当前位置:育文网>教学文档>教案> 《分数的意义》教案

《分数的意义》教案

时间:2024-11-07 17:11:37 教案 我要投稿

《分数的意义》教案集合15篇

  作为一名为他人授业解惑的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写才好呢?下面是小编整理的《分数的意义》教案,欢迎阅读,希望大家能够喜欢。

《分数的意义》教案集合15篇

《分数的意义》教案1

  教学目标:

  1、使学生理解分数的意义及分子分母的含义。

  2、在操作、观察、思考、辨析等活动中,体会部分与整体的关系,感受分数的相对性。

  3、让学生亲身体验知识的形成过程,激发学生探索知识的强烈愿望和数学学习的兴趣。

  教学重点:通过具体的操作活动,使学生理解分数的意义,发展学生的数感。

  教学难点:在比较辨析中体会部分与整体的关系,感受分数的相对性。

  教学过程:

  一、导入

  出示:数

  1、你们都学过哪些数?(整数、小数、分数)

  把你知道的分数知识说出来,让我们大家分享一下好吗?

  预设:(1)分数有分母、分子、分数线

  (2)把一个苹果平均分成两份,取一份就是1/2

  (3)分数的比较大小

  2、关于分数,你还想知道什么呢?

  预设:(1)分数加减法

  (2)约分、通分

  看来大家的求知欲很强,今天咱们就继续研究分数

  二、实践操作,研究新知

  (一)认识单位1

  出示:1/4

  1、你能举例说明1/4的含义吗?把它画下来

  2、学生活动,教师巡视

  先完成的同学再举举其他的例子

  3、汇报交流

  学生边汇报,教师边板书

  预设:

  (1)我把一块蛋糕平均分成四份,这样的一份就是这块蛋糕的1/4

  板书:平均分

  强调:是谁的1/4

  (2)我把一个长方形平均分成四份,这样的一份就是这个长方形的1/4

  (3)我把一米平均分成四份,这样的一份就是一米的1/4

  (4)我把四根小棒平均分成四份,这样的一份就是(这四根小棒的)1/4

  这一份是谁的1/4啊?(这四根小棒的)

  也就是说把这四根小棒看成了一个整体平均分成四份,这一份就是这个整体的1/4

  你们知道这个整体可以用什么来表示吗?(用自然数1来表示,通常把它叫做单位1。)这一份就是(单位1)的1/4

  上面这些图中,把谁看做单位1?分别说一说

  4、你还能把多少图形平均分,也能用1/4表示其中的一份?

  (5)我把八根小棒平均分成了四份,这样的一份就是这八根小棒的1/4

  这是把谁看成一个整体?(八根小棒),那么八根小棒就是(单位1)这样的一份就是(单位1)的1/4

  (6)我把12根小棒看做单位1,平均分成四份,这样的一份就是单位1的1/4

  5、请同学们观察我们操作的结果,有什么相同点和不同点?

  相同:都是平均分成四份,表示其中的一份,也就是意义相同

  不同:单位1不同,有的是把一个物体进行平均分,有的是把多个物体看成一个整体进行平均分

  分多个物体时,1/4一会表示1根,一会表示2根,一会表示3根

  6、通过观察你现在认为1/4与它们所分的物体的(个数)无关,也就是与(单位1无关)。无论物体的个数是多少,1/4的分母4,始终表示把它们平均分成四份,分子1始终表示其中的一份。只要把单位1平均分成四份,其中的一份就可以用1/4表示

  7、每一份出现数量不同是因为(单位1不同)

  8、如果把他们平均分成四份,表示其中的两份呢?(2/4)

  你能说说它表示的含义吗?三份呢?四份呢?

  1、刚刚通过大家的努力,我们用不同数量的物体找到了1/4,下面以小组合作的方式

  (1)、把12个图形平均分一分,你可以得到哪些分数?

  (2)、要求:以小组为单位操作,思考有几种分法。

  根据操作过程填写记录单。

  说清每个分数的含义。

  把()看做单位1,平均分成()份,表示这样的()份是()的(),是()个图形。

  记录单:

  方法一

  方法二

  方法三

  方法四

  画图表示

  用分数表示

  ()

  ()

  ()

  ()

  ()

  ()

  ()

  ()

  与分数对应的个数

  2、小组汇报,根据汇报情况,学生质疑、解答。

  结合表格或图说一说,每个分数中,分母表示的是什么?分子表示什么?这个分数表示什么含义?

  2、教师:这样的2份、3份是单位1的几分之几?是几个图形

  那也就说既可以平均分成若干份,又可以表示其中的一份或几份

  3、归纳概念:

  刚才大家开动脑筋,得出了这么多的`分数,你能结合刚才的学习活动,结合表格试着总结出什么叫分数吗?

  师在学生回答的基础上概括小结:把单位1平均分成若干份,它的一份或几份就可以用分数来表示。这就是我们今天探究的内容分数的意义。(板书课题)

  三、简单应用,生活中解释意义

  1、分数不仅在我们的课堂中,而且还出现在我们的生活中。

  中国是一个干旱缺水严重的国家。淡水资源占全球水资源的6/100,我国人均占有水量是世界人均占有量的1/4,北京市的人均占有水量是全国人均占有量的1/8。

  学生自主阅读,结合具体情境说说每个分数的意义。

  谈谈你读后有什么感受。(感受分数与生活的联系,增强节约用水的意识)

  2、用分数表示下面个图中的涂色部分。

  3、判断并说明理由。

  四、总结

  通过这节课的学习,你对分数又有了哪些新的认识?有哪些收获?

《分数的意义》教案2

  课堂上需要解决的问题:(按本节课的顺序)

  (1)分数各部分的名称、读法、写法。 (2)“单位1”的理解。

  (3)分数的意义。 (4)分数的“单位”。

  重点:所授之识均为重点。难点:既知是难点,上课之前已想办法通过合理的教学手段予以克服,上课之时何来难点。

  教学过程:

  一、拉近学生距离:向学生问好(用激情洋溢的情绪调动学生的情绪,并引导学生观察、读懂教师的表情、动作,使学生被老师的行为所吸引。)

  二、有效引导,引出分数,解决“写法、读法、各部分名称、初步理解意义”这4个任务。

  1、大家会分东西吗,下面看老师分,大家要注意看,要弄清楚以下几个问题?

  A老师分的是什么“东西”?

  B我是怎么分的?

  C分成了几份?

  D红颜色的占其中的几份?

  连起来说一句话:老师把( )( )分成了( )份。红颜色的占其中的( )份

  (1)将一段1米长的线段平均分成了3份,红的占其中的2份。

  老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。

  (2)将一个长方形平均分成6份。红的占其中的5份。

  老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。

  (3)将8只羊平均分成4份,红色的`羊占其中的(1)分。

  老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。

  2、引导:

  (1) 大家注意,我们把下面这句话的意思用简单的形式来表示:

  6和9的最小公倍数是18。→=18

  数学中许多较为复杂的语言我们可以用一个简单的形式来表示,大家觉得爽不爽?

