当前位置:育文网>教学文档>教案> 《有理数的加法》教案

《有理数的加法》教案

时间:2024-06-18 00:40:45 教案 我要投稿

《有理数的加法》教案

  在教学工作者开展教学活动前,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。那么教案应该怎么写才合适呢?下面是小编帮大家整理的《有理数的加法》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《有理数的加法》教案

《有理数的加法》教案1

  教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

  非常高兴,能有机会和同学们共同学习

  昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

  我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

  同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

  希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

  我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

  以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

  刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

  对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的'算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

  前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

  同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

  (1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

  (2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

  (3) 一个数同0相加,其和有什么规律呢?(易得出结论)

  同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

  同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

  (活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

  同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

  看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

  通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

  同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

《有理数的加法》教案2

  今天我说课的题目是“有理数的加法(一)"。本节课选自华东师范大学出版社出版的〈义务教育课程标准实验教科书〉七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、 有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

  2、 就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)

  教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

  二、教材处理

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程当中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计帘具体体现。而且在做练习的过程当中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法和数学孚段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的`发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计

  1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

  2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程当中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

  3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程当中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

  要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

  2、 就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。

  教学大纲是我们确定教学目标,重点和难点的依据。教学大纲规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是有理数加法法则的理解。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

《有理数的加法》教案3

  教学目标:

  1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,

  2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用

  3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算

  教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的'运算律简化运算,

  教学难点:准确、熟练地进行加减混合运算

  教学过程

  一、课前预习

  1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12

  二、自主探索

  根据有理数减法法则,有理数的加减混合运算可以统一为加法运算

  例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)

  算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)

  =(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。

  例2.计算:

  (1) -3-5+4 (2)-26+43-24+13-46

  解:(1) (2)

  例4、若a=-2,b=3,c=-4,求值

  (1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c

  解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]

  (2) (3)(4)

  例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)

  +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?

  (2)这小组这一天共走了多少千米

  三、学习小结

  这节课你学会了哪几种运算?

  四、随堂练习

  A类

  1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)

  (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48

  (5)21-12+33+12-67 (6)-3.2+5.8-8.6+12

  2 计算

  (1) 1+2-3-4+5+6-7-8++97+98-99-100

  (2) 66-12+11.3-7.4+8.1-2.5

  (6)-2.7-[3-(-0.6+1.3)]

  B类

  3. 计算 (1) + + ++ (2) + + ++

《有理数的加法》教案4

  教学目标:

  1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

  2、培养学生观察、比较、归纳及运算能力。

  重点:有理数加法运算律及其运用。

  重点:灵活运用运算律

  教学过程:

  一、创设情境,引入新课

  1、小学时已学过的加法运算律有哪几条?

  2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

  3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、讲授新课

  教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?

  (学生回答省略)

  师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

  讲解例3

  教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

  三、巩固知识

  教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

  师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

  四、总结

  本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的`运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

  五、布置作业

《有理数的加法》教案5

  教学目标

  1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

  2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

  3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  教学建议

  (一)重点、难点分析

  本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

  (二)知识结构

  (三)教法建议

  1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

  3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

  4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

  教学设计示例:

  有理数的减法

  一、素质教育目标

  (一)知识教学点

  1、掌握有理数的减法法则。

  2、进行有理数的减法运算。

  (二)能力训练点

  1、通过把减法运算转化为加法运算,向学生渗透转化思想。

  2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

  3、通过有理数的减法运算,培养学生的运算能力。

  (三)德育渗透点

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

  (四)美育渗透点

  在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

  二、学法引导

  1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2、学生学法:探索新知→归纳结论→练习巩固。

  三、重点、难点、疑点及解决办法

  1、重点:有理数减法法则和运算。

  2、难点:有理数减法法则的推导。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片。

  六、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  七、教学步骤

  (一)创设情境,引入新课

  1、计算(口答)(1);(2)-3+(-7);

  (3)-10+(+3);(4)+10+(-3)。

  2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的.最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

  教师引导学生观察:

  生:10℃比-5℃高15℃。

  师:能不能列出算式计算呢?

  生:10-(-5)。

  师:如何计算呢?

