的意义》教案2

  设计说明

  本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:

  1.注重学生已有的知识经验。

  在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的现实情境,启发学生从多个角度通过解释1.11元、1.11米是什么意思,认识到0.1与,0.01与是同一个数的不同形式,为探究小数的'意义奠定了基础。

  2.给学生创设自主探究的空间。

  本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几……充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几……直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。

  课前准备

  教师准备 PPT课件 正方形纸

  学生准备 正方形纸 水彩笔 直尺

  注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。

  教学过程

  ⊙创设情境,导入新课

  1.出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)

  2.谈话引入。

  同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  预设 生1:测量身高时,我的身高是1.42米。

  生2:跳远比赛时,我的成绩是2.1米。

  ……

  3.过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。

  设计意图:从学生熟悉的商品的价格引入小数,既激发了学生的学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。

  ⊙动手操作,自主探究

  活动:探究小数的意义。

  1.做一做,说一说。

  (1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,1.11元和1.11米分别是什么意思?(学生以小组为单位,合作学习)

  (2)全班交流:1.11元是1元1角1分,1角是1元的,也可以写成0.1元,1分是1元的,也可以写成0.01元。

  1.11米是1米1分米1厘米,1分米是1米的,也可以写成0.1米,1厘米是1米的,也可以写成0.01米。

  2.画一画,涂一涂。

  (1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。

  (学生展示操作成果并汇报)

  师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是0.1。0.1表示把“1”平均分成10份,取其中的1份。比较一下“1”和“0.1”的大小,“1”里面有几个“0.1”?

  预设 生:1比0.1大,1里面有10个0.1。

  (2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?

  ①学生先独立思考,然后独立完成。

  ②汇报交流。

《小数的意义》教案3

  【教学内容】

  人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

  【教学目标】

  1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

  2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

  3、培养学生探究发现、类推迁移的数学学习能力。

  【教学重点】

  在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  【教学难点】

  理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

  【教学准备】

  米尺、多媒体课件、立方体教具。

  【教学过程】

  一、【课前铺垫、创设情景】

  教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

  二、【新课讲授】

  1、认识一位小数

  今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

  (出示米尺课件)学生仔细观察,回答问题。

  教学例1。

  教师提问:一起来数数,把1米平均分成了多少份?

  学生一起数,得出结论(10份)。

  提问:因为1米=10分米,所以这一份是多长?

  学生观察后回答:1分米

  小结:我们把1米平均分成了10份,每一份是1分米。

  提问:1分米是1米的几分之几?()

  (1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

  教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

  想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

  由此得出:米=0.1米

  (2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

  提问:谁能说说0.3米表示什么意思?

  同样,可以得出:米=0.3米

  (3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

  提问:谁能再来解释一下0.7米表示什么意思?

  同理,可以写成:米=0.7米

  (4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

  教师旨在引导,学生观察发现

  师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

  师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

  师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

  学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

  出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

  一起数数0.3米是由几个米组成的?(3个)

  提问:那0.3里面有()个0.1?

  这一段又是多长?(0.7米)

  再来数数几个米组成0.7米?(7个)

  提问:那0.7里面有()个0.1?

  进一步强化训练:0.9里面有()个0.1?(9个)

  请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

  提问:1里面有()个?(10个)

  也就是说:1里面有10个0.1

  提问:谁能告诉我1.2里面有()个0.1?(12个)

  师:你是怎么想的?

  教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

  师:这句话太重要了,谁能把它再说一遍!

  点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

  反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

  2、认识两位小数

  小小的米尺,大大的学问。

  师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

  1厘米是1米的几分之几米呢?(米)

  出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

  小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

  提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

  请大家翻开课本32面,把你的答案写在书上。

  教师根据学生的回答,课件逐一出示答案。

  师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

  师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

  师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

  师:那你发现了什么?

  学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

  师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

  师:谁能把这句非常重要的话像老师这样说一说!

  点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

  反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

  3、认识三位小数

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

  学生分组讨论交流,小组选派代表发言。

  发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

  提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

  学生总结发现:

  分母是1000的分数,可以用三位小数来表示。

  三位小数的计数单位是千分之一,写作:0.001

  点击出示发现!你们个个都是自学小能手!老师为你们点赞!

  4、概括:小数的意义

  师:通过刚才的学习,我们知道了:

  分母是10的分数,可以用一位小数来表示

  分母是100的分数,可以用两位小数来表示

  分母是1000的分数,可以用三位小数来表示

  谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

  学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

  师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

  这就是小数的意义,请大家齐读一遍。

  学生齐读意义,教师板书课题~小数的意义

  师:同学们可真棒!自己总结出了小数的意义!

  5、总结:小数的计数单位

  师:通过刚才的学习,我们也知道了:

  一位小数的计数单位是十分之一,写作:0.1

  两位小数的计数单位是百分之一,写作:0.01

  三位小数的计数单位是千分之一,写作:0.001

  师:谁能尝试着把它们用一句话来总结一下?

  学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

  师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

  师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

  6、小数相邻单位间的进率

  (过渡)学习的过程就是不断地克服困难,战胜自我的过程。

  师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的`过程,你们愿意吗?

