一元一次方程教案(15篇)
作为一名专为他人授业解惑的人民教师,很有必要精心设计一份教案,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?以下是小编帮大家整理的一元一次方程教案,欢迎阅读与收藏。
一元一次方程教案1
教学目标:
1.使学生进一步掌握解一元一次方程的移项规律。
2.掌握带有括号的一元一次方程的解法;
3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.
教学重点:
带有括号的一元一次方程的.解法.
教学难点:
解一元一次方程的移项规律.
教学手段:
引导——活动——讨论
教学方法:
启发式教学
教学过程
(一)、情境创设:
知识复习
(二)引导探究:带括号的方程的解法。
例1.2(x-2)-3(4x-1)=9(1-x).
解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)
去括号,得:
移项,得:
合并同类项,得:
系数化1,得:
遇有带括号的一元一次方程的解法步骤:
(三)练习:(A)组
1.下列方程的解法对不对?若不对怎样改正?
解方程2(x+3)-5(1-x)=3(x-1)
解:2x+3-5-5x=3x-1,
2x-5x-3x=3+5-3,
-6x=-1,
2.解方程:
(1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.
3.解方程:
(1)3(y+4)12;(2)2-(1-z)=-2;
(B)组
(1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);
(3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)
(四)教学小结
本节课都教学哪些内容?
哪些思想方法?
应注意什么?
一元一次方程教案2
一、目标:
知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。
过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。
情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。
二、重难点:
重点:学会解一元一次方程
难点:移项
三、学情分析:
知识背景:学生已学过用等式的性质来解一元一次方程。
能力背景:能比较熟练地用等式的性质来解一元一次方程。
预测目标:能熟练地用移项的方法来解一元一次方 程。
四、教学过程:
(一)创设情景
一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?
(二)实践探索,揭示新知
1.例2.解方程: 看谁算得又快:
解:方程的两边同时加上 得 解: 6x ? 2=10
移项得 6x =10+2
即 合并同类项得
化系数为1得
大家看一下有什么规律可寻?可以讨论
2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的 变形叫做移项。
看谁做得又快又准确!千万不要忘记移项要变号。
3.解方程:3x+3 =12,
4.例3解方程: 例4解方程 :
2x=5x-21 x- 3=4-
5.观察并思考:
①移项有什么特点?
②移项后的`化简包括哪些
(三)尝试应用 ,反馈矫正
1.下列解方程对吗?
(1)3x+5=4 7=x-5
解: 3x+ 5 =4 解:7=x-5
移项得: 3x =4+5 移项得:-x= 5+7
合并同类项得 3x =9 合并同类项得 -x= 12
化系数为1得 x =3 化系数为1得 x = -12
2解方程
(1). 10x+1=9 (2) 2—3x =4-2x;
(四)归纳小结
1.今天学习了什么?有什么新的简便的写法?
2.要注意什么?
3. 解方程的 一般步骤是什么?
4.. (1) 移项实际上 是对方程两边进行 , 使用的是
(2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。
(3)移项的作用是什么?
(五)作业
1.课堂作业:课本习题4.2第二题
2.家作:评价手册4.2第二课时
一元一次方程教案3
教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察潜力,提高他们分析问题和解决问题的潜力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并透过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们明白方程是一个内含未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中带给的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就透过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2某面粉仓库存放的`面粉运出15%后,还剩余42500千克,这个仓库原先有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)
3.若设原先面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原先有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42500,
所以x=50000.
答:原先有50000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原先重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,能够任意选取其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.那里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有好处.
例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得)
三、课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款到达3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
四、师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些资料?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答状况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选取变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆.
五、作业
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数。
一元一次方程教案4
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用。学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到方程的数学思想方法。总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法。而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定找出已知量与未知量之间的关系,尤其是相等关系为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。
二、教学目标分析
(一)知识技能目标
1。目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性。
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。
2。目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径。
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力。
(二)过程目标
1。目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识。
2。目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。
(三)情感目标
1。目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。
(2) 通过对实际问题的解决,进一步体会数学来源于生活,且服务于生活的辩证思想。
2。目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切。利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的'关键。
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ)。根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果。课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1。问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际。
(2) 据此生活实例,展示探究Ⅰ,引入新课。
考虑到学生不完全明白盈利、亏损这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ。
2。讨论交流
(1) 学生结合自己的生活实际,交流对盈利、亏损含义的理解。
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由。在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识。
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价。
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫。
3。建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系。
(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价。
(3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况。
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策。这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成。这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得
实际问题与一元一次方程探索富有成效的学习体验。
4。小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断。
培养学生科学的学习态度与严谨的学习作风。
探究Ⅱ
(三)教学过程Ⅱ
1。在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突。
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性。
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2。列代数式
费用=灯的售价+电费
电费=0。5灯的功率(千瓦)照明时间(时)
在此基础上,用t表示照明时间(小时)。要求学生列出代数式表示这两种灯的费用。
节能灯的费用(元):60+0。50。011t。
白炽灯的费用(元):3+0。50。06t。
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础。
3。特值试探 具体感知
学生分组计算:
t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
20xx
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
学生填完表格后,展示由表格数据制成的条形统计图。
引导学生讨论:从统计图表,你发现了什么?
