当前位置:育文网>教学文档>教案> 分数的教案

分数的教案

时间:2023-02-28 11:31:13 教案 我要投稿

分数的教案(15篇)

  作为一名无私奉献的老师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?以下是小编整理的分数的教案,仅供参考,希望能够帮助到大家。

分数的教案(15篇)

  分数的教案 篇1

  教学内容:p51-p53第9题

  教学目标

  1、通过回顾与,使学生进一步加深对分数意义的理解

  2、通过小组交流的形式组织学生知识要点,体验自己学习的收获,建立合理的认知结构。

  教学重点:使学生进一步加深对分数意义的理解

  教学难点:建立合理的认知结构

  教学流程

  一、回顾与

  1、问:这一单元,你们学会了什么?有什么收获?

  2、分小组交流

  3、集体交流、

  二、练习与应用

  1、第51页第1题

  让学生独立完成。然后再说一说思考的过程

  2、第51页第2题

  学生独立完成,再评讲,可指导在直线上表示假分数和带分数的方法。

  3、第3题,口答

  4、第4题

  让学生结合情境解释分数的意义。

  重点讲解第3小题:小明从家到学校,1/6小时正好走了全程的2/3。

  1/6小时是把1小时看做单位“1”,平均分成6份,小明的时间相当于其中的一份。

  5、独立完成第5、6题

  评讲方法

  6、做第7题

  让学生运用分数与小数的`互化方法进行填写。

  指导1.7的填法:一、可以把1.7看成1和0.7的和。0.7是7/10;二、把1.7直接看成是17/10,从而得出结果。

  7、做第8题

  引导:前两题可直接根据小数意义,改写成小数,后两题要根据分数与除法的关系,通过计算改写成小数。

  8、做第9题

  (1)试做(2)分析:要将分数化成小数再比较(3)讨论怎么样将带分数化成小数

  三、课堂

  分数的教案 篇2

  教学内容:九年义务教育六年制小学实验课本,第十册,分数意义。

  教学目标:

  进一步理解分数意义,通过两个分数比较大小,深化学生对分数单位的理解。

  培养学生判断推理的能力。

  培养学生用辩证的观点看待问题。

  教学重点、难点:

  重点:进一步理解分数单位。

  难点:(分数单位和分数单位的个数都不同的分数进行比较。)对分数单位的

  深化认识。

  教学过程:

  1.复检

  (1)前面我们对整数的小数有了一定的认识,我们研究整数和小数这部分知识,

  关键的一点是什么?(数位、计数单位、进率)整数从右边起的前三位及它们的计数单位分别是什么?

  (2)我们知道整数和小数都是十进制的数,谁能说说你是怎样理解“十进制”的?

  小结:今天我们就在这个基础上来研究分数。[板书:分数]

  2.新授

  第一层:理解分数意义,初步理解分数单位这个概念。

  出示 、

  (1)看到 你能想到什么?(以 为一份有这样的2份)[板书: ]

  (2)“ ”表示什么?[板书: ]这儿(指 后面)应该写什么?( 、 )

  (3)第二排的数都表示的是几份?(一份)

  (4)第二排的数与第一排的数之间有什么关系?

  (5)什么是分数单位呀?

  (6)分数单位与“1”之间有什么关系?

  小结:既然同学们对分数单位这么感兴趣,我们这节课就重点来研究一下分数单

  位。

  [评:紧扣重点,采用对比的方法,加深学生对“分数单位”的认识]

  第二层:分数单位相同,分数单位的个数进行比较

  出示

  (1)我们观察一下这两个分数有什么特点?(分母相同)不说分母相同,还可以怎样说?(分数单位相同)分数单位相同也就是什么相同?(每份相同)[学生回答时注意前提条件]

  (2)这两个分数的每份相同,也就是分数单位相同,我们看看这两个分数表示的大小相同吗?能不能比出大小?

  (3)我们除了对这两个分数进行比较,还可以怎么样?(加减)

  (4)进行加的结果是多少?( )12是怎么来的?什么没变?(分数单位)什么相加了?

  (5)减的结果是什么?( )谁减谁?“2”是怎么来的,同样是什么没变,跟加法的道理一样不一样?

  (6)在加减的过程中分母为什么没变?为什么分数单位相同可以直接相加减?

  出示

  问:这两个分数可以怎样?(比较、加减)

  [也可将这两个分数与1进行比较]

  小结:这两组数,分母都相同,也就是分数单位相同,在分数单位相同的情况下,比较两个分数的大小有什么规律?

  [评:1.分母相同是外在的表面现象,教师引导学生透过现象看到分母相同,就是单位“1”相同,分数单位相同(每份相同)这样,就在“同分母分数比较大小中抓住了实质。不仅使学生掌握了比较大小的方法,更进一步理解了分数的意义,又为学习分数的计算奠定了知识和思维的基础。

  2.让学生充分说理,每一个设问都给学生提供了运用概念解决实际问题的情境。如: 和 ,分母相同,说明单位“1”相同,分数单位相同。在分数单位相同的情况下,5个 比7个 小,所以 < 。这种严密的逻辑论述,体现出学生分析推理能力,对所学知识的认识又上升到了一个新的层次,培养学生逻辑思维能力,是培养创造思维的基础。]

  第三层:分数单位的个数相同,分数单位的大小进行比较

  出示

  (1)分母还相同吗?(不同)有没有相同的地方(单位“1”相同,取的份数也相同。)

  (2)谁大?( )5比7小,为什么 反而大呢?

  出示:

  问:观察这个分数有什么特点?请你判断一下这两个分数的大小。

  小结:当单位“1”相同的情况下,分的份越多,它的分数单位就越小,分的份

  越少,分数单位就越大。刚才我们研究了两组很有规律的分数,在这个基础上我们继续看。

  [评:在分数单位比较的过程中,深化的分数单位的理解,为后面的分析推理提供依据。]

  第四层:发散思维的训练,深化对分数单位的理解

  出示:

  问:我们观察一下这两个数,有什么特点?(分数单位与分数单位的个数都不同)有没有相同的?(“1”相同)“1”相同,分数单位不同,所取的份也不同。能不能进行比较呢?讨论一下。(可先将 与 进行比较,或 与 =1进行比较,再比较这两个分数的大小;或与“1”的一半进行比较)

  出示

  问:这组分数同样分子和分母都不相同,看能不能向刚才这种方法一样比较一下。(先将 与 进行比较)

  小结:我们刚才比较了两个分数的大小,而且当分母相同的情况下,还可以把两个分数直接相加减,无论是比较还是加减,我们研究的关键的一点都是什么?(分数单位)

  [评:发散思维的活动方式是分散的、辐射的、昊散式的发散思维的训练,目的使学生灵活运用知识,使思维更活跃,在培养学生创造思维中起重要作用,教师设计的三组题,为学生创设了各显其能,施展才华的条件,学生大胆地冲破思维的局限性,从不同角度,沿着不同的方向进行思考、想象、分析、推理,使问题得到解决。如:①因为 > 所以 >

  ②因为 > 所以 >

  ③学生大胆设想,都转化成分母相同再比较,等等。

  学生方法的.多样性,灵活性来源于对概念理解的深刻性,这种“一题多解”、“求异思维”的能力,是学生已具有创造性学习能力的体现。]

  第五层:通过假分数与带分数的互化,进一步认识分数单位,在这当中渗透分数单位与单位1之间的关系。

  出示

  (1)这个分数和我们前面研究的分数比较一下,有什么不同?(分子比分母大)分子比分母大,这样的分数叫假分数。(真假的假)那么我们前面研究的这些分数分子都比分母小,你们说,这些分数就应该叫什么呀?(真分数)

  (2)分子比分母大说明什么?(这个数比1大)

  (3) 我们就可以看作几部分?