  教师出示正方体变形课件,逐步引导学生观察分析:

  1里面()个0.1

  0.1里面()个0.01

  0.01里面有()个0.001

  提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

  学生讨论发言。

  小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

  师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

  学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

  请大家齐读一遍。

  三、【巩固提升、练习反馈】

  1.完成教材第33页“做一做”。(可以一题两问)

  2.判断:争当合格小裁判(说出判断理由)

  四、【课堂小结】

  提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

  小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

  五、拓展延伸

  板书设计

  小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

  小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

  小数的进率:每相邻两个计数单位之间的进率是10。

《小数的意义》教案4

  教学目标:

  1.通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。

  2.会进行单名数和复名数单位之间的换算。

  3.体会小数与分数之间的关系,会进行互化。

  4.通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。

  教学重点:

  通过探索单位换算的过程,进一步体会小数的意义。

  教学难点:

  把单名数化成复名数。

  教学准备:

  多媒体课件。

  课时:

  课时一

  教学过程:

  一、导入:

  师:(课件展示教材第4页上面的图)同学们好,咱们一起来看看这位小朋友在做什么?(学生小声议论:可能是在测量黑板的长度吧?)仔细观察一下,你知道这位小朋友量出的黑板长度是多少少吗?

  生:学生边观察边交流。师板书课题。

  设计意图在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。

  二、探讨与交流:

  1、学生汇报:黑板长2米,又多出36厘米。

  师:这些数有什么地方不一样吗?

  生:数的单位不一样。

  师:单位不同,计量起来不方便,那咱们该如何解决这个问题呢?

  生:把这些数据的单位换算成统一的。

  师:你认为换算成哪个单位来计量更合适呢?

  生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。

  师:那咱们一起来讨论一下如何用“米”来表示黑板的长度吧。

  2、活动要求:

  (1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。

  (2)汇报结果:鼓励学生用自己的语言说出自己的想法。

  生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0.36米。所以黑板的长度就可以表示为2.36米。

  师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;

  把1米平均分成100份,1份或几份可以用两位小数表示······

  (1)一位小数表示十分之几;

  (2)两位小数表示百分之几。

设计意图:进一步使学生掌握以“分米”“厘米”作单位的'数换算成以“米”作单位的数,可以用小数表示。

  三、探讨与延伸

  师:刚才咱们学习了长度单位的一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)

  生:可以用克与千克来表示。

  师:称量质量较小的物体一般用克作单位,称量质量较大的物体一般用千克作单位。那么如何用千克来表示鹌鹑蛋和鸵鸟蛋的质量呢?

  生1:鹌鹑蛋的质量是12克= 1000(12)千克=0.012千克。

  生2:鸵鸟蛋的质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0.5千克,鸵鸟蛋重0.5千克+1千克=1.5千克。

  师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的质量在生活中的应用很广泛,所以,大家都应该熟练掌握。

  设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。

  四、生活与应用:

  师:为了能更好的熟悉低级单位和高级单位数之间的互化,咱们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。

  活动要求:

  1、目测估算出的结果要尽可能的接近事实。

  2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。

  3、与其他同学互相交流,选出较为准确的数据,汇报给老师。

  生:(认真估测、交流并汇报)

  设计意图引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的数学信息。

  五、巩固练习:

  1、师:咱们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)

  学生纷纷举手抢答。师给予评议。

  2、师:(出示课件“练一练”第二题。)同学们知道图片上的这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。

  六、总结:这节课咱们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。

  七、作业:教材第5页第4题。

  八、板书设计:

  36厘米=0.36米

  12克=0.012千克

  500克=0.5千克

  九、后记:

  这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。

  在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。

《小数的意义》教案5

  教学内容

  小数的意义

  教学目标

  1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。

  2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。

  3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。

  重点难点

  重点:体会十进制分数与小数的关系,初步理解小数的意义。

  难点:能够正确进行十进制分数与小数的互化。

  教具准备

  课件、正方形纸2张。

  教学过程

  一、情境导入。

  1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?

  生:好。

  2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)

  铅笔:0.1元一支圆珠笔:1.11元一支

  猪肉:9.5元一斤黄瓜:5.96元一千克

  教师:上面这些物品的价格有什么特点?

  学生:都不是整元数。(都是小数。)

  教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?

  学生依次读出:零点一、一点一一、九点五、五点九六。

  师:大家知道这些小数是几位小数吗?

  生:......

  2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  生:身高体重跳高跳远

  小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。

  板书:小数的意义

  二、自主探究。

  1.一位小数的意义

  a.那么多的小数,我们今天就从0.1开始入手研究。

  b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?

  学习单元角米分米网格图

  c.生反馈0.1表示什么意思。

  d.思考:我们选用的图都不一样,为什么都可以表示0.1?

  你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。

  生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的'也可以写成0.1米。

  生:......

  2.两位小数的意义

  师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?

  a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?

  学习单元分米厘米网格图

  b.生反馈0.01表示什么意思。

  c.思考:你还能在图中找到其他小数吗?他们表示什么意思?

  学生交流反馈。

  学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。

  生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。

  生:......

  3.三位小数的意义

  我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()

  小数我们写的完吗?其实呀,小数的位数越多就分的越细。

  大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?

  三、巩固练习

  教师:0.8可以表示成分数吗?可以表示成小数吗?