问题的答案是多样的,师生共同得出:照明时间不同,作出的选择不同。
由于在前面的第二节,学生已经学过两种移动电话计费方式的一道例题,因此学生应该能较熟练地完成表格中的特值试探。又因为七年级学生的认知以直观形象为主,再给出统计图,完成特殊到一般,感性到理性的深化。
4。方程建模
观察统计图,你能看出使用时间为多少(小时)时,这两种灯的费用相等吗?
列出方程:
60+0。50。011t=3+0。50。06t
5。合作交流 解释拓展
(1) 照明时间小于2327小时,用哪种灯省钱?照明时间超过2327小时。但不超过3000小时,用哪种灯省钱?
学生分组讨论,交流各自的看法。
(2) 如果计划照明3500小时,则需购买两个灯,设计你认为合理的选灯方案。
学生分组、讨论购灯方案只有三种:①两盏节能灯;②两盏白炽灯;③一盏节能灯、一盏白炽灯。
学生计算各种方案所需费用。
关于选灯方案③,学生可能会有不同的结果,先让学生充分展示他们的计算理由,然后对学生得出使用节能灯3000小时,白炽灯500小时的结论,给予充分肯定,并引导学生寻找理论依据,列式验证:
设节能灯的照明时间为t(小时),那么总费用为:
60+3+0。50。011t+0。50。06(3500—t)=168—0。0245t(03000)
观察上式可看出,只有当t=3000时,总费用最低。
培养学生合作交流,倾听他人意见,并从交流中获益的学习习惯,综合各方面信息的能力。讨论2需要考虑的情形不只一种,通过这一问题,培养分类讨论的思想,养成缜密的思维品质。此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验。
6。反馈练习
一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:
(1) 什么情况下,购会员证与不购证付相同的钱?
(2) 什么情况下,购会员证比不购证更合算?
(3) 什么情况下,不购会员证比购证更合算?
适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构。
(四)教学小结
学生分组小结本课学到了什么,各组发言交流体验、教师总结:
五、设计说明
七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切。因此我从以人为本的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力。
(一)充分尊重学生的主体地位
发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程。
(二)树立方程建模思想
突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识。
(三)注重对学习过程与方法的评价
关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展。
(1) 某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元。问这种商品的定价为
实际问题与一元一次方程探索多少元?
(2) 某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5。6%)在明年的元旦付清,该洗衣机售价是每台8 224元,若两次付款相同,问每次应付款多少元?
(3) 工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?
(4) 一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离。
(5) 甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30 800元,问甲、乙两人可获利润多少元?
(6) 有人问老师班级有多少名学生时,老师说:一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球。你知道这个班有多少名学生吗?
(7) 某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?
综合运用
4。某市居民生活用电基本价格是每度0。40元,若每月用电量超过a度,超出部分按基本电价的70%收费。
(1) 某户五月份用电84度,共交电费30。72元,求a;
(2) 若该户六月份的电费平均为每度0。36元,求六月份共用电多少度?应交电费多少元?
5。为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按0。45元/吨收费;超过10吨而不超过20吨部分,按0。80元/吨收费;超过20吨部分,按1。5元/吨收费。现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?
6。一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进。突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。你知道这名队员从离队到与队员重新会合,经过了多长时间吗?
7。有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时。这8名同学都能赶上火车吗?
拓广探索
8。一家庭(父亲、母亲和孩子们)去某地旅游。甲旅行社说:如父亲买全票一张,其余人可享受半价优惠。乙旅行社说:家庭旅行算集体票,按原价的优惠。这两家旅行社的原价相同。你知道哪家旅行社更优惠吗?
一元一次方程教案5
1、 使学生会列一元一次方程解有关应用题。
2、 培养学生分析解决实际问题的能力。
1、在小学里我们学过有关工程问题的应用题,这类应用题中一般有工作总量、工作时间、工作效率这三个量。这三个量的关系是:
2、由以上公式可知:一件工作,甲用a小时完成,则甲的工作量可看成________,工作时间是________,工作效率是_______。若这件工作甲用6小时完成,则甲的工作效率是_______。
一件工作,甲单独做20小时完成,乙单独做12小时完成。
问:甲乙合做,需几小时完成这件工作?