  (4) 和1 的大小一样不一样?我们就可以用什么符号连接?

  小结:这两个分数所表示的意义一样吗?它们之间有什么联系?(讨论)

  [评:通过假分数与带分数的互化,进一步认识分数单位,渗透分数单位与单位“1”之间的关系。这里运用观察、比较、适时的讨论,学生对假分数和带分数的意义有了正确的认识。]

  3.质疑

  4.总结

  这节课我们研究了什么?分数单位在分数这部分知识中占有很重要的位置,这一知识我们研究得透,对于我们今后研究有关的知识会有很大的帮助。

  七.板书设计

  八.反思:

  本节课结构严谨,重点突出,始终给基本概念“分数单位”以中心地位,知识呈现过程清晰,过程设计符合儿童认知。

  以“比较分数大小”这一知识为载体,把“分数单位”这一核心概念挖掘来,在不断的深化和扩展中,学生既学了知识又为后叙知识做好铺垫,同时促进了学生思维质的发展。

  教师语言简练,设问有利于激发学生的思维,学生不仅学会了知识,增长了能力,在生生相互沟通中以科学的态度对待科学知识,在民主的氛围中学生身心和谐发展。

  分数的教案 篇3

  教学内容:教科书第42~43页,练习七第9~14题、思考题。

  教学目标:

  1、通过练习,使学生加深单位“1”及分数意义的理解,更好地认识真分数和假分数,掌握求一个数是另一个数的几分之几的实际问题。

  2、进一步增强学生自主探索和合作交流的意识,培养解决实际问题的能力。

  教学重、难点:加深单位“1”及分数意义的理解,更好地认识真分数和假分数,掌握求一个数是另一个数的几分之几的实际问题。

  教学过程:

  一、复习引入

  1、板书:认识分数。

  关于分数,你已经掌握了哪些知识?板书:分数的意义、真分数、假分数、求一个数是另一个数的几分之几。

  2、今天我们进行一些综合练习,帮助大家更好地掌握这些知识。

  二、综合练习

  1、完成练习七第9题。

  独立完成涂色。交流核对。

  每组图中分别涂了几份?你是怎样想?说说11/4表示的意义?

  2、完成第10题。

  独立完成填空。

  4/9的分数单位是什么?它有几个分数单位?白色部分可用几分之几表示?为什么?

  第二组图的分母为什么是5?它有几个分数单位?

  3、完成第11题。

  1读出分数,说出每个分数的`分数单位,各有几个这样的分数单位?

  2.说出这些分数中哪些是真分数,哪些是假分数?

  4、完成第12题。

  分别说说是把什么看成单位“1”?

  说出每个分数表示的意义。

  5、完成第13题。

  “平均每天烧这堆煤的几分之几?”把什么看作单位“1”?这堆煤应该平均分成几份?(10份)为什么?3天烧的就是几个1/10?(3个)

  6、完成第14题。

  独立完成,说说自己的想法。

  展示学生作业,汇报想法。

  你们所画的图形有什么相同点?

  7、完成思考题。

  独立填写分数,交流汇报。

  右边的图,引导学生进行观察,每个涂色的形状相当于把单位“1”平均分成多少份?涂色的部分是这样的几份?用分数表示是什么?

  三、课堂

  通过这节课的练习,你对分数有了什么更深入的了解呢?

  分数的教案 篇4

  教材分析

  本课是北师大版小学数学五年级上册第四单元内容,这部分内容是在学生学习了分数的认识、比较分数的大小、通分、同分母分数加减法的基础之上学习异分母分数加减法的。

  在本节课中,学生主要经历探索异分母分数加减的过程,理解异分母分数加减的算理:计数单位不同不能直接相加减,因此要先通分。并熟练掌握异分母分数加减的计算方法。

  通过本节课的.学习,为后面继续学习分数混合运算以及相应的解决问题等知识打好基础。

  学情分析

  本班学生大部分都喜欢数学,但由于个性差异的存在以及家庭教育的不同,还存在着一些后进学生。我对他们学习数学的态度是非常认可的,学生已经熟练的掌握了同分母分数加减的计算方法,这对本课的学习有正迁移作用。学生可以通过自己动手、动脑和小组合作来解决问题但学生也很容易受到同分母分数加减法的影响,认为异分母分数加减法只要将分子、分母分别相加减就可以了。对本节课具有一定的负迁移作用。所以,我在教学设计中注重了这个问题。

  教学目标

  1、通过直观的操作活动,理解异分母分数加减法的算理。

  2、能正确计算异分母分数的加减法。

  3、调动学生的学习积极性,培养学生的转化、迁移类推和概括能力。

  教学重点和难点

  教学重点:通过通分,把异分母分数转化成同分母分数后进行计算。

  教学难点:使学生在经历数学活动、丰富数学体验的基础上,理解先通分、再加减的算理。

  分数的教案 篇5

  教学目标:

  1、能结合具体的情境初步认识分数,知道把一个物体或一个图形平均分成几份,每份都可以用几分之一表示,知道分数各部分的名称,能读、写分数。

  2、学会运用直观的方法比较分子都是1的两个分数的大小。

  3、体会分数来自生活实际的需要,感受数学与生活的联系,进一步激发对数学的好奇心和兴趣。

  教学过程:

  一、创设情境、提出问题:

  出示秋游图,把每种食品都平均分成2份,每人分到多少?用拍手表示。

  二、认识几分之一、操作深化。

  1、直观操作、初步感知。

  老师演示把一个蛋糕平均分成两份,问:半个可以用什么数表示?

  揭题:认识分数。(板书:认识分数)

  小结:把一个蛋糕平均分2份,每份是它的二分之一。(贴)

  2、操作理解,深入认识。

  老师这里有一张长方形纸,你能折一折,并涂出这张纸的1/2吗?

  学生活动。

  这些折法都不同,为什么每份都可以用1/2表示?

  师:虽然折法不同,但他们都把这张长方形平均分成了2份,所以每份都是它的1/2。

  3、辨别判断,巩固认识。

  下面哪些图形的涂色部分也可以用1/2来表示?

  4、联系生活,丰富认识。

  想想看,在生活中1/2还可以表示什么呢?

  看来:把一个物体或一个图形平均分成2份,每份就是它的二分之一。

  5、认识几分之一(5分)

  认识了1/2,你还想认识几分之一呢?(根据学生回答板书)

  你想试着折一折、涂一涂,表示出你想认识的几分之一吗?

  (小组活动:表示出圆、长方形、三角形、正方形的几分之一)

  汇报:说说看你表示的是几分之一?你是怎么表示的?