  学生:分别是和0.7。

  教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)

  同学们在小组内进行游戏交流,教师巡视指导。

  四、探究结果报告。

  教师:通过刚才游戏,你们发现了什么?(出示课件)

  师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)

  2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)

  3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)

  四、教师小结。

  小数中,每相邻两个计数单位间的进率都是10。

  五、课外拓展。

  分享最美数字0.618

《小数的意义》教案6

  (一)教学目标

  1.能体会分米、厘米、毫米的含义,建立相应的长度观念 。

  2.记住这些单位之间的进率。

  3.能估计一 些较短物体的长度。

  4.会量较短物体的长度。

  (二)教学重点与难点

  1.教学重点:理解1分米、1厘米、1毫米的实际含义。

  2.教学难点:建立分米、厘米、毫米的具体观念。

  (三)教学准备

  1.教具准备:实物投影仪、米尺、透明塑料尺、壹分硬币 、两支铅笔。

  2.学具准备:每人学生尺一把、壹分硬币一枚、线一根、长铁钉一枚。

  (四)教学过程

  1.搭好桥梁。

  (1)小朋友,想知道一个人有多高,黑板有多长,数学书本 又有多宽,可采用什么方法?(用尺量)

  (2)你怎么想到要用尺量呢?(尺上有刻度)

  (3)出示米尺:小朋友比划一下一米大约有多长?

  (4)估计:黑板大约有多长?教师实际量一量,得黑板长3米多。

  多的部分不到1米,究竟是多少?我们需要用比米小的单位来帮忙。

  2.实践操作。

  (1)认识厘米。

  ①实物投影仪上放上塑料尺,请学生观察,从“0”刻度线 到标有“1”刻度线之间的长度就是1厘米。(板书:厘米cm)

  ②学生在自己的尺上找1厘米的长度(手指宽,橡皮厚,1分 硬币的最大宽……),并用尺比量一量。

  ③量一量:铁钉有多长?(3cm)

  ④出示两支铅笔,一支10厘米,一支1厘米多一些,估计这两支铅笔大约有几个厘米长。

  (2)认识分米。

  ①这支铅笔长10厘米,还可以叫做1分米长(板书:分米dm) ,所以1分米=()厘米。

  ②同上,学生在尺上找1分米的长度,找身边的物品长(宽) 大约是1分米的'物品,可实际去量一量。(衬衣两纽扣之间、手掌宽……)

  ③在米尺上数一数,1米有几分米?也就是几个10厘米。1分米=10厘米,那么1米=()厘米。

  ④想一想:1米、1分米、1厘米有多长?

  小游戏:伯;说我比划,即同桌1人说1米(或1分米、1厘米) ,另一人马上用手比划出来。

  (3)认识毫米。

  ①还有一支铅笔为1厘米多一些,究竟是多少长呢?我们需要认识更小的长度单位——毫米(板书:毫米一)

  ②1毫米用手难以比划·了,我们就用铅笔芯来点吧。

  ③长度是1毫米的物品很难找吧?(1分硬币的厚度,数学练习簿的厚度……)

  ④猜一猜,再在尺子-上数一数()毫米=1厘米,

  3.归纳运用。

  (1)今天我们学习了什么单位?(长度单位)(完成课题 )

  你会给这些单位从大到小排排队吗?

  你知道它们之间有什么关系吗?(进率)

  (2)看看课本上是这样说的吗?(课本第85-86页)

  (3)练一练:课本第87页“练一练”1、2、3。(先观察,估计一下各物品的长度,再测量)

  (4)练一练:课本第87页“练一练”4、5、6。(其中6为同桌 合作题)

  (5)拿出线,同桌合作量一量是多少长?(1米2分米,4厘米6 毫米)

《小数的意义》教案7

  教学目标

  1.使学生理解小数除法的意义.

  2.初步学会较容易的除法是整数的小数除法的计算方法.

  教学重点

  使学生学会除数是整数的小数除法的计算方法.

  教学难点

  理解商的小数点要和被除数的小数点对齐的道理.

  教学过程

  一、铺垫

  (一)列式计算:一筒奶粉500克,3筒奶粉多少克?

  教师板书:500×3=1500(克)

  (二)变式:

  1.3筒奶粉1500克,一筒奶粉多少克?

  2.一筒奶粉500克,几筒奶粉1500克?

  教师板书:1500÷3=500(克)

  1500÷500=3(筒)

  (三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  二、探究新知

  (一)理解小数除法的.意义.

  1.课件演示:小数除法的意义

  2.小结:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  3.练习:根据小数除法的意义,写出下面两个除法算式的商.

  1.8×0.5=0.9

  0.9÷0.5= 0.9÷1.8=

  (二)教学小数除法的计算方法.

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

  1.理解题意,并列式:21.45÷15

  2.小组讨论,理解算理,尝试计算.

  3.课件演示:除数是整数的小数除法(例1)

  4.练习:68.8÷4 85.44÷16

  5.总结计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐.

  三、全课小结

  这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?

  四、课堂练习

  (一)计算下面各题.

  42.84÷7 67.5÷15 289.8÷18

  (二)只列式不计算.

  1.两数的积是201.6,一个因数是72,另一个因数是多少?

  2.把86.4平均分成24份,每份是多少?

  3.64.6是17的多少倍?

  (三)判断下面各题是否正确.

  五、布置作业

  (一)计算下面各题.

  101.7÷9 79.2÷6 716.8÷7

  (二)一台拖拉机5小时耕5.55公顷地,平均每小时耕地多少公顷?

  六、板书设计

  小数除法的意义

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

《小数的意义》教案8

  设计说明

  《数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:

  1.在分类中感知小数。

  分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。

  2.在数形结合中自主探究小数。

  《数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的关系。这样设计教学,使学生真正成为课堂学习的主人。

  3.找准起点,促进知识的迁移。

  小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的意义,发展学生的类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。

  课前准备

  教师准备 多媒体课件

  学生准备 米尺

  教学过程

  ⊙在分类中感知小数

  1.在分类中感知小数。

  师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)

  老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的过程中理解一位小数、两位小数……)

  2.导入新课。

  师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)

  设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。

  ⊙探究新知

  1.了解小数的产生。

  (1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)

  (2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?