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?
此题的处理方法:
Ⅰ:先由一名学生阅读题目;
Ⅱ:然后由两名学生板演;
丙管改为排水管,且单独开丙管18分钟可把满池的'水放完,问三管齐开,几分钟可注满空水池?要求学生口头列出方程。
一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,问:还需几小时完成?
(1) 先由学生阅读题目
(2) 引导:
Ⅰ:这道题目的已知条件是什么?
Ⅱ:这道题目要求什么问题?
Ⅲ:这道题目的相等关系是什么?
(3) 由一学生口头设出求知数,并列出方程,师生共同解答;同时教师在黑板上写出解题过程,形成板书。
若乙先做2小时,然后由甲、乙合做,问还需几小时完成?
以上两题的处理方法:
(1) 根据方程:3/12+x/12+x/6=1,编应用题。
(2) 事由:打一份稿件。
条件:现在甲、乙两名打字员,若甲单独打这份稿件需6小时打完,若乙单独打这份稿件需12小时打完。
要求:甲、乙两名打字员都要参与打字,并且要打完这份稿件。
课堂总结:
工程问题中的三个量的关系。
课堂作业:
见作业本
一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?
一元一次方程教案6
教学目标
1、学生通过旅游、选灯、用电、水费、用气、电信等问题的方案设计,弄清各类问题中的等量关系,掌握用方程来解决一些生活中的实际问题的技巧.
2、通过一个开放式的空间,放手让学生去探索,去发现,培养学生分析问题和用方程去解决实际问题的能力.
3、让学生在生动活泼的问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。
教学难点
把生活中的实际问题抽象出数学问题。
知识重点
引导学生弄清题意,设计出各类问题的最佳方案
教学过程
(师生活动)设计理念
提出问题问题:小江一家三口准备国庆节外出旅游.现有两家
旅行社,它们的收费标准分别为:甲旅行社:大人全价,小孩半价;乙旅行社:不管大人小孩,一律八折.这两家旅行社的基本价一样.你认为应该选择哪家旅行社较为合算?
由学生完成选择旅行社的方案。从学生比较感兴趣的实际生活问题,引入新课,并由学生自己设计出选择旅行社的方案,为新授哪种灯省钱埋下伏笔。
分析问题出示教科书94页探究2:用哪种灯省钱?
师生共同探讨完成下列问题:
1、上述问题中基本等量关系有哪些?
(费用=灯的售价+电费,电费=0.5×灯的功率(千
瓦)×照明时间(时)
2、列式表示两种灯的费用各为多少?
(节能灯用t小时的费用(元)为:60+0.5×0-O.11t
白炽灯用t小时的费用(元)为:3十0.06×0.5t)
3、当照明时间t取何值时,(1)白炽灯比节能灯省钱,
(2)节能灯比白炽灯省钱?(3)白炽灯与节能灯费用一样?(精确到1小时)
4、如果计划照明3500小时,则需要购买两个灯,试设计你认为能省钱的选灯方案。
以课本例题中实际生活问题为素材,使学生感受数学来源于生活,激发学生学数学的兴趣,师生共同参与合作完成问题中的探讨的几个问题,体现了以学生为主体,教师作为问题解决的组织者,引导者,合作者的新课程教育理念。
合作交流
探索创新下面问题是学生课前调查到的与人们生活密切相关的实际问题,每一大组完成一个,分四个小组讨论后设计出最佳方案。
10分钟后,大组派代表交流发言.
1、电价问题
据我们调查,我市居民生活用电价格为每天早晨7时到晚上23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.
2、水费问题
我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.50元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.
问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)
(2)根据你家用水情况,设计出最佳用水方案.
3、用气问题
某市按下列规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米o.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.
4、电信支费
随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.
(1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元.超过3分钟以后,每分钟付1元.
(2)某移动通讯公司升级了两种通讯业务,“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元.,
根据上述资料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?(2)某人估计一个月内通话300分钟,应选择哪种移动通讯或用长途电话合算些?提供给学生一个开放的空间,放手让学生去探索、去发挥,通过学生合作交流来设计最佳方案,培养学生用数学的意识和创新意识。
小结与作业
课堂小结可用教师对各小组交流的方案进行简单的评价作为小结。
布置作业1、必做题:课本第98页习题2.4第5、7题
2、选做题:
(1)我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准,A市规定每户每月的标准用水量不超过标准用水量的'部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费.该市张大爷家5月份用水9立方米,需交费16.2元.A市规定的每户每月标准用水量是多少立方米?