  教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

  【教法说明】

  1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

  (二)探索新知,讲授新课

  师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

  生:(+10)-(+3)=+7。

  师:计算:(+10)+(-3)得多少呢?

  生:(+10)+(-3)=+7。

  师:让学生观察两式结果,由此得到:

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

  师:是如何转化的呢?

  生:减去一个正数(+3),等于加上它的相反数(-3)。

  【教法说明】

  教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

  2、再看一题,计算(-10)-(-3)。

  教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

  生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

  生:(-10)+(+3)=-7。

  教师引导、学生观察上述两题结果,由此得到:

  教师进一步引导学生观察(2)式;你能得到什么结论呢?

  生:减去一个负数(-3)等于加上它的相反数(+3)。

  教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

《有理数的加法》教案6

  教学目标

  1.了解有理数加法的意义,理解有理数加法法则的合理性;

  2.能运用有理数加法法则,正确进行有理数加法运算;

  3.经历探索有理数加法法则的过程,感受数学学习的方法;

  4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.

  教学重点

  能运用有理数加法法则,正确进行有理数加法运算.

  教学难点

  经历探索有理数加法法则的过程,感受数学学习的.方法.

  教学过程(教师)

  一、创设情境

  小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

  1.试一试

  甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.

  你能把上面比赛的过程及结果用有理数的算式表示出来吗?

  做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

  2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.

  你还能举出一些应用有理数加法的实际例子吗?

  二、探究归纳

  1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.

  用数轴和算式可以将以上过程及结果分别表示为:

  算式:________________________

  2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.

  用数轴和算式可以将以上过程及结果分别表示为:

  算式:________________________

  3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

  请用数轴和算式分别表示以上过程及结果:

  算式:________________________

  仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.

  4.观察、思考、讨论、交流并得出有理数加法法则.

  讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

  《2.5有理数的加法与减法》课时练习

  1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?

  2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

  (1)通过计算说明小虫是否回到起点P.

  (2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.

  2.5有理数的加法与减法:同步练习

  1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)

  +17,-9,+7,-15,-3,+11,-6,-8,+5,+16

  (1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?

  (2)养护过程中,最远外离出发点有多远?

  (3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?

《有理数的加法》教案7

  【教学目标】

  1.理解有理数加法的实际意义;

  2.会作简单的加法计算;

  3.感受到原来用减法算的问题现在也可以用加法算.

  【对话探索设计】

  〖探索1〗

  (1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?

  (2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?

  (3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?

  (4)把第(3)题的算式列为300+(-200),有道理吗?

  (5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?

  〖探索2〗

  如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

  假设原点为运动起点,用下面的数轴检验你的答案.

  在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的'和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?

  〖小游戏〗

  (请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?

  〖练习〗

  1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?

  2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?

  〖补充作业〗

  1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

  (1)温度由下降;(2)仓库原有化肥200t,又运进-120t;

  (3)标准重量是,超过标准重量;(4)第一天盈利-300元,第二天盈利100元.

  2.借助数轴用加法计算:

  (1)前进,又前进,那么两次运动后总的结果是什么?

  (2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少?

  3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?

《有理数的加法》教案8

  【教学目标】

  1.进一步理解有理数加法的实际意义;

  2.经历探索有理数加法法则的过程,理解有理数加法法则;

  3.感受数学模型的思想;

  4.养成认真计算的习惯.

  【对话探索设计】

  〖探索1

  1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

  2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

  3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?

  假设原点为运动起点,用数轴检验你的答案.

  〖法则理解

  有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.

  这条法则包括两种情况:

  (1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

  (2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案-8之所以取-号,是因为______________,8是由_____的绝对值和______的绝对值相______而得.

  〖练习

  1.上午6时的气温是-5℃,下午5时的气温比上午6时下降3℃, 下午5时的气温是多少?

  2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?

  3.第一天向北走-30km,第二天又向北走-40km,两天一共向北走多少km?

  4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

  (1)-10+(-30)=

  (2)(-100)+(-200) =

  (3)(-188)+(-309)=

  〖探索2

  1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

  2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

  3.正数和负数相加,结果是正数还是负数?

  〖法则理解

  有理数加法法则第2条的`前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.