  (学生可能感到很困惑,有的学生可能会想到用分数表示)

  (3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。

  2.教学小数的意义。

  (1)认识一位小数。

  ①课件出示米尺图。

  把1米平均分成10份,指一指每一份所对应的位置。

  ②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米 米 0.1米)

  ③启发学生:(指3分米处)把1米平均分成10份, 3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米 米 0.3米)

  ④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米 米

  0.7米)

  ⑤从前面的`学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)

  预设

  生1:我发现分母是10的分数,可以写成一位小数的形式。

  生2:我发现一位小数表示的是十分之几。

  ⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

  (2)认识两位小数。

  ①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长( )厘米,用分数表示是( )米,用小数表示是( )米;这样的3份是( )厘米,用分数表示是( )米,用小数表示是( )米;这样的7份是( )厘米,用分数表示是( )米,用小数表示是( )米]

  ②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米 米 0.01米3厘米 米 0.03米 7厘米 米 0.07米)

  (3)认识三位小数。

  师:把1米平均分成1000份,每份长多少?

《小数的意义》教案9

  教学内容:

  人教版小学数学四年级下册第4单元第32页。

  教学目标

  1.理解和掌握小数的意义。

  2.理解整数、小数、分数之间的联系。

  教学重点:理解和掌握小数的意义。

  教学难点:认识小数的计数单位。

  教学过程

  一、展示生活中的小数

  师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗? (学生回答)

  我们一起来看,教室里有几个同学在进行测量。但是,他们测量的一边长1米,但是另一边不够1米,用米做单位,不够1米那应该怎么办呢?这时候,就可以用小数来表示了。

  二、创设情境,导入新课:

  这些数都是什么数?

  生:小数。

  师:小数是怎么产生的呢?

  在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

  揭示课题:小数的意义。

  关于小数你想知道些什么?今天我们继续来学习课本中的新知识:“小数的意义”。

  三、探究新知:

  1.提出探究问题,引出小数的性质。

  我们把1米平均分成10份,每份用分数表示是多少米?

  每份用分数表示是米?

  1-1. 反馈交流。请学生结合图说明自己的想法。

  师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。

  师:0.1米是怎样得到的?谁来说一说。

  生:把1米平均分成10份,每份用分数表示是米,用小数表示就是0.1米。

  箭头指向30的地方怎么表示? 0.3米是怎样得到的?

  我们可以看出把整数1平均分成10份,每一份是0.1, 3份是0.3,用分数表:。

  0.3的计数单位是0.1,的计数单位是。所以0.3表示3个0.1

  同理得出:指向7的箭头,用分数和小数分别怎么表示?

  把整数1平均分成10份,每一份是0.1, 7份是0.7,用分数表:。0.7表示7个0.1

  1-2.抽象概括:小数是分数的另一种表示形式。分母是10的分数可以用一位小数表示。一位小数的计数单位是十分之一,也写作0.1。

  2-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成100份,也用小数来表示吗?

  师:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  师:刚才0.01米是怎样得到的?谁来说一说。

  生:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  箭头指向4的'地方怎么表示?0.04米是怎样得到的?

  我们可以看出把整数1平均分成100份,每一份是0.01, 4份是0.04,用分数表:。0.04的计数单位是0.01,的计数单位是。所以0.04表示4个0.01

  同理得出:指向8箭头,用分数和小数分别怎么表示?

  把整数1平均分成100份,每一份是0.01, 8份是0.08,用分数表:。0.08表示8个0.01

  2-2.抽象概括::小数是分数的另一种表示形式。分母是100的分数可以用两位小数表示。两位小数的计数单位是百分之一,也写作0.01。

  3-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成1000份,也用小数来表示吗?

  师:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  师:刚才0.001米是怎样得到的?谁来说一说。

  生:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  箭头指向6的地方怎么表示? 0.006米是怎样得到的?

  我们可以看出把整数1平均分成1000份,每一份是0.001, 6份是0.006,用分数表:。0.006的计数单位是0.001,的计数单位是。所以0.006表示6个0.001

  3-2.抽象概括:小数是分数的另一种表示形式。分母是1000的分数可以用三位小数表示。三位小数的计数单位是千分之一,也写作0.001。

  刚才我们分的是一米,用整数“1”来表示,平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。

  5、各部分名称:

  (以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1,3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一;小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 。

  归纳:每相邻两个计数单位之间的进率是10。

  课堂小结:

  今天你有什么收获?

  1.小数的计数单位是十分之一、百分之-一、 千分之一......分别写作0.1、0.01、 0.001......。

  2.小数中, 每相邻两个计数单位间的进率是10。

  3.十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。

《小数的意义》教案10

  教学内容:教科书第50—51页的内容

  学习目标:

  1、知识目标:使学生了解小数的产生,理解小数的意义,掌握小数的计数单位及单位间的进率。

  2、能力目标:使学生学会用小数正确表示图中阴影部分。

  3、思想教育目标:培养学生的观察能力、抽象概括能力、动手操作能力。

  学情分析:通过测量,当学生不能用整数表示的时候,需要一个新的知识即“小数”来表示,引出小数,然后根据米尺直观图引出十分之几、百分之几、千分之几的数都可用小数表示,从而概括出小数的意义。

  教学重点:小数的意义。

  教学难点:理解和概括小数的意义。

  教学准备:米尺多媒体

  教学过程:

  一、操作引入

  教师指着手中的米尺问:米尺有什么作用?当学生回答后。老师说现在咱们就用它来测量黑板的长有几米。

  当老师测量三次后,指着剩下的部分问:剩下的部分还够不够1米?如果用米作单位还能用整米数来表示吗?