(2)20xx年世界杯足球赛韩国组委会公布的四分之一决赛门票价格是:一等席300美元,二等席200美元,三等席125元美元,某服装公司在促销活动中,组织获得特等奖、一等奖的名顾客到韩国现看20xx年世界杯足球赛四分之一决赛,除去其他费用后,计划买两种门票,用完5025美元,你能设计出几种购票方案供该服装公司选择吗?说明理由
分层次布置作业。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课以生活中的实际问题引入,以学生为主体,师生共同合作参与完成例中设计的
几个问题,教师在学生接受新知识的过程中,起到了一个组织者、合作者、引导者的角色.学生的学习始终是主动的.通过学生课前的社会调查,对生活中的一些方案以开放形式设计问题,学生通过小组合作交流,设计出不同的方案,让学生在生动活泼的交流情境中感受到数学的应用价值,产生对数学的兴趣.同时养成认真倾听他人发言的习惯,感受与同伴交流想法的乐趣.通过用电、用水最佳方案的设计,培养学生节约用电、用水的意识.
一元一次方程教案7
教学目标:
一、知识和技能:
㈠知识目标:
1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
㈡能力目标:
数学思考:能结合实际问题背景发现和提出数学问题。
解决问题:能利用一元一次方程解决商品销售中的一些实际问题
二、过程与方法:
经历“探究”的活动,激发学生的学习潜能,促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.
三、情感态度与价值观目标:
1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.
2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.
教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.
教学难点:找到问题中的数量关系,将未知数参与其中的代数式用 “=”连接起来,使之构成方程.
教学关键:明确问题中的数量关系,找出等量关系.
教学课型:新授课
课时安排:一课时
教学方法:启发式讲授,与学生探索相结合,情境教学法。
教学准备:幻灯片出示探究题目,三四个可供标价的纸板
教学过程:
一、引入新课
做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?) →→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。
(1)商品利润=商品售价-商品进价.
(2)商品利润率= .
(3)打x折的售价=原售价× .
二、新授
第一大部分
探究1:销售中的盈亏.
某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
①由学生借以往经验解决(极有可能使用四则运算),作出判断.
②要求应用方程
再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的'是盈利还是亏损,或是不盈不亏?
③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设
④学生自主修整完成该方程,进而解决问题.
解:设……………………
————————=——---
……………………
……………………
答:…………………….
另外:求出方程的解后,一定要检验解的合理性.
题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.
第一大部分附题
随堂练习1:
刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?
分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。
“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?
解:设……………………
————————=——---
……………………
……………………
答:…………………….
求出方程的解后,一定要检验解的合理性.
随堂练习2:较难的一道利润问题
某商品去年提价25%,今年要恢复原价,应下调几个百分点?
分析:Ⅰ 由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.
Ⅱ 由题中的“恢复原价” 翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x
Ⅲ 问题随之出现,下调的百分点又是一个新的未知量,故可设下调
m个百分点.
Ⅳ
一元一次方程教案8
教学目标:
1、能说出什么叫一元一次方程;
2、知道“元”和“次”的含义;
3、熟练掌握最简一元一次方程的解法及理论依据;
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的教学,了解化归的数学思想、
德育目标:
1、渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
重点:
1、一元一次方程的概念;
2、最简方程的解法;
难点:正确地解最简方程。
教学方法:引导发现法
教学过程
一、旧知识的复习:
1、什么叫等式?等式具有哪些性质?
2、什么叫方程?方程的'解?解方程?
二、新知识的教学:
观察下列方程:…
想一想:这些方程有什么共同特点?(学生思考后回答)
特点:
(1)只含有一个未知数;
(2)未知数的次数都是一次。
(板书课题,学生总结定义)
定义:只含有一个未知数并且未知数的次数都是一次的方程叫做一元一次方程。
强调:“元”指什么?(未知数的个数)
“次”指什么?(方程中含有未知数项的最高次数)
想一想:
(1)你认为最简单的一元一次方程是什么样的?
(学生举例说明后总结出最简方程)
最简方程:我们把形如(其中是未知数)的方
程称为最简方程。
强调:为什么?
(2)怎样求最简方程(其中是未知数)的解?
三、解下列方程
① ②
③ ④
(学生探讨求解过程及理论依据后板书解题过程)
解:①根据等式的基本性质2,在方程两边同除以3,
未知数系数化为1,得
②③④解法略
强调:检验解的方法。
想一想:
解最简方程(其中是未知数)时的主要思路是什么?解题的关键步骤是什么?