  每人向同组的小伙伴介绍自己表示的分数。

  小结:把一个物体或者一个图形,平均分成几份,每份就是它的几分之一。

  6、教学各部分名称及写法。

  7、用分数来表示一些图形的涂色部分:想想做做1

  谁来说说看图1的涂色部分可以用哪个分数来表示?图2呢?说说看为什么能用1/6表示?图3图4

  8、感受几分之一与1的关系:想想做做3

  请大家看屏幕,把一张纸条全部涂满颜色用1来表示。

  随着电脑的演示,让学生猜猜看:现在涂色部分是这张纸条的几分之一?

  观察一下从中你能想到些什么呢?

  小结:同样长的纸条,平均分的份数越多,每一份就越小。

  三、自主探索,比较大小

  1、实验:(每小组有长方形、正方形、圆、三角形)

  实验:用两张同样大小的纸片折一折,涂一涂,表示出它的1/2、1/4,再比一比它们的大小。

  小结:1/2大于1/4

  2、猜想

  那请你猜一猜,1/8和1/2、1/4比一比大小怎样?

  你是怎么想的'?

  3、验证

  用另一张同样大小的纸片折一折、涂出它的1/8,和它的1/2、1/4比比,看看我们的猜想正确吗?

  小结:通过实验我们验证了自己的猜想:平均分成的份数越多,表示每一份的分数就越小。

  4、想想做做第5题。

  四、全课小结

  1、回顾一下,通过这节课的学习你知道了什么?你还有什么疑问吗?

  2、找分数:其实分数就在我们身边,让学生在熟悉的教室中寻找分数。

  3、小结:生活中的分数还有很多很多,我们要做有心人,善于用数学的眼光来观察生活,大胆猜想,勇于探索,相信同学们会有更多的收获。

  4、介绍分数产生的历史。

  分数的教案 篇6

  教学目标:

  1.使学生加深理解和掌握的数量关系和解题思路,能正确地分析、解答分数,百分数应用题。

  2.使学生进一步明确简单的和稍复杂的之间的联系,以及不同类型的的结构特征和解题规律;进一步提高分析、推理和判断等思维能力。

  教学过程:

  一、揭示课题

  1.口答算式或方程.

  (1)20米是50米的百分之几?

  (2)50米的 是多少?

  (3)多少米的 是20米?

  学生口答后提问:第(1)题的40%是怎样求的,表示什么意义?第(2)、(3)题是按怎样的数量关系列式的,这两个式子都表示什么意义?

  2.引入课题。

  我们根据分数的意义和求一个数的几分之几(或百分之几)是多少用乘法的数量关系,学习过。这节课就复习。(板书课题)我们学过的,分为简单的和稍复杂的两种情况。通过复习,要能进一步理解井掌握它们的数量关系、解题思路,更加明确它们的结构特征和解题规律,提高分析、解答的能力。

  二、复习解题思路

  1.选择下面三个条件里的一个条件作问题,编出三道不同的应用题。

  (1)松树30棵 (2)杨树50棵

  (3)松树棵数是杨树的

  学生回答时,分别出示三道应用题

  (1)松树30棵,杨树50棵,松树棵数是杨树的'几分之几?

  (2)杨树50棵,松树棵数是杨树的 ,松树多少棵?

  (3)松树30棵,正好是杨树棵数的 ,杨树多少棵?

  指名学生口答算式或方程,老师板书。提问:第(1)题为什么用杨树棵树做除数?第(2)、(3)题为什么都用杨数棵数乘言?你认为解答的关键是什么?(板书:关键:确定单位1的数量)追问:上面题里与对应的数量是什么?求一个量是另一个量的几分之几要怎样算?第(2)、(3)题都是技怎样的数量关系列式子的?

  2.归纳基本思路。

  从上面的题可以看出,解答的关键是确定单位1的数量,并且找出与几分之几(百分之几)对应的量,然后联系分数、百分数的意义,或者一个数乘分数 (或百分数)可以表示求一个数的几分之几(或百分之几)是多少的意义列出数量关系式,再列出式子解答。如果要求一个量是另一个量的几分之几,就用几分之几对应的数量除以单位1的数量;当几分之几是已知条件时,就要根据单位1的量乘几分之几等于与几分之几对应的数量来列算式或方程解答。

  3.组织练习。

  (1)做练一练第1题。

  提问各把哪个数量看做单位1。让学生填写数量关系式,然后口答。结合提问学生第(2)题的数量关系式里为什么是节约的数量,强调数量对应关系。提问:从上面可以看出的基本数量关系是怎样的?找数量关系时要注意什么?

  【板书:基本关系:对应数量单位1的量=几分之几(百分之几)

  单位1的量几分之几(百分之几)=对应数量】

  指出:我们解答,一般根据含有几分之几或百分之几这句话确定单位1的量和题里的数量关系,这样就可以根据数量关系式来列式解答。

  (2)做练一练第2题。

  让学生默读题目,提问学生两个问题有什么不同。学生做在练习本上。指名学生口答算式,老师板书。提问:求这两个问题有什么相同的地方?【都用除法算,都用单位1的量做除数】有什么不同的地方?为什么不同? 指出:解答一个数量是另一个数量的几分之几或百分之几的应用题,要先确定好单位1的量.再根据问题里数量间的对应关系找准需要的数量,然后列式解答。

  (3)做练一练第3题第(1)、(2)题。

  学生默读题目。提问:这两题哪个数量是单位1的数量?指名两人板演,其余学生做在练习本上。集体订正。提问:这两题都是按怎样的数量关系式列式的?为什么第(1)题用算术方法直接列乘法算式解答,第(2)题用方程解答?指出,这两题都是已知谁是单位1的几分之几这个条件,解答时也是看这个条件先确定好单位1的数量,再根据单位1的数量乘几分之几,等于几分之几的对应数量列式解答。当单位1的量已知时,就可以按数量关系式直接列算式解答;当单位1的量未知时,就要按数量关系式列出方程解答。

  (板书:单位1已知算术方法解答单位1未知列出方程解答)

  (4)做练一练第3题第{3}题。

  学生改编应用题,老师依次出示。提问:你能从改变后的条件看出求小麦面积的数量关系各是怎样的吗?指名两人板演,其余学生做在练习本上。集体订正,结合让学生说一说怎样想的。提问:为什么这两题的式子都是两步计算的?解题方法为什么不一样?指出:解答,要注意数量之间的对应关系,(板书:注意:数量的对应关系)当题里的数量与题里的几分之几、百分之几不对应时,就是稍复杂的。解答时,要根据条件和问题的联系确定数量关系式,并按照单位1已知还是未知确定解题方法,然后对照数量关系列算式或方程解答。

  三、综合练习

  1.做练习十六第7题。

  提问:这两题有什么相同?让学生在练习本上列出算式,然后提问怎样列式的,老师板书。提问:这两题的数量关系式是不是相同?数量关系式相同,为什么列出的算式不同?指出:根据数量关系式列式时,要找准相应的数量。

  2.做练习十六第8题。

  让学生在练习本上解答。指名口答算式和方程,老师板书。提问:这两题有怎样的数量关系?为什么所用的解题方法不一样?

  3.做练习十六第9题。

  提问:这两题有什么不同的地方?指名两人板演,其余学生做在练习本上。集体订正。提问:为什么问题相同,而解题方法不一样?这两题各是按怎样的数量关系式列式子的?