  例如(+6)+(-2) = +(6-2) = +4.答案+4之所以取+号,是因为两个加数(+6与-2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.

  又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.

  〖议一议

  有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算.他说的对不对?

  〖练习

  1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?

  2.如果物体先向右运动5米,再向右运动-8米,那么两次运动后总的结果是什么?

  3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

  -3.5,+1.2,-2.7.

  这3包洗衣粉的重量一共超过标准重量多少?

  4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:

  (1)(-3)+(+8)=

  (2)-5+(+4)=

  (3)(-100)+(+30)=

  (4)(-100)+(+109)=

  〖法则理解

  有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.

  例如(+3)+(-3) = ______,(-108)+(+108) = ______.

  〖例题学习

  P21.例1,例2

  P22.练习2(按例1格式算.)

  〖作业

  P29.习题 1, P32.习题 8,9,10

  【备选素材】

  用一个□表示+1,用一个■表示-1.显然□+■=0,

  (1)■■+□□□=(■+□)+(■+□)+ □=_____.

  这表明-2+3=+(3-2)=1.

  想一想:答案为什么是正的?为什么转化为减法运算?

  (2)计算■■■■■+□□□□□=_____.

  (3)计算■■■■■+□□=(■■+□□)+ ■■■=______.

  这说明-5+(+2)=-(___-___)=_______.

  (4)计算■■■+□□□□□=?

《有理数的加法》教案9

  第一课时

  三维目标

  一、知识与技能

  理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

  二、过程与方法

  引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

  三、情感态度与价值观

  培养学生主动探索的良好学习习惯。

  教学重、难点与关键

  1.重点:掌握有理数加法法则,会进行有理数的加法运算。

  2.难点:异号两数相加的法则。

  3.关键:培养学生主动探索的良好学习习惯。

  四、教学过程

  一、复习提问,引入新课

  1.有理数的绝对值是怎样定义的'?如何计算一个数的绝对值?

  2.比较下列每对数的大小。

  (1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

  五、新授

  在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

  要解决这个问题,先要分别求出它们的净胜球数。

  红队的净胜球数为:4+(-2);

  蓝队的净胜球数为:1+(-1)。

  这里用到正数与负数的加法。

  怎样计算4+(-2)呢?

  下面借助数轴来讨论有理数的加法。

  看下面的问题:

  一个物体作左右方向的运动,我们规定向左为负、向右为正。

  (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

《有理数的加法》教案10

  一.教学目标

  1.知识与技能

  (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

  (2)在有理数加法法则的教学过程中,注意培养学生的运算能力.

  2.过程与方法

  通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。

  3.情感态度与价值观

  认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

  二、教学重难点及关键:

  重点:会用有理数加法法则进行运算.

  难点:异号两数相加的法则.

  关键:通过实例引入,循序渐进,加强法则的应用.

  三、教学方法

  发现法、归纳法、与师生轰动紧密结合.

  四、教材分析

  “有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

  五、教学过程

  (一)问题与情境

  我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1),这里用到正数与负数的加法。

  (二)师生共同探究有理数加法法则

  前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:

  足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

  (1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是

  (+3)+(+1)=+4.

  (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是

  (-2)+(-1)=-3.

  现在,请同学们说出其他可能的情形.

  答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

  (+3)+(-2)=+1;

  上半场输了3球,下半场赢了2球,全场输了1球,也就是

  (-3)+(+2)=-1;

  上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

  (+3)+0=+3;

  上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

  (-2)+0=-2;

  上半场打平,下半场也打平,全场仍是平局,也就是

  0+0=0.

  上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

  这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数.

  (三)应用举例 变式练习&&</p>

  例1 口答下列算式的结果

  (1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

  (5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

  学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的.具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  例2(教科书的例1)

  解:(1)(-3)+(-9) (两个加数同号,用加法法则的第1条计算)

  =-(3+9) (和取负号,把绝对值相加)

  =-12.

  (2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)

  =-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)

  =-0.8

  例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

  下面请同学们计算下列各题以及教科书第23页练习第1与第2题

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

  (四)小结

  1.本节课你学到了什么?