  (2)我们今天再来爽一爽

  A课件回到将一条线段平均分成3段的画面。

  “老师把(一条1米长的线段)(平均)分成了(3)分,红颜色的线段占其中的(2)份。”这句话实在太长了,我现在用一个简单的方法来表示,大家说好不好?引出分数“三分之二”( ),(在显示过程当中明确分数的写法。)教师明题,这个数叫分数,它读作“三分之二”下面的3叫做“分母”上面的“2”叫做“分子”(该部分全部由教师在黑板上板书。)教师提问:分母表示什么意思?分子表示什么意思?反过来问一下:在这里“三分之二”表示什么意思呢?→表示把1米长的线段平均分成3份,表示其中的两份。

  B课件回到将一个长方形平均分成6份,红的占其中5份的画面。

  将“老师把(一个长方形)(平均)分成了(6)份,红的占其中的5份。”用分数表示。(已经可以叫学生自己说、写了)之后让学生回答:分母表示什么意思?分子表示什么意思?反过来问:“六分之五”这个分数表示什么意思呢?→表示把一个长方形平均分成6份,表示其中的5份。

  C课件回到将8只羊平均分4份,红色的占其中的1份的画面。

  将“老师把(8只羊)(平均)分成了(4)份,红的占其中的(1)份。”这句话用分数表示。由学生来完成。反过来问→“四分之一表示什么意思呢?→表示把8只羊平均分成4份,表示其中的1份。

  三、单位“1”的认识

  给出另一个新的分数“二分之一”问它表示什么意思呢?

  教师对学生的回答表示认可,但提出疑问:你难道知道一定是分这个东西吗?听听其他同学的意见。

  A可以分西瓜 B可以分菠箩 C可以分小鸭……

  总之,我们很多东西都可以分,但在分的时候,我们都把他们当成“一个整体”来看,是“一个整体”所以我们可以给他们取一个统一的名字:单位“1”,大家说好不好,不好,你取取看。1为什么加引号的问题解决。

  (通过课件,使学生明确单位“1”)

  四、深入理解分数意义,分数的单位的认识

  1、练习巩固:课件演示

  (1) 上面是一个空心的圆,下面是一个分数:四分之三

  让学生说说:要你做什么?把这个圆平均分成4份,用颜色表示(取)其中的三份。(或:把单位“1”平均分成4份,表示其中的3份。)

  回答清楚以后由学生自己完成。

  (2) 出示一条线段:下面是一个分数:十分之七

  让学生说说:要你做什么?(让学生用两种方式来回答。)再由学生完成。(除了用颜色涂以外,教师教另一种表示方法,为教学例1做准备。

  (3)出示例1,让学生弄请清和(2)的区别,明确是将0~1之间的线段分一下。然后完成例1。

  完成其余2~3题。

  2、分数单位的认识

  1)分母是3的最小分数想一想是几?分母6的最小分数是几?分母是8的最小分数是几?

  通过观察,使学生认识到这些分数的分子都是“1”,取一个共同的名字叫“分数单位”

  2)练习

  三分之一()是哪些分数的分数单位?说一说各含有几个分数单位。

  六分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  八分之一( )是哪些分数的分数单位?说一说各含有几个分数单位。

  练一练第5题。

  练一练第6题。

  五、巩固练习:完成书上其余练习。教师巡视批阅。

  六、课堂总结:

  以一个分数为例,说一说(1)分数各部分的名称、读法、写法。

  (2)分数的意义。

  (3)“单位1”的理解。

  (4)分数的“单位”。

  六、拓展题

  有一位老伯将17头牛留给他的三个儿子,他给大儿子二分之一,给二儿子三分之一,给小儿子九分之一,你会帮他们分吗?怎么分?他们各得几头?

  七、作业布置:

  《作业本》

《分数的意义》教案3

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的'学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

《分数的意义》教案4

  教学目标:

  1.在说一说、分一分、画一画等活动中体会单位 1的含义,理解分数的意义,学会用分数描述生活中的事情。

  2.在具体的生活情境中感悟把一个整体平均分成若干份,这样的一份或几份可以用分数表示这一过程,培养学生动手操作能力和抽象概括能力。

  3.在学习活动中感受数学与生活的密切联系,体验数学的价值,获得成功、兴趣、愉悦的情感体验,激发学生对数学的兴趣。

  教学重点:

  理解分数的意义

  教学难点:

  理解把许多物体组成的一个整体看作单位1。

  教学方法:

  自主探究、 合作交流教具多媒体课件

  教学过程:

  一、回顾旧知,导入新课。

  谈话:前面我们已经学习了分数的初步认识,对于分数你已经知道哪些知识?举例说出分数的各部分名称,联系实际说出分数表示的意义。

  谈话:对于分数还想了解的知识,进而导入新课。

  二、合作探究,构建新知

  (一)初步感知。

  出示情境图1船模试航。

  教师谈话:同学们,请你仔细观察这幅图,从图中你能发现哪些数学

  信息?提出什么数学问题?

  教师引导学生提出:5只航模平均分给5个同学,每个同学分得的航模数占总数的几分之几?

  学生以小组为单位,利用画有5只船模的题卡分一分,学生先独立思考,再在小组内交流自己的想法,最后在全班进行交流。找到解决问题的方法。学生分组活动时,教师参与到学生的小组学习。然后在全班进行交流。全班交流时,教师适时引领:把5只船模看作一个整体,平均分成5份,1份占这个整体的1/5

  在学习1/5的基础上,老师可以继续引导学生提出问题:如两个同学分得的航模数占总数的几分之几,3个同学呢?

  (二)深入探究

  出示情境图2航模放飞

  谈话:同学们,航模要放飞了,我们一起去看看吧。请你观察这幅图,根据图中的这些信息,你又能提出哪些与分数有关的问题?

  学生提出问题,教师适时梳理。

  如:一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

  学生利用手中的学具摆一摆、分一分,分别解决一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

  解决第一个问题:学生分组学习,教师要参与学生的小组活动中。

  全班交流时,学生先利用4个飞机模型动手摆一摆,可能会出现1/2、2/4两个答案。然后全班进行交流、辩析、补充,得出结论。教师适时引领:每份是2架飞机,为什么说是占这个整体的1/2呢?

  通过摆模型得到第一问题的结论:把4架飞机看作一个整体,平均分成2份,每份占这个整体的1/2

  课件演示将4架飞机平均分的过程,并板书结论。

  解决第二个问题:先让学生交流自己的答案;再组织学生动手操作验证,并参与学生的学习活动;全班交流时,适时点拨:每份是2架飞机,为什么占总数的'1/3呢?。从而引导学生得出结论。

  (三)观察比较

  谈话:请同学们观察我们所得到的 分数,你还有什么疑问吗?

  引导学生质疑:两个小队每组放飞的都是2架飞机,为什么表示出来的分数却不一样呢?

  学生进行观察比较,同桌讨论,全班交流得到结论。

  通过对两个小队飞机放飞情况的比较,得到:将一个整体平均分成的份数不一样,表示出来的分数也不一样。所以同样是2架飞机,表示出的分数一个是1/2,一个是1/3。

  (四)拓展应用

  谈话:想一想,还可以把什么看作一个整体?可以利用老师提供的材料,也可以自己找材料,动手分分看,你能得到哪些分数?是怎样得到的?

  学生动手操作,可以利用教师提供的材料(1张长方形纸片、8根小棒、长1米的绳子),也可以自己找材料,得到不同的分数。

  交流:你利用什么材料,得到一个什么分数,你是怎样得到的?