  指出:解答,一般先确定单位1的量,(板书:定1)再根据单位1已知还是未知确定解题方法,明确用算术方法还是用方程解答,然后对照数量关系式列出式子解答。

  四、课堂小结

  通过复习,对于解答,你进一步明确了些什么?

  五、课堂作业

  完成练习十六第7题的计算;练习十六第10、11题。

  分数的教案 篇7

  教学目的

  1理解分数除法的意义,掌握分数除法的计算方法。

  2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影

  板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动

  一、复习导入新课为迁移做准备

  明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的'意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果

  二、新课学习分数除法的计算方法

  学习分数除法的计算方法板书 激发兴趣 汇报 板书

  板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米

  4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314

  5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义

  讨论方法

  选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外

  三、练习巩固分数除法的计算法则投影

  投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算

  分数的教案 篇8

  教学目标:使学生结合具体情境进一步认识分数,知道把一些物体看成一个整体平均分成若干份,每份可以用几分之一来表示,能用自己的语言来描述分数的含义,对分数有进一步的认识,也就是部分与整体之间的一种关系。

  教学难点:1、整体方面:是在学生原有的一个物体或一个图形的基础上突破到由一些物体组成的一个整体。2、部分:平均分成的每一份由原来的一个突破到由几个组成一份。

  教学过程

  一、学习1/4

  1、情境导入,复习1/4

  教师:小朋友,猴山上有4只小猴子,玩得可开心了,正当他们满头大汗的时候,猴妈妈给他们带来了一些水果,我们一起来看看有些什么呢?(一个大西瓜,一个神秘的口袋)看着满头大汗的猴宝宝,猴妈妈赶紧给他们分西瓜,猴妈妈把这个大西瓜平均分成了4份(课件演示西瓜平均分成4份的图),你知道为什么要平均分成4份吗?

  学生:因为有4只猴子,所以平均分成4份。

  教师:每个小猴可以得到一份西瓜,你知道这一份西瓜是整个西瓜的几分之几呢?(指一块)

  学生:1/4。(电脑出示一个1/4)

  教师:你是怎么想的?

  学生:因为把一个西瓜平均分成4份,每个小猴子得到一份,这一份就是这个西瓜的1/4。

  教师:那这一份呢?这一份,还有这一份呢?(对,每一份都是这个西瓜的1/4)

  教师:我们已经知道了把一个物体平均分成4份,每一份就是这个物体的1/4。(教师结合自己的口述,及时进行板书)

  2、教学例题

  教师:西瓜吃完了,可猴宝宝们还觉得不解渴,这时他们想到了猴妈妈带来的神秘口袋,(电脑回放)其实这个神秘口袋中装的也是小猴子喜欢的水果,猜是什么?

  学生:桃子。

  教师:猴妈妈肯定会把这些桃子怎么分?

  学生:平均分成4份。

  教师:对,因为有4只猴宝宝,猴妈妈肯定会和西瓜一样平均分成4份。

  教师:每只猴宝宝可以分到一份桃子,那这一份桃子是这袋桃子的几分之几呢?

  学生:1/4

  教师:你能把自己的想法和同桌小朋友说说吗?

  学生交流,再评讲。

  学生:因为把一袋桃子平均分成4份,每个小猴子分到1份,所以用1/4表示。

  教师:谁还愿意把自己的想法说给小朋友们听?

  再请学生说说想法。

  教师:看来,这个神秘口袋还没有打开,我们已经知道了每个小猴子可以分到这袋桃子的1/4了。是吗,这是为什么呢?

  学生:因为把一袋桃子平均分成4份,每份就是这袋桃子的1/4。)

  教师:那每个小猴子分到的一份到底是几个桃子呢?老师告诉你们,这个神秘的口袋就在你们身边,请同桌两个小朋友打开平均分一分,数一数。

  教师;谁能说一说每个小猴子到底分到了几个?

  教师:为什么你这里的一份和他那里的一份不同呢?

  学生按4个、8个分别说说自己每一份的个数。(板书2个,4个)

  学生汇报,结果不同,为什么?自己去寻找原因。交流怎么回事。

  教师:那你这里的一份和他那里的一份为什么都可以表示各自这袋桃子的1/4呢?

  学生:因为他们都是平均分成4份,每份就是这袋桃子的1/4。

  教师:不管桃子的总数是多少,只要根据桃子平均分成了4份,就知道每份就是这些桃子的1/4。而到底这一份有几个,我们就得看看总数有多少才能确定。

  二、认识其它的分数

  1、想一想

  教师:现在请你们再想一想,如果猴妈妈带来的这袋桃子(4只),平均分给两只小猴子吃,那每个小猴子可以分到这袋桃子的几分之几?

  教师:请学生说说自己是怎么想的?

  教师:每一份是几个呢?

  学生:2个。

  教师:现在请你们再想一想,如果猴妈妈带来的这袋桃子(8只),平均分给两只小猴子吃,那每个小猴子可以分到这袋桃子的.几分之几?

  教师:请学生说说自己是怎么想的?

  教师:每一份是几个呢?

  学生:4个。

  教师:不管1只小猴子最后拿到的是这里的2个还是这里的4个,他们拿到的都是这袋桃子的1/2。你知道为什么吗?

  学生:因为桃子平均分成了2份,每个小猴子拿到了一份,所以都是总数的1/2。

  三、闯关游戏

  教师:刚才的学习,老师发现三(5)班的小朋友特别聪明,猴宝宝给大家带来了一个闯观游戏,不知道你们有没有信心完成这个游戏。

  1、第一关:(想想做做1、2)

  教师:你看懂题目的意思了吗?谁能说说?

  学生:根据图,填出分数

  教师:要填写分数,我们必须看清什么?

  学生:这些物体被平均分成了几份。

  学生完成,然后集体交流,说说自己的想法。

  2、第二关:(想想做做3)

  教师:第二关就是书上想想做做第3题,请大家读一读题目的要求。

  教师:谁能说说怎么做才能让其他小朋友们一看就明白了你表示的分数。

  学生:先根据分数平均分一分,然后再用涂色表示。

  学生完成后交流。对于1/5和1/2可以有不同的表示方法。

  3、第三关:(想想做做4)

  教师:第3关,要求同桌小朋友合作完成,同桌两个小朋友都有12根小棒,请你们拿出这12根小棒的1/2,谁能说说你们是怎么拿的?(学生可能会用除法,可以。)

  教师;还有什么方法?

  学生:把小棒平均分成2份,拿1份。

  教师:现在请你们再拿出这些小棒的1/3,是多少?对的举手。

  教师:你们知道还可以拿出这些小棒的几分之一吗?

  学生:1/4,1/6,1/12。

  教师:请学生拿出小棒的1/6,看看是几根。

  4、闯关结束

  教师:看来我们三(5)班的小朋友真的很厉害,轻轻松松过关了,看看猴宝宝都为大家高兴呢!

  四、总结

  教师:今天我们学习了分数,你有什么收获或有什么想法?告诉大家好吗?