  学生回答:不能。

  师问:那用什么数来表示?

  生答:可用小数来表示。

  师说:对,可用小数表示,这种情况在日常生活中经长遇到。例如:在测量人的身高、物体的长度时经常遇到得不到整米数,这时咱们就用小数来表示。什么数是小数呢?这节课咱们就来学习这一内容。(板书课题:小数的意义)

  二、教学小数的意义。

  1、认识一、两位小数

  出示例1主题图让生观察(1)师问:从图上看把1米平均分成几份?(生答:分成了10份),每份长多少分米?(生答:每份长1分米),1分米是1米的几分之几?(生答:是1米的十分之一),是几分之几米?(生答:是十分之一米),写成小数是多少米?(生答:0.1米)

  用同样的方法引导学生把3分米写成0.3米。

  教师结合学生的口答板书如下:

  1分米→1/10米→0.1米。

  3分米→3/10米→0.3米。

  师问:分母是10的分数可以写成几位小数?一位小数可表示成几分之几的数?0.1表示几分之几?0.3表示几分之几?

  (2)师问:把1米平均分成100份,每份长是多少厘米?1厘米是几分之几米?写成小数是多少米?

  用同样的方法引导学生把7厘米、13厘米分别写成0.7米、0.13米

  教师结合学生的回答板书如下:

  1厘米→1/100米 →0.01米。

  7厘米→7/100米→0.07米。

  13厘米→13/100米→0.13米。

  师问:从上面看分母是100的分数可以写成几位小数?两位小数表示几分之几的数?0.07表示几分之几?0.53表示几分之几?

  2、认识三位小数

  师问:若把1厘米平均分成10份,照这样分,可以把1米平均分成多少份?每1份是多少?1毫米是几分之几米?写成小数是多少米?8毫米是几分之几米?写成小数是多少米?13毫米是几分之几米?写成小数是多少米?

  师问:从上面看分母是1000的分数可以写成几位小数?三位小数表示几分之几的数?0.013表示几分之几?

  师结合学生的回答板书如下

  1毫米→1/1000米→0.001米。

  8毫米→8/1000米→0.008米。

  13毫米→13/1000米→0.013米。

  师说:若把1毫米平均分成10份,其中的一份或几份可用分母是10000的分数来表示,写成小数就是四位小数。同样我们也可以得到五位小数等。

  3、抽象、概括小数的意义。

  教师指着上面板书讲解:从上面可以看出,把1米平均分成10份,其中的1份或几份就可以用分母是10的分数来表示。它的单位是十分之一。再把1分米平均分成10份,也就是把1米分成了100份,其中的一份或几份就可以用分母是100的分数来表示。它的'单位是百分之一。再把1厘米平均分成10份,也就是把1米分成了1000份,其中的1份或几份就可用分母是1000的分数来表示。它的单位是千分之一。等等

  师问:1/10里面有几个1/100?1/100里面有几个1/1000?在这些分数中相邻两个单位间的进率是多少?”(10)“整数相邻两个单位间的进率是多少?”(10)

  师述:因为整数和分数相邻两个单位间的进率都是10,因此这些分数可以仿照整数的写法,写在整数个位的右面,用一个圆点隔开,用来表示十分之几、百分之几、千分之几……的数,这样的数就叫小数。

  一位小数表示十分之几,它的单位就是1/10,写作0.1;两位小数表示百分之几,它的单位就是1/100,写作0.01;三位小数表示千分之几,它的单位就是1/1000,写作0.001;

  (三)课堂练习

  1、做教科书第51页的例1及“做一做”的题。

  让学生直接填在书上后订正。老师可强调做题时要看一看小数的单位和要求的单位是否与一致。

  2、做教科书55页练习九的第1题

  师让生直接做在书上,订正时让生说一说各是怎样想的。

  3、做教科书55页练习九的第2题

  师让生直接做在书上后订正。

  4、练习九的第3题,通过填空的形式,加深学生对小数计数单位的认识。

  5、练习九的第4题,通过手势比划用小数表示的长度,加深学生对小数十几意义的理解,同时进一步巩固长度单位的表象。

  6、练习九的第5题,让学生写出各数中不同数位上的2表示的意思,让学生熟练掌握小数的各个数位及其技术单位,体会位值的含义。

  (四)课堂小结

  这节课你学习了那些内容?什么是小数?小数的计数单位有哪些?

  三、板书设计:

  小数的产生和意义

  1分米→1/10米→0.1米。

  3分米→3/10米→0.3米。

  1厘米→1/100米 →0.01米。

  7厘米→7/100米→0.07米。

  13厘米→13/100米→0.13米。

  1毫米→1/1000米→0.001米。

  8毫米→8/1000米→0.008米。

  13毫米→13/1000米→0.013米。

《小数的意义》教案11

  一、再现旧知,回顾整理

  课件出示:请把下列各数分类。相信你一定很棒。

  0 7.523 6.8 69 101 1.25 384 0.001

  教师根据学生口答板书:

  整数: 0 69 101 384

  小数:7.523 6.8 1.25 0.001

  教师谈话:今天这节课我们重点复习小数的有关知识。

  二、小组交流,自我梳理。

  回想一下,你学过小数的哪些知识?与之相应的整数之间有什么联系?并请举例说明。

  学生分小组讨论交流。

  教师在学生整理知识时要参与其中,给予必要的方法指导,引导学生相互学习。

  三、全班交流,构建成网。

  1、班内交流,根据学生交流教师相机整理板书:

  整数 小数

  意义

  (0和自然数的统称…… )←----------→(表示一个数的…… )

  计数单位

  (……千、百、十、个)←------------→(十分之一、百分之一……)

  读写法

  (从高位…… )←------------→(整数部分……)

  比较大小

  (先比较最高位……)←------------→(先比较整数部分……)

  运算定律

  (a+b=b+a…… )←------------→(a+b=b+a…… )

  加减法

  (相同数位对齐……)←------------→ (小数点对齐……)

  (后来板书)教师小结。

  2、教师谈话:小数意义与整数有着这样密切的联系,那么小数的加减法与整数有什么样的联系呢?