  总结:把一个整体平均分成若干份,这样的一份或几份可以用分数来表示。

  (五)总结概括

  谈话:一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,通常把它叫做单位1。

  举例:学生举例还可以把哪些量看作单位1?并区分单位1与自然数1的不同。

  结合操作过程,讨论、交流、总结分数的意义。引导学生总结概括分数的意义。把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (六)看书质疑。

  学生阅读6769页,质疑问难。教师巡视,解答学生困惑、疑难问题。

  三、巧设练习,深化理解

  1、自主练习1、2

  2、涂色部分能用分数表示吗?(课件出示)

  3、游戏:取糖果。学生按要求取糖果:盒子里有11块糖,取出总数的2/11;取出剩下的1/9;再取出剩下的1/4;如果取出2块,是取出了剩下的几分之几?

  独立完成,进行交流。

  教学反思:

  创设生动有趣的现实学习情境。通过一些现实的生活情境,引导学生主动参与思考、合作、交流、反思等活动。使学生感受到数学来源于生活,运用数学可以解决生活中的问题,进一步体验数学与现实生活的密切联系。

《分数的意义》教案5

  分数的意义

  分数的意义 总42(电36)

  教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义.

  教学难点:使同学理解"分数"的意义,弄清分数单位的含义.

  教学课型:新授课

  教具准备:课件

  教学过程:

  一、创设情景,温故引新

  1,提问:A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二、联系实际,探究新知

  自主学习,整体感知分数的知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影局部.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的'( )/( );3份是它的( )/( )

  (3)用一张长方形的纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 假如这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义

  ⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三、加强练习,深化概念

  竞赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四、家作

  1,P88 .1,2

  2,P89 .3

  板书设计: 分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

《分数的意义》教案6

  教学内容:分数的意义、分子、分母、分数单位

  教学要求:

  1、使学生理解掌握分数、分子、分母的意义和分数单位,进一步学会读写分数。

  2、通过分数意义的教学,培养学生分析、综合、抽象、概括能力。

  教学重点:单位1和分数单位

  教学准备:电脑软件、实物投影仪、正方形纸、围棋子若干

  教学过程:

  一、复习引进

  1、出示分数,它们是什么数?

  同学们在三年级时已初步认识了分数,那么分数是怎么产生的呢?

  (1)把一个苹果平均分给两个同学,每人得多少?

  (2)请两组同学量一量课桌的宽是多少厘米?

  (3)请一位同学量一量数学书的长是多少厘米?

  (得到的结果都不是整数)

  在实际生产和生活中,人们在测量和计算时,往往不能得到整数的结果,这时就需要用一种新的数─分数来表示,这样就产生了分数。

  什么是分数?分数的意义是什么呢?这就是我们这节课要学习的内容。

  出示课题:分数的意义

  二、理解概念:

  1、理解单位1的概念

  (1)出示一块蛋糕:它可以用1来表示。

  (2)出示一个正方形:它可以用1来表示吗?为什么?

  (3)出示一条线段:它可以用1表示吗?为什么?

  小结:一块蛋糕,一个正方形,一条线段都是一个物体,都可以用1表示。

  (4)出示四个苹果:这是几个苹果?可以用1表示吗?为什么?

  用圆圈把四个苹果圈起:现在可以用1来表示这些苹果吗?为什么?

  (5)把这6只熊猫看作一个整体,用1来表示行吗?为什么?

  (6)我们全班同学可以用1表示吗?为什么?一组同学呢?

  (7)你能举出一些把许多物体看作一个整体,用1来表示的例子吗?

  小结:1不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个1很特殊,我们给它加上引号,把它称为单位1。

  说说你是怎么理解单位1的?能举出例子吗?

  2、理解分数意义:

  (1)把这块蛋糕平均分成2份,每份是它的几分之几?

  (2)把正方形纸平均折成4份,并用阴影部分表示出它的三份,用分数表示是多少?

  (3)

  这条线段怎么表示它的呢?这一段是几分之几?有几个这样的?

  (4)把这些苹果平均分成4份,每份是几只苹果?每份是整体的几分之几?把什么看成单位1?

  (5)把4个苹果看成一个整体,还可以平均分成多少份?每份是这个整体的几分之几?

  (6)把6只熊猫来平均分,有几种分法?同桌讨论一下,并告诉大家,你分的每一份占整体的几分之几?每份是几只熊猫?

  (7)每人拿出围棋子8颗,把它平均分,你想怎么分?

  请大家观察,刚才这些分数都是怎么得到的?能自己概括出分数的意义吗?

  小结:把单位1平均分成若干份,表示这样的一份或者几份的数,叫做分数。

  练习:练习十八13

  3、理解分子、分母的意义:

  说说这个分数表示什么意义?请你回忆一下分数各部分的名称。

  3分子

  分数线

  5分母

  分母5表示什么意义?看到分母你就知道什么?分子3呢?

  小结:在分数里表示把1平均分成多少份的数叫分母,表示取了多少份的数叫分子。

  4、理解分数单位的意义:

  自然数有单位,每个自然数都是由若干个1组成的,因此自然数的单位是几?分数也是由若干个分数单位组成的,所以分数也有分数单位,比如:是由3个组成,就是它的分数单位,的分数单位是,想一想,的分数单位是几?为什么?的分数单位呢?

  你能概括一下分数单位的意义吗?

  小结:在分数里,把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。

  练习:

  读出下面的分数,并说出每个分数的分数单位。

  5、学习用直线上的点表示分数:

  分数可以用直线上的点来表示。

  直线上相应的这一点应该用几分之几来表示?

  这一点用来表示,为什么?这一点用来表示,为什么?同样都是把单位1平均分,为什么两个分数的'分数单位不相同?

  三、看书质疑:

  今天学习的是课本p84p86的内容,请把p86的做一做练习一下,看看有什么不理解的地方,提出来,我们大家一起讨论、解决。

  四、综合练习:

  (一)判断:

  1、把单位1分成若干份,表示这样的一份或几份的数,叫做分数。

  2、把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (二)口答:

  1、把一条2米长的绳子平均分成5份,把什么看作单位1?每份占全长的几分之几?

  2、把12支铅笔平均分成4份,把什么看作一个整体?3份占这个整体的几分之几?

  (三)说出下面各题把什么看作1?各题中的分数各表示什么意义?

  1、男生人数占全班人数的

  2、一袋大米,吃了它的

  3、一本书30页,小华已看了总数的

  (四)填空:

  5个是()是()个

  是3个()()个是是()个()

  (五)说出下列各分数的意义、分数单位、各有几个这样的分数单位?

  (六)下图中阴影部分各占全图的几分之几?(备用)

  五、作业:

《分数的意义》教案7

  一、复习导入

  1、根据分数与除法的关系填空。

  被除数÷除数说说:分数与除法的关系。

  2、提问:80÷20的商是多少?

  被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?

  回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)

  (商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)

  二、新课

  1、动手做数学。

  (1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。

  (涂上阴影)

  (2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?

  (3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。

  2、设疑:为什么分子、分母都不同的几个分数可以相等,它们之间有什么规律呢?

  (1)观察并研究分子、分母是按什么规律变化的?