  教师:请几个学生说。

  分数的教案 篇9

  教学目标:

  1.在说一说、分一分、画一画等活动中体会单位 1的含义,理解分数的意义,学会用分数描述生活中的事情。

  2.在具体的生活情境中感悟把一个整体平均分成若干份,这样的一份或几份可以用分数表示这一过程,培养学生动手操作能力和抽象概括能力。

  3.在学习活动中感受数学与生活的密切联系,体验数学的价值,获得成功、兴趣、愉悦的情感体验,激发学生对数学的兴趣。

  教学重点:

  理解分数的意义

  教学难点:

  理解把许多物体组成的一个整体看作单位1。

  教学方法:

  自主探究、 合作交流教具多媒体课件

  教学过程:

  一、回顾旧知,导入新课。

  谈话:前面我们已经学习了分数的初步认识,对于分数你已经知道哪些知识?举例说出分数的各部分名称,联系实际说出分数表示的意义。

  谈话:对于分数还想了解的知识,进而导入新课。

  二、合作探究,构建新知

  (一)初步感知。

  出示情境图1船模试航。

  教师谈话:同学们,请你仔细观察这幅图,从图中你能发现哪些数学

  信息?提出什么数学问题?

  教师引导学生提出:5只航模平均分给5个同学,每个同学分得的航模数占总数的几分之几?

  学生以小组为单位,利用画有5只船模的题卡分一分,学生先独立思考,再在小组内交流自己的想法,最后在全班进行交流。找到解决问题的方法。学生分组活动时,教师参与到学生的'小组学习。然后在全班进行交流。全班交流时,教师适时引领:把5只船模看作一个整体,平均分成5份,1份占这个整体的1/5

  在学习1/5的基础上,老师可以继续引导学生提出问题:如两个同学分得的航模数占总数的几分之几,3个同学呢?

  (二)深入探究

  出示情境图2航模放飞

  谈话:同学们,航模要放飞了,我们一起去看看吧。请你观察这幅图,根据图中的这些信息,你又能提出哪些与分数有关的问题?

  学生提出问题,教师适时梳理。

  如:一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

  学生利用手中的学具摆一摆、分一分,分别解决一小队每组放飞的飞机架数占本小队飞机总数的几分之几?二小队呢?

  解决第一个问题:学生分组学习,教师要参与学生的小组活动中。

  全班交流时,学生先利用4个飞机模型动手摆一摆,可能会出现1/2、2/4两个答案。然后全班进行交流、辩析、补充,得出结论。教师适时引领:每份是2架飞机,为什么说是占这个整体的1/2呢?

  通过摆模型得到第一问题的结论:把4架飞机看作一个整体,平均分成2份,每份占这个整体的1/2

  课件演示将4架飞机平均分的过程,并板书结论。

  解决第二个问题:先让学生交流自己的答案;再组织学生动手操作验证,并参与学生的学习活动;全班交流时,适时点拨:每份是2架飞机,为什么占总数的1/3呢?。从而引导学生得出结论。

  (三)观察比较

  谈话:请同学们观察我们所得到的 分数,你还有什么疑问吗?

  引导学生质疑:两个小队每组放飞的都是2架飞机,为什么表示出来的分数却不一样呢?

  学生进行观察比较,同桌讨论,全班交流得到结论。

  通过对两个小队飞机放飞情况的比较,得到:将一个整体平均分成的份数不一样,表示出来的分数也不一样。所以同样是2架飞机,表示出的分数一个是1/2,一个是1/3。

  (四)拓展应用

  谈话:想一想,还可以把什么看作一个整体?可以利用老师提供的材料,也可以自己找材料,动手分分看,你能得到哪些分数?是怎样得到的?

  学生动手操作,可以利用教师提供的材料(1张长方形纸片、8根小棒、长1米的绳子),也可以自己找材料,得到不同的分数。

  交流:你利用什么材料,得到一个什么分数,你是怎样得到的?

  总结:把一个整体平均分成若干份,这样的一份或几份可以用分数来表示。

  (五)总结概括

  谈话:一个物体、一个计量单位、许多个物体组成的一个整体都可以用自然数1来表示,通常把它叫做单位1。

  举例:学生举例还可以把哪些量看作单位1?并区分单位1与自然数1的不同。

  结合操作过程,讨论、交流、总结分数的意义。引导学生总结概括分数的意义。把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (六)看书质疑。

  学生阅读6769页,质疑问难。教师巡视,解答学生困惑、疑难问题。

  三、巧设练习,深化理解

  1、自主练习1、2

  2、涂色部分能用分数表示吗?(课件出示)

  3、游戏:取糖果。学生按要求取糖果:盒子里有11块糖,取出总数的2/11;取出剩下的1/9;再取出剩下的1/4;如果取出2块,是取出了剩下的几分之几?

  独立完成,进行交流。

  教学反思:

  创设生动有趣的现实学习情境。通过一些现实的生活情境,引导学生主动参与思考、合作、交流、反思等活动。使学生感受到数学来源于生活,运用数学可以解决生活中的问题,进一步体验数学与现实生活的密切联系。

  分数的教案 篇10

  教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  3、培养学生的应用意识。

  教学重难点

  1、理解归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  教学工具

  ppt

  教学过程

  一、激趣引入

  师:同学们,老师今天给你们带来了几位好朋友,相信你们一定认识他们,让我们看看他们是谁?

  课件出示唐僧、孙悟空、沙僧的图片

  师:那猪八戒呢?原来他去化缘了,他在路上边走边想:如果能化得8张饼就好了!那猪八戒问什么想要8张饼呢?

  引出平均分,让学生列式:8÷4=2(张)

  总量÷份数=每份数

  二、探究新知

  1、老猪化得一张饼,如何分给4人呢?

  师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成4份,求每份是多少。下面我们再来看一下这道题。

  把1个饼平均分给4个人,每个人分得多少个?

  师:这道题该怎样列式呢?(学生列式,师板书:1÷4)

  师:1÷4表示什么意思?

  生:1÷3表示把一张饼平均分给4个人,求一个人分得多少。

  师:好,这道题也是把一个整体平均分成4份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

  生:1/4个。(师板书)

  师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

  教师出示课件,学生边说边演示:我们把这个圆看作这张饼,把它平均分成4份,每人得到其中的一份,也就是这张饼的1/4 。

  师:请大家看,每份都是1/4,每个人得到的是多少个蛋糕呢?

  生:1/4个。

  师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的饼就是1/4张。

  教师说明:1÷4表示把一张饼平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3张。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

  (课件出示例2)

  指名读题

  师:谁能列出算式?

  生:3÷4(师板书)

  师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

  小组操作,教师巡视指导。

  师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

  (小组边汇报,边演示)

  小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

  师:你能用一个式子表示一下吗?

  小组1:1÷4=1/4块。

  师:好。请接着汇报吧。

  小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

  师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

  师:还有没有和这组方法不同的?

  小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的.1份,拼在一起就得到了3/4块。

  师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

  师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

  师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

  学生小组讨论

  生:我们发现,被除数就是分子,除数就是分母。

  师:你能试着表示出来吗?

  生:被除数÷除数=被除数/除数(师板书)

  师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

  生1:a÷b=a/b(师板书)

  生2:老师,我认为还要写上b≠0。

  师:为什么b≠0?