(引导学生思考后回答)
主要思路:把最简方程的未知数的系数化为1,变形为的形式;
解题的关键步骤:根据等式的基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的倒数),使未知数的系数化为1,得到最简方程的解。
强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?()
②最简方程一定有唯一的一个解。
四、巩固练习
1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:
3、课堂小结:
五、本节学习的主要内容
1、一元一次方程定义;
2、最简方程(其中是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
六、课堂作业
A、解下列方程:
B、如果关于的方程是一元一次方程,求的值;
C、解关于的方程:
一元一次方程教案9
2.自主探索、合作交流:
先由学生独立思考求解,再小组合作交流,师生共同评价分析.
方法1:
解:方程两边都加上2,得5x-2+2=8+2
也就是 5x=8+2
合并同类项,得5x=10
所以,x=2
3.理性归纳、得出结论
(让学生通过观察、归纳,独立发现移项法则.)
比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于
5x-2=8 5x=8+2
即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项.
教学建议:关于移项法则,不应只强调记忆,更应强调理解.学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性).
方法2;
解:移项,得 5x=8+2
合并同类项,得5x=10
方程两边都除以5,得x=2
4.运用反思、拓展创新
[例1] 解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7
教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流.
[例2] 解方程:
教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励.
②在移项时,学生常会犯一些错误,如移项忘记变号等.这时,教士不要急于求成,而要引导学生反思自己的解题过程.必要时,可让学生利用等式的'性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误.
5.小结回顾: 学生谈本节课的收获与体会.师强调:移项法则.
6.布置作业: (略)
一元一次方程教案10
一元一次方程
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果 || =9,则=;如果2 =9,则=
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为 倒数 ,如:
(5)如果,则( )
A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )
A、B、C、D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、B、C、D、
(2)下列方程中,属于一元一次方程的是( )
A、B、C、D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了 场,依题意可列得方程:
解得=
答:甲队胜了 场,平了 场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5。1
一元一次方程
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果 || =9,则=;如果2 =9,则=
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为 倒数 ,如:
(5)如果,则( )
A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0
(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )
A、B、C、D、00
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的`周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
7、随堂练习PO151
8、达标测试
(1)下列式子中,属于方程的是( )
A、B、C、D、
(2)下列方程中,属于一元一次方程的是( )
A、B、C、D、
(3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?
解:设甲队胜了场,则平了 场,依题意可列得方程:
解得=
答:甲队胜了 场,平了 场。
(4)根据条件“一个数比它的一半大2”可列得方程为
(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为
四、课外作业 P151习题5。1
一元一次方程教案11
教学目标
1.在具体情境中,进一步体会方程是刻画现实世界的重要数学模型。
2.知道什么是一元一次方程的标准形式,会通过移项、合并同类项把方程化为标准形式,然后利用等式的性质解方程。
教学重、难点
重点:把方程转化为标准形式。
难点:解方程的应用。
教学过程
一激情引趣,导入新课
1解方程:9x+3=8+8x
2(1)上面解方程的过程中,每一步的依据是什么?
(2)什么叫移项?移项要注意什么?
(3)2-4x+6+5x=8,变形为:-4x+5x+2+6=8,是不是移项?
二合作交流,探究新知
1动脑筋:
某实验中学举行田径运动会,初一年级甲班和丙班参加的人数的和是乙班参加的人数的`3倍,甲班有40人参加,乙班参加的人数比丙班参加的人数少10人,你能算出乙班参加校运会的人数吗?
观察你解方程的过程,原方程做了哪些变形?
形如ax=b(a≠0)的方程叫一元一次方程的_____形式。
2训练
(1)解方程:①11x-2=8x-8,②
(2)下列方程求解正确的是()
A-2x=3,解得:x=,B解得:x=
C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1
三应用迁移,巩固提高
1方程的转化
例1已知x=-2是方程的解,求m的值。
例2若方程2x+a=,与方程的解相同,求a的值。
2实践应用
例3甲仓库有某种粮食120吨,乙仓库有同样的粮食96吨,甲仓库每天卖出粮食15吨,乙仓库每天卖出粮食9吨,多少天后,两仓库剩下的粮食相等?
例4百年问题:我们明代数学家程大为曾提出过一个有趣的问题,有一个人赶着一群羊在前面走,另一个人牵着一头羊跟在后面,后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊人回答“我再得这么一群羊,再得这群羊的一半,再得这群羊的四分之一,把你牵的羊
也给我,我恰好有一百只羊”,请问这群羊有多少只?
四冲刺奥赛
例5当b=1时,关于x的方程a(3x-2)+b(2x-3)=8x-7,有无穷多个解,则a=()
A2B–2CD不存在
例6解方程:3x+=4
例7用一队卡车运一批货物,若每辆卡车装7吨货物,则尚余10吨货物装不完,若每辆卡车装8吨货物,则最后一辆卡车只装3吨货物就装完了这批货物,那么这批货物共有多少吨?