  1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。

  (2)学生发现并归纳得出的规律(揭示:分数的基本性质):

  分数的分子和分母同时乘以或者除以相同的数分数的大小不变。

  (3)理解意义。

  提问:刚才我们根据分数的意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?

  先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)

  将分数的基本性质补充完整。

  3、应用性质、解决问题。

  (1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。

  (2)把3/4和15/24化成分母是8而大小不变的分数。

  要求:独立思考解答、交流方法

  (3)师生一起总结方法:

  看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。

  (4)独立完成练一练。

  重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。

  变化的依据是分数的基本性质

  (5)口答练习十八第2题并说明判断的依据。

  4、全课总结:你能将这节课的内容及重点归纳概括一下吗?

  5、作业:完成练习十四

  理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。

  三、难点点拨

  在运用分数的基本性质时,会出现以下几种错误:

  ①忽略了“同时”。举例说明= =是错误的`,只是分子乘2,分母不变,正确答案应是= = 。

  ②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。

  在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。

  ③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的

《分数的意义》教案8

  教学内容:

  百分数的意义和写法(小学数学九年制义务教材第十一册).

  教学目标:

  通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数.

  教学重点:

  百分数的意义.

  教学难点:

  百分数与分数的异同.

  教学过程:

  一、复习引入:

  教师小结:分数既可以表示数量,也可以表示关系.

  2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图.)

  提问:单位一是谁?分数表示谁与谁的关系?

  二、新课:

  1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数.

  (板书课题,并把上面句中和图中的分数改成百分数,指导读法.)

  (1)参加课外小组的人数占全年级的70%.(读作:百分之七十)

  (2)已经修了一条路的25%.(读作:百分之二十五)

  (3)今年的钢产量是去年的120%.(读作:百分之一百二十)

  提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?

  像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.(补充板书)

  追问:百分数是一种什么数?

  2.指导写法:

  写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小.

  读百分数时,与分数的读法一样.(示范读法)

  练一练:用手指在桌上写一写,然后读一读.

  在本上写:25% 16.7% 1.25% 100% 131%

  3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)

  同:都是数,读法相同.

  异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系.百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量.

  (2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下.写百分数时,先写分子,后面写上百分号.

  (3)使用范围不同:分数的`分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数.而百分数的分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数.

  三、练习:

  1.读百分数:(互相读)

  1% 5% 99% 100% 300% 0.6% 38.3% 233.3%

  2.写百分数:(两组互相看)

  百分之七 百分之四十六

  百分之五点三 百分之三百一十点六

  百分之五十五 百分之四百

  百分之零点一 百分之百

  3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几.

  4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几.

  5.判断:(用手势表示)

  (1)一本书,已经看了它的75%,还有25%没有看. ( )

  (2)一根绳子长50%米. ( )

  (3)分母是100的分数叫百分数. ( )

  (4)火车的速度比汽车快25%,火车的速度是汽车速度的125%. ( )

  6.看图填空:

  把( )看做单位一,( )占( )的60%,没走的路程占( )的( )%.

  把( )看做单位一,( )相当于( )的32%,苹果树是( )的( )%.

  把( )看作单位一,( )相当于( )的27%,现在用电是原来的( )%.

  四、总结:

  看着黑板概括一下今天的学习内容,你学会了什么?什么是百分数?怎样写?与分数有什么不同?

  四、布置作业:

  1.读书,复习今天的学习内容.

  2.书第68页5~8.

  五、板书设计:

《分数的意义》教案9

  一、教学内容:

  教材第60-62 页的内容。

  二、教学目标:

  1 .使学生进一步理解并掌握分数的意义。

  2 .知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。

  3 .引导学生学会抽象概括,培养初步的逻辑思维能力。

  三、重点难点:

  1 .理解和掌握分数的意义。

  2 .理解单位“1 ”。

  3 .突破一个整体的教学。

  四、学具准备

  正方形纸片

  五、教学过程

  一、创设情境。

  1 .测量。

  师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)

  2.计算。

  教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示? 它结果不能用整数来表示,这样就产生了分数。

  3 .讲述。

  在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的数——分数来表示,这样就产生了新的'数—分数。今天,我们就来学习“分数的意义”。

  二、教学实施

  1、出示课件

  说说每个图下面的分数是:

  (1)把什么看做一个整体?

  (2)平均分成了几份?

  (3)表示这样的几份?

  2、小组共同合作交流

  1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?

  2.结合小组汇报出示课件,展示结果

  3、概括总结。

  老师:刚才同学们在表示 的过程中,有什么发现吗?

  学生甲:都是把物体平均分成几 份,表示这样的一份。

  学生乙:我发现有的是把1 个图形平均分,有的是把4 个苹果、6 只熊猫平均分,还有的是把1 米平均分。

  老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1”。

  (3)举例。

  老师:对于这个整体,你还能想出其他的例子吗?

  学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。

  3、(1) 概括意义。

  老师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1 ”可以很小,也可以很大??刚才同学们举了很多分数的例子,那么到底什么是分数,你能尝试用文字描述一下吗? 先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?

  学生试说,教师板书。

  板书:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。 强调必须是平均分。

  揭示课题:分数的意义。

  4、巩固练习

  课本62页做一做,填在书上,学生汇报

  5.学习分数单位。

  (1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。

  (2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。

  (3)分数单位与哪个数有关?

  让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。

  三、巩固练习

  出示课件

  四、、总结

  1、想一想,这堂课上你学到了什么?

  2、如果把这堂课上学习的知识看做单位“1”,请你估一估,你学到了这些知识的几分之几?

  板书设计

  分数的意义

  一个物体

  一个整体单位“1” 平均分 若干份(一份)

  一些物体分数单位

《分数的意义》教案10

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,理解单位“1”知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力。

  教学重点:

  理解和掌握分数的意义,理解单位“1”的含义。

  教学难点:

  对单位“1”的理解。

  教具和学具:

  米尺、长方形白纸、圆形纸片、一米长的绳子、操作练习纸。

  教学过程:

  一、创设情景,温故引新。

  1、出示1/4

  师:认识吗?关于1/4你都知道些什么?

  生:把一个物体平均分成4份,取其中的1份就用1/4表示。

  生:4是分母,1是分子

  生:它是一个分数。

  师:同学们说的很好,那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师讲解古人测量的情况)。课件呈现情境图,

  3、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平均分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  4、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示—这就产生了分数。(板书:分数的产生)

  三、教学分数的意义。

  1、动手操作,探索新知。

  (1)操作。

  师:看来同学们对分数已经有了一些初步的了解,课前老师给每一个小组都提供了四种材料,一张正方形纸、1分米长的线段、4个苹果、8只熊猫。

  下面以小组为单位,根据这几种材料,通过折一折、画一画、分一分等方法,表示出1/4 学生动手操作,教师巡视。

  (2)交流

  师:老师看到每个小组都根据这几种材料表示出了1/4谁愿意来展示一下?

  让学生在实物投影仪前向大家展示自己的操作方法及成果

  生:把一个正方形平均分成4份取其中的一份就是这个正方形的。

  把1分米长的线段平均分成4份取其中的一份就是这条线段的。

  把4个苹果平均分成4份取其中的一份就是这些苹果的。 把8只熊猫平均分成4份取其中的一份就是这8只熊猫的。

  (3)认识单位“1”。

  师:同学们,我们利用那么多方式表示出来了1/4,那请大家回忆一下,在表示的过程中,有没有相同的地方?