  生:因为b表示除数,除数不能为0。

  生:分数的分母也不能等于0。

  师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

  师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

  学生观察算式,思考

  生:可以。比如3/4=3÷4。

  课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,

  分数线相当于除号。

  师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

  请学生观察黑板算式,和同学讨论。

  学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

  三、巩固练习

  1、用分数表示下列算式的商

  (1)3÷2 = ( )

  (2)2÷9 = ( )

  (3)7÷8 = ( )

  (4)5÷12 = ( )

  (5)31÷5 = ( )

  (6)m÷n = ( )n≠0

  2、试一试

  ( )÷7=4/7 1÷( )=1/3 7/9=( )÷9 5/8=( )÷( )

  3、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

  4、填空

  9厘米=( )米59秒=( )分

  13分=( )时5时=( )日

  5、把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

  四、全课总结

  分数的教案 篇11

  一、教学内容

  义务教育课程标准实验教科书(北师大版)五上第34—36页。

  二、教学目标

  1、学会用分数描述生活中的事物,进一步理解和掌握分数的意义,进一步掌握分数的读、写,理解分子、分母的意义。

  2、结合具体的情境对分数作出合理的解释,体会“整体”与“部分”的关系,感受生活中处处有分数,发展数感。

  三、教学重、难点

  突出分数意义的建构,使学生充分体会“整体”与“部分”的关系,深化对分数本质的理解。

  四、教学过程

  (一)了解起点,引入新课

  1、你们认识分数吗?说几个你熟悉的分数。(学生说出几个分数,教师随机板书)

  2、关于1/2你已经知道什么?

  3、小结。(揭示课题:分数的再认识)

  4、请同学们拿出老师课前发给大家画有几副图的那张纸,请你在图上用颜色表示出对应的分数。表示好后在小组里交流表示的理由。全班交流、质疑。

  5、选择其中表示1/2的图进行讨论。在表示1/2的过程中,你有什么发现?(它们是怎么分的?分的对象相同吗?)

  6、教师追问:这里是把谁看作整体“1”?一份是几个?这个整体“1”还可以指哪些呢?

  (二)创设情境,深化理解分数意义

  活动一:拿水笔

  1、创设情境,请学生分别拿出三盒水笔的1/2(其中有2盒水笔都是8支、有一盒是10支)。

  这里有三盒水笔,你能从每一盒水笔中分别拿出1/2吗?

  教师请三位学生到讲台前,并问台上学生:你们准备怎么拿呢?

  其他同学注意观察,你发现了什么?讲台前的三位学生打开水笔盒,认真地数着。

  你发现了什么现象,你有什么疑问,或者说你能提出问题吗?

  我们再来看前面一位同学提出的问题,他们三人都是拿全部水笔的1/2,拿出的水笔支数有的一样多,有的不一样多,这是为什么呢?请想一想,然后四人小组轻声交流一下。

  请台上的三位同学把所有的水笔都拿出来,并告诉全班同学总支数是多少,1/2是多少支,验证刚才的结果。

  你有什么发现?并小结:总支数不一样,同样是1/2,所表示的支却不一样。

  活动二:说一说

  1、小明看了一本书的1/3,小军看了一本书的1/3,他们看的一样多吗?

  2、比较、讨论:“都是一本书的1/3,但表示的页数不一样多,为什么?”怎么样的情况下,两本书的1/3是一样的.?

  通过刚才拿水笔的游戏、观察讨论看书的情境,你发现了什么?

  小结:同一个分数,所对应的整体不一样,那么分数所表示具体的数量也不一样。(同步板书)

  (三)巩固延伸,反馈分析

  1、看图说数:

  (1)蓝圆个数占整体的几分之几?要使蓝圆个数占整体的1/2,怎么改?(可以增一增、换一换、减一减)

  (2)绿圆个数占整体的几分之几?学生说出4/12和1/3后(课件随机整理整齐),提问:为什么都是4个,却可以用不同的分数来表示?

  (3)红圆个数占整体的几分之几?学生说出3/12和1/4后(课件随机整理整齐),提问:为什么都是3个,却可以用不同的分数来表示?

  师与学生共同小结:部分相同、整体相同,如果分法不一样,表示的分数就不一样。

  2、游戏:请1个同学站起来,请学生先后说出这位同学占大组人数、小组人数、全班人数、全年级人数、全校总人数的几分之几。

  请同学们想一想,同样一个人,怎么可以用那么多不同的分数来表示呢?

  3、估一估:一个整体的2/3是,这个整体会是下列图中的哪一个?

  分数的教案 篇12

  一、教学内容

  折扣。(教材第8页例1)

  二、教学目标

  1.理解折扣的含义,能熟练地把折扣写成百分数。

  2.会利用已经学过的百分数的知识解决与折扣有关的各种问题,感受数学知识与生活的密切联系。

  3.能积极主动地参与合作与交流等学习活动,在活动中培养分析、比较、判断的能力。

  三、重点难点

  重点:理解折扣的含义。

  难点:与“求一个数的百分之几是多少”的问题进行知识迁移,正确解答关于折扣的问题。

  四、教学过程

  一、情境引入

  师:同学们,每到节假日的时候,各商场都会举行各式各样的促销活动。你们知道商家为了招揽顾客,经常采用哪些促销手段吗?(课件出示商场图片)

  学生:买一送一、打折、满三百送三十等。

  师:很好,有些同学提到了“打折”,那么平时我们买的打折后的商品,是比原来贵了还是便宜了?

  学生思考,教师点名学生回答。

  师:你有过购买打折商品的经历吗?能跟大家分享一下吗?

  学生交流,点名学生回答。

  师:看来同学们对打折都有一定的了解。商家有时降价出售商品,就叫做打折销售,俗称“打折”。今天,我们就来学习与我们生活紧密相关的数学问题——折扣。(板书课题:折扣)

  二、学习新课

  1.折扣的含义。

  师:刚才我们提到的打折是商家常用的手段,是一个商业用语,那么打折是什么意思呢?(课件出示教材第8页情境图)

  师:想一想,这里的“电器九折”是什么意思?“其他商品八五折”又是什么意思?

  学生交流汇报。

  教师小结:九折就是按原价的90%出售,八五折就是按原价的85%出售。

  几折表示十分之几,也就是百分之几十;几几折表示百分之几十几。(板书)

  (课件出示题目)

  填一填。

  (1)六折是十分之(),改写成百分数是()。

  (2)九五折是百分之(),改写成百分数是()。

  (3)七七折是百分之(),改写成百分数是()。

  学生交流,小组汇报。

  师:想一想,把折扣写成分数和百分数,哪种方法更好?

  明确:一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数例如:八五折就会写成8。5/10,不便于计算和理解。

  2.运用折扣解决实际问题。

  (1)教学教材第8页例1(1)。

  (课件出示教材第8页例1(1))

  爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

  指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

  学生小组交流汇报。

  提示:先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价。

  根据数量关系式,学生独立列式解答。

  全班交流,根据学生的汇报,板书:

  180×85%=153(元)

  答:买这辆车用了153元。

  (2)教学教材第8页例1(2)。

  (课件出示教材第8页例1(2))

  爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  指导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?

  学生思考,点名学生回答。

  提示:先让学生找出单位“1”,然后找出数量关系式:原价-原价×90%=便宜的钱数,或原价×(1-90%)=便宜的钱数。

  全班交流,根据学生的汇报,板书:

  第一种算法:原价160元,减去现价,就是比原价便宜多少钱。

  160-160×90%=160-144=16(元)

  第二种算法:原价160元,现价比原价便宜了(1-90%)。

  160×(1-90%)=160×10%=16(元)

  重点引导学生理解第二种算法,知道现价比原价便宜了10%。

  (3)折扣问题中的数量关系。

  师:同学们,通过我们刚才解答的一些折扣的问题,你能总结出折扣问题中相关的一些量以及它们的关系吗?