五课堂练习,巩固提高
P1121
六反思小结,拓展提高
1什么叫一元一次方程的标准形式?解一元一次方程一般要转化成什么形式?
一元一次方程教案12
教学目标:
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
3、进一步体会找等量关系,会用方程表示简单实际问题。
4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。
教学重点:
一元一次方程及方程的解。
教学难点:
寻找问题中的相等关系,列方程。
学习过程:
回顾旧知:方程的概念是什么?
问题1:鸡兔同笼
“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)
问题2:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的速度是70km/h,卡车的速度是60km/h,客车比卡车早1小时到达B地,A、B两地间的路程是多少?(客车与卡车之间的时间关系解题)
1、用等号“=”来表示相等关系的式子,叫等式。
2、像这样含有未知数的等式叫做方程
判断:下列各式是不是方程:
(1)-2+5=3 ;
(2)3x-1=0;
(3)y=3;
(4)x+y>2;
(5)2x-5y+1=0;
(6)xy-1=0;
(7)2m-n;
探究新知;
例1根据下列问题,设未知数并列出方程
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设正方形的边长为x cm,然后发现相等关系:
4×边长=周长
可以利用这个相等关系,得到方程:4x=24
(2)设x个月后这台计算机的`使用时间达到规定的检修时间2450小时,得到方程:1700+150x=2450
(3)设这个学校有x名学生,那么女生数就是0.52x,男生数是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80观察上面三个方程有什么共同特点:
①只含有一个未知数;
②未知数的最高次数都是1。
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?
(1)2x+3y-1;(2) x2+2x+1=0;(3)x+2y=3;
(4)1-x=x+1;(5)x2+3=4;
(6)x+y=5;(7)1+7=15-8+1;
(8)2χ2-5χ+1=0做一做:
x=1000和x=20xx中哪一个是方程0.52x-(1-0.52)x=80的解?
方程的解:使方程左右两边相等的未知数的值。检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算,
3.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是.
练一练:
请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?
(1)t=-2(2)t=2 (3)t=1
练习提高:
根据下列问题,设未知数,列出方程:
1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?
2、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,问各买了多少支?
3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。 小结:
1、方程的概念
2、一元一次方程的概念
3、方程的解的概念
一元一次方程教案13
【教学目标】
1.熟练掌握一元一次方程的解法;
2.进一步感受列方程的一般思路;
3.进一步培养学生的建模能力及创新能力.
4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.
【对话探索设计】
〖探索1
一项工程,甲要做12天才能做完.如果把总工作量看作1,
那么,根据工作效率=________÷________,
得甲一天的工作量(工作效率)为________.
他做3天的`工作量是__________.
〖探索2
一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?
(1)你能估算出答案吗?
(2)试一试,怎样用直线型示意图寻求答案:
如图,线段AB表示总工作量1,怎样在线段AB上分别表示甲、乙一天的工作量?通过示意图,能够很直观地看出答案吗?
如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量?通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?
〖探索3
一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?
解:把总工作量看作1,那么,
根据工作效率=________÷________,得
甲一天的工作量(工作效率)为______;乙一天的工作量为______;
设两人合做要x天,那么,
甲的总工作量为________;乙的总工作量为________;
这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:
_____________________.解这个方程得________________.
答:_____________________.
把这道题的解法与小学时的算术解法进行比较,你有什么发现?
〖探索4
整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?(P92例5)
解:把总工作量看作1,那么,
根据工作效率=________÷________,得
人均效率(一个人1小时的工作量)为________.
设先安排x人工作4小时,那么,
这x个人4小时的工作量为_______________(可化简为_________).
显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时
的工作量为___________________(可化简为_________).
这工作分两段完成,根据两段完成的工作量等于1可列方程:
________________________.
解得_______.
答:_________________.
想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?
教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.
〖作业
P93.习题3(3),(4);P94,8,9
一元一次方程教案14
一、学习目标
1.知道解一元一次方程的去分母步骤,并能熟练地解一元一次方程。
2.通过讨论、探索解一元一次方程的一般步骤和容易产生的问题,培养学生观察、归纳和概括能力。
二、重点:
解一元一次方程中去分母的方法;培养学生自己发现问题、解决问题的能力。
难点:去分母法则的正确运用。
三、学习过程:
(一)、复习导入
1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)
2、回顾:解一元一次方程的一般步骤及每一步的依据
3、(只列不解)为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_____棵。
(二)学生自学p99--100
根据等式性质,方程两边同乘以,得
即得不含分母的方程:4x-3x=960
X=960
像这样在方程两边同时乘以,去掉分数的分母的变形过程叫做。依据是
(三)例题:
例1解方程:
解:去分母,得依据
去括号,得依据
移项,得依据
合并同类项,得依据
系数化为1,得依据
注意:1)、分数线具有
2)、不含分母的项也要乘以(即不要漏乘)
讨论:小明是个“小马虎”下面是他做的题目,我们看看对不对?如果不对,请帮他改正。
(1)方程去分母,得
(2)方程去分母,得
(3)方程去分母,得
(4)方程去分母,得
通过这几节课的学习,你能归纳小结一下解一元一次方程的一般步骤吗?