  生:都是把物体平均分成4份,表示其中的一份,就是1/4

  (师板书:平均分成4份,表示其中的一份就是1/4)

  师:在表示的过程中,有什么不同的地方吗?

  生:分的东西不一样。

  师:我们刚才是把哪些东西平均分的?

  生:一张正方形纸、1分米长的线段、4个苹果、8只熊猫

  师:象把一个正方形平均分,我们可以称之为把一个物体平均分

  (课件显示:一个物体)

  把一分米长的线段平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把4个苹果、8只熊猫平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师:同学们请看,象这样的'一个物体、一个计量单位、一些物体都可以看作一个整体,这个整体我们可以用自然数“1”来表示,通常把它叫做单位“1”,(因为它可以表示一个整体,而不是一个具体的数,和自然数1不同,所以要加引号)

  师:单位“1”到底指哪些?

  生:一个物体,一个计量单位,一些物体。

  师:很好,那么一个物体除了一个正方形外,还可以是什么?

  生:一个苹果,一个面包......

  师:一个计量单位还可以是什么?

  生:xxx

  师:一些物体还可以是什么?

  生:3只老虎、4个面包、8个人......

  单位“1”很奇妙,它可以表示我们班的一个同学,也可以表示全校同学,还可以……。它可以表示很大很大,大到宇宙万物;也可以表示很小很小,小到一粒微尘。

  (4)、揭示分数的概念

  1、师:一个物体,一个计量单位,一些物体可以用单位“1”表示,那么刚才在表示1/4的时候,我们实际上是把谁平均分成4份,表示其中的一份。

  生:把单位“1” 平均分成4份,表示其中的一份,用1/4表示。

  师:剩下的部分,用哪个数表示呢?

  生:3/4

  师:3/4表示什么呢?

  生:把单位“1” 平均分成4份,表示其中的3份,用3/4表示.师:如果老师把单位“1”平均分成12份,表示其中的7份,用哪个分数表示?

  生:7/12

  师:像这样的分数,你还能说出来吗?

  学生说:2/63/5…..并说出表示什么?

  师:刚才我们说了那么多分数,那么到底什么是分数,你能用一句话概括一下吗?

  小组交流。

  指名说(多找几个学生说)。

  揭示概念(板书:把单位“1”平均分成若干份,表示这样的一份或几份都可以用分数来表示。)

  5、强化理解概念

  ①、齐读概念

  ②谁能说说下面分数的含义?(课件出示练习)

  6、理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们观察这些分数的分母,有的是4、有的是12、有的是6等,分母表示什么呢?

  生:分母表示把单位“1”平均分的份数。

  师:分子表示什么?(分子,表示取的份数)

  四、教学分数单位。

  师:整数中有计数单位个、

  十、百、千、万??分数是否也有计数单位呢?它的计数单位又是怎样规定的?请同学们打开课本自学。

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,请任意说出一个分数考考你的同桌,说出这个分数的意义和分数单位。)

  五、巩固练习、深化提高。

  1、师:刚才同学们积极动脑,认真思考,学习了分数的有关知识。下面我们一起做个小游戏,看谁最善于动脑思考。老师手中有九个糖果,现在我要把这些糖果分给我们班的同学,谁想要?有要求:我说分数,你来拿糖,说对了才能把糖果拿走,谁想来?(学生上台拿,并及时鼓励)

  师:请拿走这些糖果的三分之一,说一说你是怎样拿的?她拿的对不对?还剩几颗?(六颗),再请一个同学,请你拿走剩下糖果的三分之一,(两颗),咦,为什么都是三分之一 ,而俩人拿的糖果不一样多呢?(生:因为总数不一样。)

  师:虽然取的份数相同,但单位“1”不同,得到的数量也不相同。

  师:还剩4颗,谁还想要?请你拿走二分之一,她拿走了几颗?(2颗),为什么他拿走的是三分之一,而他拿走的是二分之一,却都是2颗呢?(生:单位“1”不同)师:也就是说单位“1”不同,分成的份数不同,得到的数量也可能是相同的。

  师:最后还剩下2颗,老师这里不仅仅只有两颗,还有很多,老师要请同学们来猜一猜,这两颗糖果是老师现在所有糖果的九分之一,请问,老师现在一共有多少颗糖果?

  师:同学们玩完了这个游戏,是不是轻松多了,下面老师要考考你们了,有没有信心全部通过?出示题目。

  2、练习十一的第1、2、3、4题

  六、课堂总结。

  今天这节课我们学习了什么?你有哪些收获?

《分数的意义》教案11

  教学内容:

  教材第73到74页分数的意义,“练一练”,练习十三1到4题。

  教学目标:

  1、了解分数的产生,理解分数的意义,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。

  2、培养学生抽象概括能力。

  3、感受“知识来源于实践,又服务于实践”的观点。

  教学重点:

  理解分数的意义。

  教学难点:

  单位“1”的感知。

  教学准备:

  多媒体,实物投影仪

  教学内容和过程:

  一、创设情境

  1、同学们,这是几?(板书“1”)

  这里有1位老师,1位同学,1还可以表示什么吗?

  我相信你们学了今天这节课以后,对1将会有一个更深刻地认识。

  2、揭示课题

  我们在四年级的时候学过分数,今天我们要继续来学习“分数的意义”。[板书]

  [从学生身边熟悉的1引导学生对1的认识,使学生对所学知识有一个整体的感知,并对学习新的知识产生亲切感]

  二、新授

  1、这里有三幅图,我们一起来看一下。

  出示书P73的三副图。(引导学生说出把……平均分成……,每份是它的.……。)

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?( )

  (2)出示长方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的5份呢?

  (3)出示线段图提问:把1米平均分成10份,这样的1份是几分之几米?9份呢?

  三、探索研究

  1、现在请同学把目光集中到课桌上,看看老师给你们准备了什么啊?

  一张白纸,一根1米长的绳子。

  2、你们带了写什么材料呢?

  (一堆物体)

  3、这些材料能不能通过平均分,得到一些分数呢?

  4、学生小组交流,分一分并汇报。

  [从生活中挑选了一些实物,作为寻找分数的材料,首先引导学生观察这些材料并猜想能不能用平均分的方法得到分数,然后动手操作寻找分数。展示时重点展示平均分多个物体得到分数的操作过程,让学生感受可以把许多物体看作一个整体,把这个整体平均分成不同的份数,其中的一份或几份也可以用分数表示的过程。为抽象分数的意义做好铺垫,感悟分数就在生活之中。]

  5、小结:

  以前我们都是把一个物体,一个计量单位平均分,得到了一些分数,刚才你们在分的时候,还可以把许多个物体看成一个整体平均分得到分数。象这样一个物体,一个计量单位和多个物体组成的一个整体,都可以用自然数“1”表示,通常我们把它叫做单位“1”。(板书:单位“1”)

  6、 讲授例题(多媒体出示)

  出示5个桃子提问:这是什么?

  把5个桃子看作(一个整体),平均分成5份,每份有几个桃子?占这个整体的几分之几?