  ①课件出示:用竖式计算

  2.85+1.08 2.7+1.85 21.09—4.89 13—8.87

  独立计算,班内交流,交流时让学生说一说计算小数加减法要注意什么?(完成上面的板书)

  ②课件出示:先认真分析每道题目的数据特征,然后独立计算,交流时说一说为什么这样算。

  12.25+36+7.75 13.05+12.38—4.05

  5.6—0.71—0.29 19.65—(3.98+6.65)

  四、练习应用,巩固提高。

  (一) 填空

  1、由7个0.1、3个0.001和5个1组成的数是( ),读作( )。

  2、一个数缩小100倍是0.8,这个数是( )

  3、将下列各数按顺序排列。

  ①0.58 0.85 0.085 0.058 0.8 0.805

  ( )<( )<( ) <( )<( )<( )

  ②0.91米 1.0米 10.1米 87厘米 0.69米 9分米

  ( )>( )> ( ) >( )>( )>( )

  4、把一个4位小数保留三位小数后是5.690,这个小数最小是( ),最大是( )。

  5、96.4的小数点向左移动一位,再向右移动三位,结果是( )

  (二)火眼金睛辨对错。

  1、4.60和4.6大小相等,精确度也相等。( )

  2、小数都比整数小。( )

  3、10个百分之一是一个千分之一。( )

  4、0.9595保留三位小数是0.960。( )

  5、把0.96的小数点去掉,原数就扩大了1000倍。( )

  (三)选一选。

  1、把48.5 的小数点移到最高位数字的`左边,这个数缩小到它的( )

  ①1/10②1/100③1/1000

  2、下列各数中去掉“0”而大小不变的是( )

  ① 2430 ②2.043 ③2.430

  3、6.5时是6时( )分

  ① 5 ②50 ③30

  4、大于0.2而小于0.3的小数有( )

  ①只有0.29 ②没有 ③无数个

  5、一个数十位、十分位和千分位上都是8, 其余各位上都是0,这个数写作( )

  ① 18.808 ②80.808 ③8.088

  (四)动脑思考。

  □0.□9,在□里填数,使其符合下列要求。

  ①使这个数最大,这个数是( )

  ②使这个数最小,这个数是( )

  ③使这个数最接近31,这个数是( )

  板书设计 :

  小数的意义和性质

  整数: 0 69 101 384

  小数:7.523 6.8 1.25 0.001

  课后反思:

《小数的意义》教案12

  一、教学内容:

  小数的意义P32——P33

  二、教学目标:

  1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……

  2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。

  3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。

  三、教学重难点

  重点:理解小数的意义。

  难点:会用小数表示计量单位换算的结果。

  四、教学准备

  多媒体、米尺。

  五、教学过程

  (一)导入新授

  师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。

  师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)

  师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。

  师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。

  板书:小数的意义。

  (二)探索发现

  1、认识一位小数。

  (1)出示教材第32页例1米尺图。

  把1平均分成10份,每份长多少分米?1分米是1米的几分之几?

  教师介绍出示:“十分之一”米还可以写成0.1米。

  那2分米、3分米呢?学生试着完成填空。

  学生在小组内交流后再全班交流,交流时说说每个分数表示的意义

  教师根据学生的回答板书:

  1分米=新人教版数学四年下第四单元小数的意义和性质教案(一)米=0.1米,3分米=新人教版数学四年下第四单元小数的意义和性质教案(一)米=0.3米……

  (2)观察上面的等式你能发现分数和小数之间的联系吗?

  学生观察并在小组内讨论。

  师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

  2、认识两位、三位小数。

  我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。

  (1)教师继续出示米尺的放大图。

  学生思考、小组交流后进行反馈:

  把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。

  1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一)米,用小数表示就是0.001米。

  (2)小结。

  分母是100的分数,可以写成两位小数。两位小数表示百分之几。

  分母是1000的分数,可以写成三位小数。三位小数表示千分之几。

  3、小数的意义。

  分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的进率是多少?

  学生交流说说对小数的理解。

  师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。

  4、阅读“你知道吗?”。

  师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的'历史吗?

  学生自学教材第33页“你知道吗?”。

  师生交流时,让学生说说小数的发展史。

  (三)巩固发散

  1、指导学生完成教材第33页“做一做”。

  让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。

  2、在括号内填上合适的小数。

  ()元( )千克( )厘米

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。

  (五)板书设计

  小数的意义

  分母是10、100、1000……的分数可以用小数表示。

  小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  每相邻两个计数单位间的进率是10。

  六、教学后记

《小数的意义》教案13

  课题:人民教育出版社第八册《数学》第四单元第1课《小数的意义》

  教学目标:

  1、使学生知道小数的产生过程,理解分数与小数的联系。

  2、使学生明确小数的计数单位,认识小数并理解小数的意义。

  3、培养学生的观察能力、分析能力、抽象概括和迁移能力。

  教学重点:使学生通过分数与小数的联系从而理解小数的意义。

  教学难点:理解小数的意义。

  教具准备:多媒体课件、米尺。

  教学过程:

  一、设疑激趣、揭示课题。

  教师出示钢笔,写出价格13.50元。

  师:这是个什么数?(学生:小数)

  师:小数和我们学过的整数有什么不同?