解一元一次方程的一般步骤是:
1.依据;
2.依据;
3.依据;
4.化成的形式;依据;
5.两边同除以未知数的系数,得到方程的解;依据;
练一练:见P101练习解下列方程:(1)(2)
(3)思考:如何求方程
小明的'解法:解:去百分号,得同学看看有没有异议?
四、小结:
谈谈这节课有什么收获以及解带有分母的一元一次方程要注意的一些问题。
五、课堂检测:
1、去分母时,在方程的左右两边同时乘以各个分母的_____________,从而去掉分母,去分母时,每一项都要乘,不要漏乘,特别是不含分母的项,注意含分母的项约去分母分子必须加括号,由于分数线具有
2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1
(4)=+1(5)
六、作业
P102:3,10.
一元一次方程教案15
一、教学目标
(一).知识与技能
会利用合并同类项解一元一次方程.
(二).过程与方法
通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.
(三).情感态度与价值观
开展探究性学习,发展学习能力.
二、重、难点与关键
(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.
(二).难点:会列一元一次方程解决实际问题.
(三).关键:抓住实际问题中的数量关系建立方程模型.
三、教学过程
(一)、复习提问
1.叙述等式的两条性质.
2.解方程:4(x- )=2.
解法1:根据等式性质2,两边同除以4,得:
x- =
两边都加 ,得x= .
解法2:利用乘法分配律,去掉括号,得:
4x- =2
两边同加 ,得4x=
两边同除以4,得x= .
(二)、新授
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.
问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.
题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:x+2x+4x=140
如何解这个方程呢?
2x表示2x,4x表示4x,x表示1x.
根据分配律,x+2x+4x=(1+2+4)x=7x.
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.
下面的框图表示了解这个方程的具体过程:
x+2x+4x=140
合并
7x=140
系数化为1
x=20
由上可知,前年这个学校购买了20台计算机.
上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
问:本题中相等关系是什么?
答:甲组人数+乙组人数+丙组人数=60.
解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:
2x+3x+5x=60
合并,得10x=60
系数化为1,得x=6
所以2x=12,3x=18,5x=30
答:甲组12人,乙组18人,丙组30人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.
(三)、巩固练习
1.课本第89页练习.
(1)x=3.
(2)可以先合并,也可以先把方程两边同乘以2.
具体解法如下:
解法1:合并,得( + )x=7
即 2x=7
系数化为1,得x=
解法2:两边同乘以2,得x+3x=14
合并,得 4x=14
系数化为1,得 x=
(3)合并,得-2.5x=10
系数化为1,得x=-4
2.补充练习.
(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.
列方程 3x+2x=32
合并,得 8x=32
系数化为1,得 x=4
黑色皮块为43=12(个),白色皮块有54=20(个).
(2)设全书共有x页,那么第一天读了( x+2)页,第二天读了( x-1)页.
本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.
列方程: x+2+ x-1+23=x.
四、课堂小结
初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.
五、作业布置
1.课本第93页习题3.2第1、3(1)、(2)、4、5题.
2.选用课时作业设计.
合并同类项习题课(第2课时)
一、解方程.
1.(1)3x+3-2x=7; (2) x+ x=3;
(3)5x-2-7x=8; (4) y-3-5y= ;
(5) - =5; (6)0.6x- x-3=0.
二、解答题.
2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?
3.甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米.
(1)两车同时出发,相向而行,出发多少小时两车相遇?
(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?
4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.
5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?
答案:
一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11
二、2.705人,设育红小学1995年学生人数为x人,列方程320= x-150.
3.(1)4 小时,设出发后x小时相遇,列方程60x+48x=460.
(2)3 小时,设B车开出后x小时两车相遇,列方程60 +60x+48x=460.
4.3千米,设A、B两地间的距离为x千米, - = .
5.1 分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.
解一元一次方程
──移项(第3课时)
一、教学内容
课本第89页至第91页.
二、教学目标
(一).知识与技能
理解移项法,并知道移项法的依据,会用移项法则解方程.