  2.本节课你有什么感受?(由学生自己小结)

  (五)作业设计

  1.计算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

  (5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

  2.计算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

  3.用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0

  (六)板书设计

  1.3.1有理数加法

  一、加法法则二、例1例2例3

《有理数的加法》教案11

  教学目标

  1,在现实背景中理解有理数加法的意义。

  2,经历探索有理数加法法则的过程,理解有理数的加法法则。

  3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

  4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

  5,在教学中适当渗透分类讨论思想

  教学难点

  异号两数相加

  知识重点

  和的符号的确定

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题回顾用正负数表示数量的实际例子;

  在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

  师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

  (出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

  分析问题

  探究新知如果是球队在某场比赛中上半场失了两个球,下

  半场失了3个球,那么它的`得胜球是几个呢?算式应该

  怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

  (学生思考回答)

  思考:请同学们想想,这支球队在这场比赛中还可

  能出现其他的什么情况?你能列出算式吗?与同伴交流。

  学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

  2,借助数轴来讨论有理数的加法。I

  一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

  (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

  (2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

  (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

  (4)在学生归纳的基础上,教师出示有理数加法法则。

  有理数加法法则:

  1,同号两数相加,取相同的符号,并把绝对值相加。

  2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

  估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

  ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

  解决问题解决问题

  例1计算:

  (1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教师板演,让学生说出每一步运算所依据的法则。

  请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

  例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

  (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

  学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

  程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

  拓宽学生视野,让学

  生体会到数学与生活的密切联系。

  课堂练习教科书第23页练习

  小结与作业

  课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

  本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

  2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

  3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

  别人的意见和建议。

  附板书:1。3。1有理数的加法(一)

《有理数的加法》教案12

  一、教学内容分析

  本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

  二、学习者分析

  七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的.合作和交流,是可以完成本节课的教学目标的。

  三、教学目标

  1、使学生掌握有理数加法法则,并能运用法则进行计算;

  2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  四、信息技术应用分析

  由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

  五、教学过程

  1、复习提问,引入新知

  通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

  2、出示问题情境、解决新知

  在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

  3、探索发现,归纳新知

  利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

  学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

  4、展示例题、应用新知

  此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

  5、达标训练,巩固新知

  本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

  6、规律总结,升华新知

  本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

  7、作业和运用,拓展新知

  通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

《有理数的加法》教案13

  教学目标:

  1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。

  重点难点:

  重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加

  教学过程

  一激情引趣,导入新课

  1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想

  2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。

  ,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。

  二合作交流,探究新知

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米

  1同号两数相加

  小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.

  从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。

  同号两数相加,取__________的符号,并把它们的_____________相加。

  2异号两数相加

  (1)小明先从点O出发,先向东走4千米,发现口袋里的'钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.

  (2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了

  _____千米。用式子表达为_______________________.

  从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。

  异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值

  减去_______________的绝对值。

  3一个数和零相加,以及互为相反数相加

  (1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?

  (2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?

  从上问题,你发现了什么?把你的结论写在下框中,

  互为相反数的两个相加得_______,一个数和零相加,任得____________________.

  三应用迁移,拓展提高

  例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

  (3)(-5)+9(4)(–10)+7

  例2计算(1)(-3)+(2)(-)+(-)

  例3填空

  (1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

  四课堂练习,巩固提高

  P21

  五反思小结巩固提高

  有理数的加法法则有哪些?请你把它们写在下面:

  1

  2

  3

  4

  六作业p24-25A组1-4B1

《有理数的加法》教案14

  学习过程:

  一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:

  1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?

  2.加法的交换律:

  两个数相加,交换xx的'位置,和不变.用式子表示:a+b=。

  3.加法的结合律:

  《1.3.1有理数的加法》同步练习含答案

  在进行两个异号有理数的加法运算时,其计算步骤如下:

  ①将绝对值较大的有理数的符号作为结果的符号并记住;

  ②将记住的符号和绝对值的差一起作为最终的计算结果;

  ③用较大的绝对值减去较小的绝对值;

  ④求两个有理数的绝对值;⑤比较两个绝对值的大小.其中操作顺序正确的是( )

  A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②

  《1.3.1有理数的加法》同步练习题(含答案)

  10.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10。

  (1)小虫最后是否回到出发点A?