  2个桃子呢?

  7、出示8片枫叶问:把8片枫叶看作一个整体,平均分成4份,每份几个泥人?占这个整体的几分之几?

  6片枫叶呢?

  8、结合前面分得的分数,揭示分数的意义。(板书)

  9、复习分数各部分的名称及表示的含义。(小组讨论)

  9、看书P74的概念。

  10、做书上练一练。请两位学生回答。

  11、总结,评价。

  [学生通过自己动手找分数,在已经建立直观认识的基础上,归纳分数的意义,不强调死记硬背,让学生能用自己的语言归纳,接着引导学生看书进一步理解分数的意义。]

  三、课堂实践

  现在我们一起来闯三关。(网络教学)

  1、第一关,用分数表示下面各图中的涂色部分。

  2、第二关,用下面的分数表示图中的涂色部分,对不对?

  3、第三关,根据给出的分数在下面各图中画出阴影部分。

  4、勇闯三关后,我们一起来进行自我检测。

  请同学和你的同桌之间说一说这个分数在句子里所表达的意思,需要帮助的同学可以寻求电脑的帮助。

  5、下面我们要来继续冲关,请你来看一看,哪些话中存在错误呢?

  6、同学们做得都不错,下面我们一起来玩一个游戏。请你们拿出10粒棋子。

  请你摆出它的1/2,是多少粒?12粒棋子的1/2,是多少粒?为什么同样是1/2,而你们有不同的答案呢?(单位“1”不同)

  请你们表示出12粒棋子的1/2,1/3,1/4,1/6,是多少粒棋子?为什么单位“1”相同了,而你们的结果不同呢?(平均分的份数不同)

  [让学生体会分数的意义,学生与学生,教师与学生之间互动交流,体现学生主体,教师主导的地位。]

  四、课堂小结

  今天这节课我们学习了分数的意义,下一节课我们继续来深入研究。

  五、课堂作业

  练习十三第4题。

  六、回家作业

  练习册

  七、板书设计

  分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。

《分数的意义》教案12

  课题一:(一)

  教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

  教学重点 理解。

  教学用具 教材第84~85页有关的投影片、线段图等。

  教学过程

  一、创设情境

  1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

  2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

  3.揭示课题

  在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

  二、探索研究

  1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

  (2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

  (3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

  如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

  2、进一步认识单位1。

  以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

  (1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

  (2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

  (3)练习:说出下图中涂色的部分各占整体的几分之几。

  ● ●

  ●○○○○○ ● ●

  ●○○○○○ ● ●

  ● ○

  ● ○

  ● ○

  3.揭示。

  (1)观察以上教学过程 所形成的板书。

  一个物体

  计量单位 单位1

  一些物体

  告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

  (2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

  (3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  4.练习。练习十八第1、2、3题。

  5.教学分数各部分名称、分数单位。分数的读、写法。

  (1)教师任意写出几个分数,让学生说出分数各部分的名称。

  (2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

  (3)认识分数单位,初步了解分数单位的特点。

  练习:① 的分数单位是,它有个 。

  ② 的分数单位是,它有个 。

  ③个 是。

  ④ 是个 。

  (4)想一想:读、写分数的方法是怎样的?

  读作 ,表示 个 。

  读作 ,表示有 个 。

  三、课堂实践

  1. 表示把平均分成份,表示这样的份的数。

  2. 读作,分数单位是,再添上个这样的单位是整数1。

  四、课堂小结

  1、什么叫做分数?如何理解单位1?

  2、什么是分数单位?分数单位有什么特点?

  五、课堂作业

  练习十八第5、6题。

  课题二:(二)

  教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

  教学重点 理解。

  教学过程

  一、 创设情境

  1.用分数表示图中阴影部分。

  ▲▲ ▲▲

  △△ ▲▲

  2.口答:什么是分数?如何理解单位1?

  3.填空。

  是个 。 的分数单位是

  7个 是。 的分数单位是

  二、揭示课题

  出示学习内容及学习目标。板书课题:。

  三、探索研究

  1.认识用直线上的点表示分数。

  分数也是一个数,也可以用直线(数轴)上的点来表示。

  (1)认识用直线上的点表示分数的方法。

  ①画一条水平直线,在直线上画出等长的距离表示0、1、2。

  ②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

  0 1 2

  (2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

  ①先画什么?再画什么?

  ②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

  ③ 应用直线上的哪一个点来表示?

  (3)如果要在这条直线上表示分母是10的分数,该怎么办?

  这条直线上0~1之间的第七个点表示的分数是多少?

  2.练习。

  (1)教材第87页下面做一做的第2题。

  (2)用直线上的点表示 、 、 、 。

  3.教学例1。

  (1)指名读题,帮助学生理解题意。

  (2)出示讨论题,同桌讨论。

  ①这题中把什么看作单位1?

  ②1人占这个整体的几分之几?

  ③5人占这个整体的几分之几?

  (3)汇报讨论结果,板书答语。

  (4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

  4、练习。教材第88页的做一做。

  四、课堂实践

  1.教材第87页的做一做。

  2.用直线上的点表示 下面的分数: 、 、 、 、 。

  3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

  五、课堂小结

  1.用直线上的点表示分数的方法是怎样的?

  2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

  六、课堂作业

  练习十八第4、7、8题。

  课题三:分数与除法的关系

  教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

  教学重点 理解和掌握分数与除法的关系。

  教学用具 投影片(教材第89页的饼图)

  教学过程

  一、创设情境

  1.填空。

  (1) 表示。

  (2) 的分数单位是,它有个这样的分数单位。

  2.计算。(1)58 (2)49

  二、揭示课题

  我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

  三、探索研究

  1.教学例2

  (1)读题后,指导学生根据整数除法的意义列出算式。板书:

  13=

  (2)讨论:1 除以3结果是多少?你是怎样想的?

  (3)教师画出线段示意图,帮助学生理解。

  1米

  ?

  通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

  (3)写出答语。

  2.教学例3。

  (1)读题后,引导学生列出算式:34。

  (2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

  (4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

  34=(块)。

  由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

  3、认识分数与除法的关系。

  (1)引导学生观察13=、34=这两道算式,想一想:

  ①两个自然数相除,在不能得到整数商的`情况下,还可以用什么数表示?

  ②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)教师总结,学生发言,归纳出以下三点:

  ①分数可以表示整数除法的商;

  ②在表示整数除法的商时,要用除数作分母、被除数作分子;

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

  分数与除法的关系可以表示成下面的形式:

  板书:被除数除数=

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

  板书:ab=(b0)

  (4)想一想:这里的b能为0吗?为什么?

  启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

  (5)再想一想:分数与除法有区别吗?区别在哪里?

  着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

  4、学生阅读教材,质疑问难。

  四、课堂实践

  教材第91页中间的做一做。

  五、课堂小结。

  引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

  六、课堂作业 。练习十九第1~3题。

  课题四:分数与除法关系的应用

  教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

  教学重点 求一个数是另一个数的几分之几的应用题。。

  教学过程

  一、创设情境

  1.口答:30分米=米 180分=时

  练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

  2.说一说:分数与除法的关系?