(二).情感态度与价值观
鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.
三、重、难点与关键
(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号
(二).难点:对立相等关系.
(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.
四、教学过程 (一)、复习提问
1.运用方程解决实际问题的步骤是什么?
2.解方程: + =10.
(二)、新授
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
分析:设这个班有x名学生,根据第一种分法,分析已知量和未知量间的关系.
1.每人分3本,那么共分出多少本?(3x本)
2.共分出3x本和剩余的20本,可知道什么?
答:这批书共有(3x+20)本.
根据第二种分法,分析已知量与未知量之间的关系.
3.每人分4本,那么需要分出多少本?(4x本)
4.需要分出4x本和还缺少25本那么这批书共有多少本?
答:这批书共有(4x-25)本.
这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?
这批书的总数是一个定值(不变量)表示它的两个式子应相等.
根据这一相等关系,列方程:
3x+20=4x-25
本题还可以画示意图,帮助我们分析:
从示意图中容易得到这批书的总数与分出书、剩下书的关系是:
这批书的总数=3x+30
这批书的总数与需要分出的书的数量、还缺少书的数量关系是:
这批书的总数=4x-25
根据两种分法,这批书的总数是相等的.
所以,列方程3x+20=4x-25.
注意变化中的不变量,寻找隐含的.相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.
思考:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a(常数)的形式呢?
要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即
3x+20 -4x-20 =4x-25 -4x-20
即 3x-4x=-25-20
将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.
像上面那样,把等式一边的某项变号后移到另一边,叫做移项.
方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.
下面的框图表示了解这个方程的具体过程.
3x+20=4x-25
移项
3x-4x=-25-20
合并
-x=-45
系数化为1
x=46
由此可知这个班共有45个学生.
思考:上面解方程中移项起了什么作用?
答:移项使方程中含x的项归到方程的同一边(左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为x=a形式.
在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?
解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.
如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.
解法1:从原问题的解答中,已求的这个班有45个学生,只要把x=45代入3x+20(或4x-25)就可以求得这批书的总数为:
345+20=135+20=155(本)
解法2:如果不先求学生数,直接设这批书共有x本,又如何布列方程?这时该用哪个相等关系列方程呢?
这批书共有x本,余下20本,共分出(x-20)本,每人分3本,可以分给 人,即这个班共有 人.
这批书有x本,每人分4本,还缺少25本,共需要(x+25)本,可以分给 人,即这个班共有 人.
这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.
= (你会解这个方程吗?)
即 - = +
移项,得 - = +
合并,得 =
系数化为1,得x=155.
答:这批书共有155本.
(三)、巩固练习
1.课本第91页练习.
(1)解:移项,得6x-4x=-5+7
合并,得 2x=2
系数化为1,得x=1
(2)解:移项,得 x- x=6
合并,得- x=6
系数化为1,得x=-24
2.补充练习.
下列移项对不对?如果不对,错在哪里?应当怎样改正?
(1)从3x+6=0得3x=6;
(2)从2x=x-1得到2x-x=1;
(3)从2+x-3=2x+1得到2-3-1=2x-x.
解:(1)错,移项忘了要变号,应改为3x=-6.
(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2x-x-=-1.
(3)正确.
四、课堂小结
1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.
2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.
五、作业布置
1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.
2.选用课时作业设计.
移项习题课(第4课时)
一、填空题.
1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.
2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.
3.解方程x+21=36得x=________;由10x-3=9得x=______.
二、判断题.(对的打,错的打)
4.移项就是把方程中的某一项移到等号的另一边.( )
5.从6x=1,移项,得x=1-6,x=-5. ( )
6.由方程-4+x=7移项得x=7-4. ( )
三、解方程.
7.(1)8=7-2y; (2) = - ;
(3)5x-2=7x+8; (4)1- x=3x+ ;
(5)2x- =- +2; (6)- x+6=4x+1;
(7) -x=0.5x-3.
四、解答题.
8.设m=3x-2,n=-2x+3,当x为何值时m=n?
9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?
答案:
一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2
二、4. 5. 6.
三、7.(1)y=- (2)x= (3)x=-5 (4)x=-
(5)x=1 (6)x= (7)x=3
四、8.x=1 9.207,5,设从甲粮仓运出x吨,1000-x=798-(212-x)
【一元一次方程教案】相关文章:
一元一次方程教案02-13
《一元一次方程》教案04-02
解一元一次方程教案02-25
《解一元一次方程》教案08-31
一元一次方程教案15篇02-14
解一元一次方程教案15篇03-01
解一元一次方程教案(15篇)03-21
解一元一次方程教案(通用13篇)07-24
《一元一次方程》说课稿12-29