  生:有圆点……

  师:小数是仿照整数写成的,用小数点隔开,左面是小数的整数部分,右面是小数部分。在日常生活中,有很多地方要用到小数。(教师和学生比身高并引出姚明的身高。)

  第一组数:1米7分米3厘米2米2分米6厘米

  第二组数:1.73米2.26米

  师:那一组数更简明?(学生:第二组数)

  师:对。小数是人们根据生活的需要而产生的。小数里有很多的奥秘,今天,我们就一起来研究小数的意义。

  二、探究新知

  1、认识一位小数。

  教师出示媒体。

  师:把1米平均分成10份,每份是多少?生:1分米1米=10分米

  师:那么反过来,1分米等于多少米呢?(生:米)师:

  师:还可以把米写成小数是0.1米。

  师:0.1米是由哪个分数得来的?(生:是由米得来的。)

  师:3分米是多少米?写成小数有是多少呢?(学生:米0.3米。)

  师:请同学们观察这一组数,你发现什么?

  教师引导:小数点后面有几位数?0.1、0.3分别是由那两个分数得来的?这两个分数的分母是多少?它们的计数单位是多少?

  学生:一位小数、分母是10的分数可以写成一位小数、计数单位是十分之一。

  师:0.7表示()个。

  2、认识两位小数。

  师:把1米平均分成100份,每份是多少?你能运用学习一位小数的'方法、结合媒体上的资料自己研究出新的小数吗?

  分数小数分数小数

  出示课件:1厘米=()米=()米15厘米=()米=()米

  学生自主研究,教师参与到学生的研究中。

  学生汇报研究的成果:

  首先填好空。

  师:你发现了什么?

  学生:这是二位小数、计数单位是百分之一、分母是100的分数可以写成二位小数……

  教师对学生没发现的给予引导启发。

  师:0.75表示()个。

  3、认识三位小数。

  师;你能继续研究出其他的小数吗?

  教师出示媒体:

  把1米平均分成1000份,每份是1毫米。

  分数小数分数小数

  1毫米=()米=()米63毫米=()米=()米

  学生自主研究后汇报交流:

  分母是1000的分数可以写成三位小数,计数单位是千分之一………

  教师对学生每发现的给予引导启发。

  师:0.63表示()个。

  4、抽象概括小数的意义。

  讨论:1、小数是由分母是多少的分数写成的?

  2、一位小数可以用来表示什么?二位小数、三位小数呢?

  3、什么叫小数?

  学生先自己说,教师再指明学生说。

  教师通过讨论第1、2两个问题引导学生归纳出:分母是10、100、1000……的分数可以仿照整数是写法,写在小数点的右面,用来表示十分之一、百分之一、千分之一……的数,叫做小数。

  教学例1:

  课件出示。学生独立完成后汇报交流。

  师:这个题你是怎样想的?

  三、实践应用。

  课件分别出示。

  1、0.5里有()个0.1,

  0.09里有()个0.01,

  0.013里有()个0.001。

  2、教师出示图,学生在书上完成后集体交流。

  3、连线,教师出示连线图,学生在书上独立完成后集体交流。

  四、应用拓展。

  0.425里有()个0.001

  0.20里有()个0.01

  用0、2、5、8这四个数和小数点你能组成什么样的小数?

  五、板书设计

《小数的意义》教案14

  教学目标

  1.了解小数是如何产生的,理解和掌握小数的意义。

  2.明确小数与分数之间的联系,掌握小数的计数单位以及它们之间进率。

  3.经历小数的发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,培养动手实践、合作探究的学习习惯。

  教学重难点

  重点:理解和掌握小数的意义、小数的计数单位以及它们之间的进率。

  难点:理解小数的计数单位以及它们之间的进率。

  教学工具

  课件

  教学过程

  一、复习导入

  师出示课件(m,dm,cm)并问到:首先来见见几位老朋友,你还认识它们吗?谁来读一读?

  指一名学生试读

  师:一起读

  生齐读。

  师:想一想,括号里应填几?

  指名回答。

  出示课本情境图

  师:他们测量的.结果分别是多少?

  生:1米1分米、1米2分米

  师:如果只用米作单位,该怎样表示呢?

  生:1.1米、1.2米(师板书)

  师:生活中,在哪些地方可以见到小数?来看几幅图片。(课件出示生活中的小数)

  师:我们把小数点后面有一个数的小数叫做一位小数,找一找还有一位小数吗?

  小数点后面有两个数的叫做两位小数,能找一找吗?

  谁能说一个三位小数?

  师:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。这节课我们继续认识小数。(板书课题:小数的意义)

  二、探究新知

  1、探究一位小数的意义

  师出示课件:把一米平均分成十份,这里的一份是多少?

  生:一分米

  师:用分数表示是多少米呢?生:十分之一米

  师:用小数表示是多少米呢?

  生:0.1米

  师:把一米平均分成10份,1份是1分米,用分数表示是十分之一米,小数是0.1米。这里还有两个括号需要填写,大家独立完成,可以吗?