  3.用分数表示下面各算式的商。

  (1)79(2)47(3)815(4)5吨8吨

  二、揭示课题

  这节课学习分数与除法关系的应用。(板书课题)

  三、探索研究

  1.出示例4。

  (1)出示例4并审题。

  (2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

  让全体学生尝试练习。

  (3)集体订正。订正时让学生说说是怎样想的?

  (4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

  重点说明当两数相除得不到整数商时,其结果可以用分数表示。

  2.练习教材第91页下面的做一做。

  3.教学例5 。

  (1)出示教材第92页复习题,让学生独立列式解答。

  集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

  板书:3010=3

  答:鸡的只数是鸭的3倍。

  (2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

  讨论后师生共同评价,主要有两种方法:

  ①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

  ②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

  (3)比较复习题与例5异同点。

  通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

  4、练习。教材第92页做一做第1、2题。

  四、课堂实践

  1.在括号里填上适当的分数。

  8厘米=米 146千克=吨 23时=日

  41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

  2.五(1)班有女生25人,比男生多4人。

  (1)男生占全班人数的几分之几?

  (2)女生占全班人数的几分之几?

  (3)男生人数是女生人数的几分之几?

  五、课堂小结

  1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

  2、求一个数是另一个数的几分之几应用题的解答方法是什么?

  六、课堂作业

  练习十九第4~7题。

  七、思考题。

  练习十九第8题及思考题。

  课题五:分数大小的比较

  教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

  教学重点 掌握比较分数大小的方法。

  教学用具 投影片(教材例6、例7直观图)

  教学过程

  一、创设情境

  1.教材第93页复习题,请一名学生口答。

  2.看图写分数,并比较分数的大小。

  0 1

  二、揭示课题

  以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

  三、探索研究

  1.同分母分数的大小比较。

  (1)比较 和 的大小。

  出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

  如果没有直观图,该怎样比较 与 的大小呢?

  因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

  (2)用类似的方法引导学生比较 和 的大小。

  (3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

  板书:分母相同的两个分数,分子大的分数比较大。

  2.练习:教材第93页做一做。

  3.同分子分数的大小比较。

  (1)比较 和 的大小。

  ①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

  ② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

  (2)比较 和 的大小。

  用类似的方法进行比较并得出结论: < 。

  (3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

  板书:分子相同的两个分数,分母小的分数比较大。

  4、练习:教材第95页的做一做。

  四、课堂小结

  比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

  五、课堂实践

  1.练习二十第1题。

  2.练习二十第3题。

  六、课堂作业

  练习二十第2、4题。

  七、思考练习

  在括号里填上合适的数

  < < < > >

《分数的意义》教案13

  课题

  分数的意义

  教材分析

  《分数的意义》是在学生初步认识分数的基础上系统学习的,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维能力有着重要作用。学生已经知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份可以用分数来表示。本节课重点是让学生理解不仅一个物体一个计量单位可用自然数1 来表示,许多物体看作的一个整体也可用自然数1 来表示,进而总结概括出分数的意义。

  学情分析

  学生在三年级上学期,已初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数的大小,会比较同分母分数的大小,还学习了简单的同分母分数加减法。所以说分数的经验学生已经积累的较多,在学习本课时已有了一定的知识基础。

  教学目标

  (体现多维目标;体现学生思维能力培养)

  知识与技能:初步建立单位“1”的概念,理解分数的意义以及分数单位的意义。

  能力与方法:通过自主学习、合作探究,理解并形成分数的概念,培养学生的科学探究和实践能力。

  情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;通过同学间的合作,养成学生倾听、质疑等良好学习习惯。

  重点、难点

  教学重点:建立单位“1”的概念,能从具体实例中理解分数的意义。

  教学难点:准确理解单位”1

  教法、学法

  学生独立思考,小组合作,教师引导

  教 学 流 程

  媒体运用

  任务导学

  明确

  任务

  师:大家交流一下你们预习分数的意义的情况。或说出你收获了哪些知识,或提出需要进一步探究的问题。

  (学生汇报,教师适当提炼板书)

  课堂探究

  自主

  学习

  1、师:我们已经知道分数是由于人们生产、生活的实际需要产生的,如测量、分东西、计算等。你能举例子说一说在我们的周围什么时候需要分数吗?

  (学生观察,交流)

  师:同学们看到了,生活中处处有分数。然而,我们今天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下。

  出示图1:世界上最早的分数是在3000多年前古埃及出现的。我们看,知道这表示的是哪个分数吗? 1/4,人们借助圆来表示分子是1的分数。

  出示图2:你认为这个分数是多少?( 3/5)这是我国20xx多年前,用算筹来表示的分数。这是有考证的。1975年底在湖北云梦县秦代墓葬中出土了大批竹简,上面就记录了一些这样的分数,表现得整齐划一,这批竹简最早的是公元前359年的,最晚的是秦始皇统一十二年的,算到今天大约2360年。

  出示图3:这是后来印度用数字表示的分数。这个分数是什么?(3/4)

  出示图4:到公元12世纪,距现在大约800多年,阿拉伯人发明了分数线。这种分数就延续至今。这个分数也是?(生答:3/4。师板书)

  2、感知3/4,理解分数意义

  师:现在我们就来看3/4。老师让大家准备一个学具,剪一个我们所学的平面图形,大家把它拿出来。你能找出你手中图形的3/4吗?自己动手试一试。

  (1)学生独立尝试剪。

  (2)学生汇报剪的方法。(强调:平均分 谁是谁的3/4。)

  (3)归纳分数的意义。师:大家都是这样剪的吗?举起来互相看一看。如果要表示3/5、3/6怎么办呢?(生回答)这就告诉我们分数是表示什么的'?(生齐答,师板书:把一个物体平均分成若干份,表示这样的一份或几份的数,叫做分数)

  (4)阅读教材,画出分数的概念,读一读。

  实物投影

  合作

  探究

  3、合作探究,理解单位“1”

  师:同学们,看到书中的概念,你们对老师整理的概念有异议吗?

  (师生交流,提出“一些物体”也是一个整体的问题。)

  师:一些物体能看成一个整体吗?让我们拿出小组内准备的三张饼,这次小组合作,要剪出三张饼的3/4,该怎么办呢?让我们一起探究剪的方法。

  (1)小组合作,探究方法。

  (2)全班汇报剪的方法,师演示剪的过程。

  (3)明确单位“1”:我们把三张饼当成一个整体来分,也可以把一些物体当成一个整体来分,这一个整体可以用自然数“1”来表示,这就是我们所说的单位“1”。

  (4)说一说你想把什么作为单位“1”来分一分?(生举例)

  (5)完善分数的概念

  (师板书:把 “一个物体”换成“单位1”)

  4、弄清分数单位

  (老师出示线段图:一条线段平均分成7分。)

  交流

  展示

  (一份是整体的多少?另一份是整体的多少?2个1/7是多少?3个呢?4个呢?1/7是什么?

  (2)学生再与文本对话,画出概念,同桌互相说说分数单位的意义。

  (3)说出3/4的分数单位是多少?课前复习的几个分数的单位分别是多少?

  反馈拓展

  拓展

  提升

  分数很有趣吧?分数在我身边比比皆是,看64页的第7题提供给我们的信息就是我们生活中的分数。一起开看。

  评价

  检测

  老师这里有12块糖,可以把这12块糖看成单位“1”吗?你怎么分这12块糖?创造出了什么分数?分数单位是多少?