  (2)在爬行过程中,如果每爬行1cm奖励一粒芝麻,那么小虫一共得到多少粒芝麻?

  解析(1)是.(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=[(+5)+(+10)+(+12)]+[(-3)+(-8)+(-6)+(-10)]=27-27=0,

  所以小虫最后回到出发点A。

  (2)小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)。

  所以小虫一共得到54粒芝麻。

《有理数的加法》教案15

  教学目的:

  经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

  教学重点:

  有理数的加法法则

  教学难点:

  异号两数相加的法则

  教学教程:

  一、复习提问:

  1、如果向东走5米记作+5米,那么向

  西走3米记作__.

  2、已知a=-5,b=+3,

  ︱a︳+︱b︱=_

  已知a=-5,b=+3,

  ︱a︱-︱b︱=__

  -1012345678

  二、授新课

  小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向

  提问:这题有几种情况?

  小结:有以下四种情况

  (1)两次都向东走,

  (2)两次都向西走

  (3)先向东走,再向西走

  (4)先向西走,再向东走

  根据小结,我们再分析每一种情况:

  (1)向东走5米,再向东走3米,一共向东走了多少米?

  +5+3(+5)+(+3)=+8

  (2)向西走-5米,再向西走-3米,一共向东走了多少米?

  -5-3(-3)+(-5)=-8

  (3)先向东走5米,再向西走3米,两次一共向东走了多少米?

  +3+5(+5)+(-3)=2

  (4)先向西走5米,再向东走3米,两次一共向东走了多少米?

  -5+3(-5)+(+3)=-2

  下面再看两种特殊情况:

  (5)向东走5米,再向西走5米,两次一共向东走了多少米

  -5+5(+5)+(-5)=0

  (6)向西走5米,再向东走0米,两次一共向东走了多少米?

  -5(-5)+0=-5

  小结:总结前的六种情况:

  同号两数相加:(+5)+(+3)=+8

  (-5)+(-3)=-8

  异号两数相加:(+5)+(-3)=2

  (-5)+(+3)=-2

  (+5)+(-5)=0

  一数与零相加:(-5)+0=-5

  得出结论:有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加

  2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的'绝对值。互为相反数的两个数相加得零

  3、一个数与零相加,仍得这个数

  例如:

  (-4)+(-5)(同号两数相加)

  解:=-()(取相同的符号)

  =-9(并把绝对值相加)

  (-2)+(+6)(绝对值不等的异号两数相加)

  解:=+()(取绝对值较大的符号)

  =+4(用较大的绝对值减去较小的绝对值)

  练习:

  口答:

  1、(-15)+(-32)=

  2、(+10)+(-4)=

  3、7+(-4)=

  4、4+(-4)=

  5、9+(-2)=

  6、(-0.5)+4.4=

  7、(-9)+0=

  8、0+(-3)=

  计算:

  (1)(-3)+(-9)(2)(-1/2)+(+1/3)

  解略

  练习:

  (1)15+(-22)=

  (2)(-13)+(-8)=

  (3)(-0·9)+1·5=

  (4)2·7+(-3·5)=

  (5)1/2+(-2/3)=

  (6)(-1/4)+(-1/3)=

  练习三:

  1、填空:

  (1)+11=27(2)7+=4

  (3)(-9)+=9(4)12+=0

  (5)(-8)+=-15(6)+(-13)=-6

  2、用“<”或“>”号填空:

  (1)如果a>0,b>0,那么a+b0;

  (2)如果a<0,b<0,那么a+b0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b0

  小结:

  1、掌握有理数的加法法则,正确地进

  行加法运算。

  2、两个有理数相加,首先判断加法类

  型,再确定和的符号,最后确定和的绝对值。

  作业:课本第38页2、3

  第40页1、2

【《有理数的加法》教案】相关文章:

有理数的加法教案07-09

《有理数的加法》教案09-06

有理数的加法教案范文06-29

有理数的加法教案(荐)08-08

《有理数的加法》教案优秀12-26

【精华】有理数的加法教案07-31

《有理数的加法》说课稿05-28

有理数加法的说课稿06-17

有理数的加法说课稿07-02