  生完成,师指名回答,并让生说一说是怎么想的,集体评价。

  师:观察这些分数和小数,你有什么想说的吗?

  生如果有困难,师引导:观察这些分数的分母是几?小数是几位小数?

  得出结论:分母是10的分数可以用一位小数表示。(师板书)

  师:理解了吗?考考你,完成作业纸巩固练习1

  生完成,指名回答,集体订正。

  2、探究两位小数的意义

  师:刚才我们把一米平均分成10份,如果平均分成100份,会是什么样子呢?来看一下。(课件出示)

  师:其中的一份是多少呢?

  生:1厘米

  师:用分数表示是多少米呢?

  生:一百分之一米

  师:用小数表示呢?

  生:0.01米

  师:真聪明,那么后面的括号继续交给你独立完成。

  生完成,师指名说,集体评价。

  师:再来观察一下这些分数和小数,又有什么发现呢?

  生交流,得出:分母是100的分数可以用两位小数表示。(师板书)

  师:学会了吗?还得考考你。请大家完成作业纸上巩固练习2

  生独立完成,指名回答,集体订正。

  3、探究三位小数的意义

  师:把一米平均分成1000份是什么样子呢?又会有怎样的发现呢?

  现在把这个任务交给你和同桌,交流讨论,完成第三个探究。

  生生合作交流,师巡视。

  生完成,汇报结果,集体订正。

  师:观察这里的分数与小数,能得到一个结论吗?

  生:分母是1000的分数可以用三位小数表示。(师板书)

  4、推想、概括小数的意义

  师:试想一下:把一米平均分成一万份,其中的一份用分数怎样表示?小数呢?如果平均分成十万份呢?

  师:能不能把我们刚才的这些发现概括成一句简洁明了的话呢?

  生交流,师引导说出:分母是10、100、1000......的分数可以用小数表示。(师板书)

  师:现在把我们所学的知识应用起来,请大家完成作业纸《应用感受,巩固意义》

  生完成,指名回答,订正。

  5、认识小数的计数单位与进率

  师出示课件:思考一下,0.3里有几个0.1?

  生:0.3里有3个0.1

  师:0.06里有几个0.01呢?0.007里有几个0.001呢?

  生依次回答.

  师:0.1、0.01、0.001写成分数分别是多少呢?

  生:十分之一、百分之一、千分之一

  师:小数的计数单位就是十分之一、百分之一、千分之一......,分别写作0.1、0.01、0.001......

  师:再思考:十分之一里有几个百分之一?百分之一里有几个千分之一?

  生回答。

  师:所以小数相邻两个计数单位的进率是?

  生:是10

  三、综合应用、拓展提升

  生独立完成作业纸上的《综合应用》

  第一题:指名回答,集体订正

  第二题:指名回答,并说一说是怎样想的。

  四、拓展视野

  课件出示教材“你知道吗?”指名读一读。

  五、课堂小结

  这节课你有什么收获呢?

《小数的意义》教案15

  教学目标

  (一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

  (二)通过归纳整理,提高学生的概括能力。

  教学重点和难点

  熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

  教学过程设计

  (一)归纳整理小数乘除法的意义

  1口算下面各题,并说出各算式的意义。

  15×3 15×3 15×03 15÷3

  28×2 28×2 28×02 28÷2

  25×5 25×5 25×05 25÷05

  12×4 12×4 012×04 012÷04

  2思考:

  ①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

  ②小数除法的意义是什么?

  讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

  3比较归纳、整理:

  看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

  讨论完成下表:

  (二)复习小数乘除法的计算法则

  1小数乘法的计算法则。

  (1)说出下面各题的积中各有几位小数。

  23×05 214×07 275×1203 184×0026

  提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的`。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

  (2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

  ①04×25=(1);②0075×052=(0039)。

  提问:

  ①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

  (3)计算并验算:

  67×75= 836×25= 125×24=

  订正后回答:

  067×75= 836×025= 0125×24=

  小结:

  小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

  讨论得出:

  相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

  不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  (4)口算:

  08×4= 4×08= 005×20= 20×005=

  003×9= 9×003= 19×5= 5×19=

  观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

  练习:在下题的○中填上>,<或=。

  ①16×12○16; ②14×0○14;

  ③024×5○024; ④37×21○37;

  ⑤0×7○0; ⑥0×28○0。

  上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

  2小数除法的计算法则。

  (1)计算并验算(P34:6):

  189÷054= 71÷0125= 051÷022=

  计算后订正,提问:

  ①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

  ②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

  (2)口算:

  42÷06= 15÷5= 32÷08= 2÷4=

  哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

  (除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

  练习:在下面的○中填上>,<或=。

  30÷06○30 18÷9○18 0÷02○0

  36÷4○36 27÷03○27 0÷12○0

  上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

  (三)综合练习

  1口算:

  3978×1= 36÷36= 287×0=

  1×056= 78÷1= 0÷287=

  “1”与“0”有什么特性?

  2计算并求近似值:P35:2。

  小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

  3作业:P35:1,3。

  课堂教学设计说明

  复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

  通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

  板书设计

  整数乘法:

  4×25=100

  75×52=3900

  小数乘法:

  小数除法:

【《小数的意义》教案】相关文章:

《小数的意义》教案07-11

小数的意义教案08-02

《小数的意义》的教案02-17

人教版小数的意义教案03-27

小数的意义教案5篇01-27

小数的意义教案9篇02-12

《小数的意义》教案6篇02-12

精选小数的意义教案4篇01-21

【精选】小数的意义教案三篇01-23

小数的意义教案四篇01-31