《分数的意义》教案14

  教学目标:

  1.使学生初步理解单位“1”和分数单位的含义,进一步理解分数的意义;探索并理解分数与除法的关系,会用分数表示计量单位换算的结果,会求一个数是另一个数的几分之几的实际问题‘认识真分数和假分数,知道带分数是整数和真分数合成的数,会把假分数化成整数或带分数,会进行分数与小数的互化。

  2.使学生探索并理解分数的基本性质,知道最简分数的含义,掌握约分和通分的方法,能正确进行约分和通分,会进行分数的大小比较。

  3.使学生经历分数意义的抽象、概括过程以及分数与除法的关系、假分数化成整数或带分数、分数与小数互化的探索过程,进一步发展数感,培养观察、比较、抽象、概括等能力。

  4.使学生初步了解分数在日常生活中的应用,增强自主探索与合作交流的.意识,树立学好数学的信心。

  教学重点、难点:

  1.教学分数的含义,重点是建立单位“1”的概念。

  2.以分数单位为新知识的生长点,教学真分数和假分数。

  3.用分数表示同类两个数量的关系,扩展对分数意义的理解。

  4.通过操作活动感受分数与除法的关系。

  5.先特殊后一般,通过改写假分数,教学带分数。

  6.优化小数与分数相互改写的教学。

  7.理解分数的性质并进行通分和约分。

  第1课时分数的意义

  教学内容:

  教材第52页例1和“练一练”,第58页练习八的第1~4题。

  教学目标:

  1.使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。

  2.使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  教学重点:

  认识和理解分数的意义。

  教学难点:

  认识和理解单位“1”。

  教学方法:

  探究合作法、讲解分析法、练习法等。

  教学用具:

  ppt。

  教学过程:

  一、谈话导入,唤醒已知

  在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。

  二、合作探索,理解意义

  1.教学例1

  出示例1中的一组图

  请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

  学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?

  一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

  左起第四个图形与前三个图形有什么不同?

  一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  (1)在这几个图形中,分别把什么看成单位“1”的?

  (2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

  (3)从这些例子看,怎样的数叫作分数?

  拿12根小棒自已创造一个分数

  说说你是怎么做的?

  如果老师要表示6根小棒可以用什么分数表示?

  2.完成“练一练”

  第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。

  每个分数的分数单位是多少?各有几个这样的分数单位?

  第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?

  引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。

  让学生在()里填上合适的分数。

  交流:你是怎样填的?为什么这样填?

  三、巧妙联系,深化理解

  1.做练习八的第1题

  先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

  同样是三分之二,为什么涂色桃子的个数不同?

  2.做练习第2、3、4题。

  第2题先读出每个分数,再说说每个分数的分数单位。

  第3题让学生填,交流时说说是怎样填的。

  第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”

  四、全可总结,延伸拓展

  这节课学习了哪些内容?

《分数的意义》教案15

  教学目标:

  1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

  2、在学习过程中,培养学生的思维能力和应用意识。

  3、体会数学与生活的密切联系,进一步增强学好数学的信心。

  教学重点:

  理解单位“1”和分数的意义。

  教学难点:

  理解单位“1”和分数的意义。

  教学准备:

  教具准备:自制教学课件

  学具准备:小棒、练习纸

  设计意图:

  《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

  作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

  教学过程:

  一、谈话导入

  1、通过师生之间的谈话引出分数。

  2、关于分数,你已经知道了什么?

  3、提出要求:

  师:从刚才的表现可以看出**班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

  二、分数的产生

  1、板书课题

  师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

  师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

  三、理解分数的意义

  1.理解一个整体

  (1)、找出各种材料的1/4。

  师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

  师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

  然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

  (2)、汇报交流

  教师进行规范:

  生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

  生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

  突出整体:

  师:这里的1/4是如何得到的呢?

  生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

  师:这是他的.想法,还有不同想法吗?

  生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

  师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

  进行知识迁移:

  生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

  (3)小结:

  提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

  不同点:材料不同。

  跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

  相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

  2、理解单位“1”。

  (1)深化理解一个整体

  学生自主创作:

  师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

  交流汇报:

  师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

  师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

  学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

  (2)揭示单位“1”。

  师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

  师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

  师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

  师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

  师:同学们真是了不起!已经能很快地找到单位1了。

  3.理解分子、分母的含义

  (1)、找其他分数

  师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

  那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

  (2)、汇报交流

  师:谁愿意和大家交流一下你所找到的分数?

  生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

  (3)比较:

  师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

  师:观察这些分数,你发现了什么?

  生:分母都是4

  师:为什么分母都是4呢?

  生:因为都是平均分成了4份

  师:把什么平均分成4份?——单位“1”。

  师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

  师:分母其实就是表示——平均分的份数

  师:同学们的观察力可不一般呐。还有什么发现吗?

  生:分子各不相同,都差1

  师:分母为什么会不一样呢?

  生:取的份数不同

  师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

  师:分子其实就是表示——取的份数

  师:同学们不仅观察能力强,分析、概括能力也很出色。

  4.揭示分数的意义。

  (1)逐步理解分数的意义

  师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

  现在老师再写一个分数5/9,你能说说它的含义吗?

  生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

  师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

  生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

  师:说的真好。如果不是平均分成9份,板书5/(),那么它的含义是什么呢?

  生:把单位“1”平均分成很多份,取这样的5份,就是5/()。

  师:很多份可以是几份?——2份,3份……

  师:我们可以用一个词来表示(板书:若干份)

  师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??

  生:把单位“1”平均分成若干份,取这样的若干份,就是()/()

  师:可以取这样的一份,也可以取这样的……几份。

  小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

  (2)理解分数单位

  师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

  1/4,2/4,3/4,4/4的分数单位就是——1/4

  师:5/9的分数单位?

  生:1/9

  师:5/99

  生:1/99

  师:()/1000

  生:1/1000

  师:老师都还没说分子呢,你怎么就知道分数单位了?

  生:分数单位就是表示一份的数

  师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

  师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

  5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

  四、练习巩固。

  师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

  1.填一填

  (1)说说3/5的意义

  (2)同意吗?

  (3)3/8的分数单位是多少?有几个这样的分数单位。

  2、点击生活

  哪位同学愿意来读一读,并说说其中分数的意义。

  (1)、我校五年级学生约占全校学生的1/6

  (2)、长江约3/5的水体受到不同程度的污染

  师:还有几分之几的水体没受污染呢?

  师:受污染水体多还是没受污染的水体多?——怎么想的?

  师:有什么想说的?——要保护环境

  师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

  师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

  (3)、姚明的头部高度约占他身高的1/8

  师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

  五、总结全课、质疑问难

  师:这节课我们学习了什么?你有什么收获?还有什么问题?

【《分数的意义》教案】相关文章:

分数的意义教案01-24

《分数的意义》教案03-11

《分数的意义》教案[精选]08-08

《分数的意义 》教案08-16

分数的意义教案03-19

[分数的意义教案怎么设计] 分数的意义教案设计04-14

《分数的意义》教案范文07-22

分数的意义教案【热门】02-20

【热门】分数的意义教案02-24

分数的意义教案【荐】02-24