  学生交流,教师总结:现价=原价×折扣。(板书)

  三、巩固反馈

  1.完成教材第8页“做一做”。(学生独立完成,集体订正)

  52.00 73.50 30.80

  2.完成教材第13页“练习二”第1~2题。

  第1题:(1)1.5×50%=0.75(元)

  2.4×50%=1.2(元)

  1×50%=0.5(元)

  3×50%=1.5(元)

  (2)(答案不唯一)可以买一种面包,也可以两种或两种以上合买。例如:

  ①3÷0.75=4(个)

  ②3÷0.5=6(个)

  ③3÷1.5=2(个)

  ④3÷1.2=2(个)……0.6(元),再买1个打折后0.5元的面包。

  ⑤可以买3个打折后0.5元的面包,买2个打折后0.75元的.面包。

  ⑥可以买1个打折后1.5元的面包,买2个打折后0.75元的面包……

  第2题:120×80%=96(元)

  400×80%=320(元)

  180×80%=144(元)

  80×80%=64(元)

  3.阳光文具店和洋洋文具店同时销售“小画家”牌水彩笔。如果是你,你会去哪家买?为什么?

  30×80%=24(元)

  25×90%=22.5(元)

  24>22.5

  去洋洋文具店,他家更便宜。

  四、课堂小结

  1.“打折”是什么意思?八五折、九折表示什么?

  2.折扣问题中有怎样的数量关系?

  板书设计

  折扣

  几折表示十分之几,也就是百分之几十;几几折表示百分之几十几。

  例1(1)180×85%=153(元)

  答:买这辆车用了153元。

  (2)160-160×90%=160-144=16(元)

  或160×(1-90%)=160×10%=16(元)

  答:比原价便宜了16元。

  现价=原价×折扣

  教学反思

  1.注重与生活实际紧密联系,激发学习兴趣。

  数学来源于生活,应用于生活。教学中需要密切联系学生的生活实际来设计教学活动,围绕学生收集的有关商店的促销手段以及学生对“折扣”的认识,充分利用生活中商家促销的场面,引导学生大胆猜想“折扣”的意义,进而激发学生的学习兴趣,引入新知。

  2.以学生为主体,自主探究新知。

  数学知识的获得过程是在教师的引导下学生自主构建的过程,注重尊重学生的认知发展水平,利用学生已有的知识基础,以学生为主体,创设自主学习的氛围,引导学生主动探究“折扣”的意义,从而加深对“折扣”的认识。

  3.我的补充:

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  ________________________________________________________________________

  备课资料参考

  典型例题准备

  【例题】某商店在促销活动时,将原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后几辆车的售价是多少元?

  分析:原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。

  解答:800×90%×80%=720×80%=576(元)

  答:最后几辆车的售价是576元。

  解法归纳:解决此类题,也可以先求出总的折扣,再用原价乘折扣,得出现价。

  相关知识阅读

  有关折扣的顺口溜

  消费打折实惠多,物美价廉心头乐。

  折扣购物都说好,其中陷阱也不少。

  虚折扣、假甩卖,积分赠券难实在。

  劝君消费擦亮眼,货真价实在眼前。

  分数的教案 篇13

  教学内容:省编义务教材第十册第91—93页例1、例2。

  教学目标:

  1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

  2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

  3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

  课前准备:

  课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

  教学过程:

  1.创设情境,作好铺垫

  出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

  为什么你会猜是一道除法算式?(分数与除法有密切的关系)

  除法与分数有什么样的关系?

  (黑板上出示:被除数÷除数=)

  根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

  为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

  什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

  2、迁移猜想,引疑激思

  分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的.性质吗?(有)你能具体说一说?

  交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  3、自主探究,验证猜想

  也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

  (1)初步验证

  ①出示:探究报告单,让学生读要求:

  a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

  b.选择合理的方法验证所前后两个分数是否相等。

  c.填写好探究报告单。

  选择探究的

  分 数

  分子和分母同时乘以或除以

  一个相同的数

  得到的

  分 数

  选择的分数与得到的分数是否相等

  相等( ) 不相等( )

  猜想是否成立

  成立( ) 不成立( )

  选择的分数与得到的分数是否相等相等()不相等()

  猜想是否成立成立()不成立()

  *:验证方法可用折纸、画线段图、计算、实物……

  ②学生合作进行探究。

  ③全班交流:

  a、同桌一起上来,拿好探究报告单及验证材料等。

  b、两人合作,一人讲解、一人验证演示。

  c、得到结论:

  (交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

  刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

  4、议论争辩,顿悟创新

  读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

  5、训练技能,激励发展

  刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

  (1)练习明目的

  根据分数的基本性质,填空。

  1/2=()/8=5/()=()/6=7/()

  采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  (2)慧眼辩是非

  (3)变式练思维

  把下面每组中的异分母分数化成同分母分数。

  A、3/4,4/7B、5/6,4/9C、3/5,5/8

  分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  (4)竞赛促智慧

  ①在1—9九个数字中任选一些数字组成大小相等的分数。

  可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

  并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

  ②出示:1/a=7/b(说明:a、b都不是0。)

  抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

  连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

  讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  6、回顾,掌握方法

  今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

  学生可能会回答:

  生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

  生2:我们是通过猜测的方法学的。

  生3:我们还用验证的方法学习。

  ……

  结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

  分数的教案 篇14

  一、设计思想:

  找准学生学习新知的“最近发展区”,在大背景下认识分数。同时加强直观教学,降低认知难度。根据学生年龄特征,创设有趣的问题情境。

  二、教材分析:

  1、分析《课程标准》对本课教学内容的要求:分数的初步认识是数概念教学的一次扩展,学生理解掌握会有一定的难度,所以本册出现的内容是最初步的,结合学生的生活实际和具体实例使学生理解一些简单的分数的具体含义,给学生建立分数的初步概念,初步学会用简单分数进行表达和交流,进一步发展数感,并为学习小数和进一步学习分数做好铺垫。

  2、分析本课内容的组成部分:使学生初步认识几分之一和几分之几,会读、写简单的分数,知道分数各部分的名称。初步认识分数的大小。教材先通过例1~例2两道例题,分别让学生认识二分之一、四分之一,初步建立起几分之一的表象。教材又通过例3教学分子是1的分数的大小比较。

  3、分析本课内容与小学教材相关内容的区别和联系:这部分内容是在学生掌握了一些整数知识的基础上初步认识分数的含义,从整数到分数是数概念的一次扩展。无论在意义上、读写方法上以及计算方法上,分数和整数都有很大的差异。

  三、学情分析:

  分数的初步认识是在学生已经掌握一些整数知识的基础上进行教学的,主要是使学生初步认识分数的含义。这是学生第一次接触分数,从整数到分数是学生认识数的概念的一次质的飞跃,因为无论在意义上,还是在读、写方法上以及计算方法上,它们都有很大的差异。分数概念比较抽象,学生接受起来比较困难,不容易一次学好,所以,分数的知识是分段教学的,本单元只是"初步认识"。认识几分之一又是认识几分之几的第一阶段,是单元的"核心",是整个单元的起始课,对以后学习起着至关重要的作用,为此,我们要借助一些图形和学生所熟悉的具体事例,通过演示和操作,使学生逐渐形成分数的正确表象,建立分数的初步概念。

  四、教学目标:

  (一)认知目标:

  1通过创设一定的学习情境,引导学生对熟悉的生活事例和直观图形的探讨和研究,使学生初步认识几分之一,建立分数的初步概念,会读、写几分之一。 2能比较分子是1的分数的大小。

  (二)能力目标:

  1通过小组合作学习活动,培养学生合作意识,数学思考与语言表达能力。

  2培养学生的观察分析能力和动手操作能力,使学生的思维得到发展。 (三)情感目标:

  1 使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到发展。

  2 在观察比较、动手操作中,培养学生勇于探索、自主学习的精神,感知数学来源于生活并用于生活,对数学产生亲切感,获得运用知识解决问题的成功体验。

  五、重点难点:

  教学重点:建立几分之一的表象。教学难点:初步认识分母、分子表示的含义。

  六、教学策略和手段

  在本节课的教学中,充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,用圆片显示猪八戒分西瓜的过程,学生直观的.认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。同时根据学生年龄特征,创设有趣的问题情境。

  七、课前准备:

  1、学生的准备:长方形、正方形、圆形纸片各两张,剪刀。

  2、教师的教学准备:课前了解学生对分数的熟悉程度有多少。

  3、教学环境的设计和布置:黑板上准备好一些小磁铁。

  4、教学用具的设计和准备:长方形、正方形、圆形纸片若干张,剪刀一把。两个月饼图。

  八、教学过程:

  1、 创设情境,导入新课

  同学们,今天老师要讲一个西游记里的故事给大家听。

  话说唐僧师徒一路向西取经,这一天他们来到了一个集镇上,看到路上的人都手提着月饼,这才想起今天是中秋节了。这时刚好路过一个月饼店,“哇,好多的月饼呀!”八戒很快就看见店里各种各样的月饼,馋得直流口水,一个劲地说:“师傅我想吃月饼。”可是唐僧说:“想吃月儿饼可以,不过我得先考考你。”唐僧说:“有4块月饼,平均分给你和悟空,每人分几块?请写下这个数。”猪八戒很快就写下了这个数。唐僧又说:“有2块月饼,平均分给你和悟空,每人分几块?请写下这个数。”猪八戒想了想,又写下了这个数。唐僧见猪八戒回答得这么快就说:“很好,那么要是只有一块月饼,平均分给你和悟空,每人分几块?该怎么写?”这可把八戒难住了。

  同学们,你们知道每人分几块吗?(有的说每人分一半,有的说每人得半块。)半块月饼可以用什么数来表示呢?看来同学们想不出该用什么数来表示,没关系,今天老师特意请了一位新朋友来帮助大家解决这个难题。它就是——分数。这节课我们一起来研究分数的初步认识。(出示课题)

  [设计说明:思维始于疑问,而好奇是儿童的天性,是学生探索未知世界的起点。根据小学生爱听故事的特点,从故事中创设问题情境不仅将学习分数的必要性自然展现(是因为用整数解决不了了,所以才要用到分数),且使学生的探究意识也孕育而生。]

  2、动手实践,自主探究

  (一) 认识二分之一

  (1) 、 猜一猜:把一个月饼平均分成两份,怎样用分数表示其中的一份呢?

  师:把一个圆平均分成两份,一半就是这两份里面的一份,也就是这圆形的二分之一,写作:1/2,结合书本中的月饼图说说,“2”表示什么?“1”表示什么?

  (2)、 教师说明 :2表示平均分的份数,1表示其中的一份。

  (3)、 动手实践

  A、 折一折:让学生用各种的纸片动手折出1/2,(圆形、长方形、正方形)

  B、展示学生的几种典型折法

  C、从操作过程中凸现思考过程。

  师:这些形状不同的纸都可以折出它的1/2。想一想,同一张纸折出的形状不一样,为什么都可以用1/2来表示呢?

  (4)在辨别中感悟平均分的重要性。

  折出几种不是平均分的二分之一,想想这可以用二分之一表示吗?(再次强调平均分) [设计说明:通过直观演绎数学知识所蕴涵的思维发展过程,让学生进行自我释疑体验,教师不直接告诉学生现成的结论,也不包办学生的思维方式和过程,而是通过“折一折”了驱动学生内在的思维活力,感悟“平均分”的内涵与重要性,从而是学生的思维方式不拘泥与常规,思维实现跳跃式的发展。]

  (二) 认识四分之一

  (1)、观察推想

  师:大家推想一下,如果把一块月饼平均分成四份,每块是它的几分之一?

  (2)、开展折1/4的活动

  A、师:要得到一个图形的1/4应该怎么办?用圆形纸片折一折,并用阴影部分表示出四分之一。

  B、汇报:你是怎么得到1/4的?说一说1/4表示什么?

  C、请学生拿出同样大的正方形纸,小组合作折出不同的1/4涂上颜色贴在底板上,在相同的时间里看哪组折出的方法最多

  D、汇报怎样折的。问:这些1/4的部分一样大吗?为什么? 强调:整体一样大,它的1/4就一样大。

  (三)认识几分之一

  (1)、刚才我们认识了1/2和1/4,我们把1/2,1/4,这样的数叫分数。你还想到了哪些几分之一的分数?板书学生的回答。(有意识写几个分母大一点的分数)抽几个说说分数所表示的意思。

  (2)、找一找。(出示主题图)

  请同学们仔细观察,游乐园的小朋友都在干什么?你发现哪里有几分之一?为什么?

  (四)练习:做一做第1题

  [设计说明:有了1/2作基础,1/4的学习就放手让学生自己去感悟、去分析、去解决新问题,学会把新知识和生活经验与已有的知识经验联系着学习,学会在动手操作,实践活动中认识理解知识,并学会举一反三,有所创新。]

  3、再现情境,比较大小。

  (1)、故事引出问题

  师:接下来老师继续来讲西游记的故事,唐僧师徒在月饼店买了些月饼后继续赶路,走着走着转眼已到了中午,猪八戒饿得肚子咕咕直叫。这时唐僧拿出了一个最大的饼,给八戒和孙悟空分一分,说给孙悟空1/4,猪八戒1/2,猪八戒一听急坏了,大声说,不行,不行,我肚子大,我要吃大的,我要吃1/4。同学们,猪八戒他是不是得到便宜了,吃到大的一块了吗?(板书1/2 1/4)

  (2)、解决问题: 让学生思考后说一说。

  师:你是怎么想的?为什么吃到1/2的要大,吃到1/4的反而小呢? 你能不能用手中的圆片代替饼来验证一下。 反馈,请2名学生说一说是怎样进行验证的。

  小结:原来分数也有大小,1/2表示把一个物体平均分成2份,它的一份就比分成4份的要大,所以1/2>1/4

  (3)、拓展延伸:

  A、这时候,沙和尚过来他也要吃,他说要吃这个月饼的1/8,你觉得他们三个人谁吃得最多,谁吃得最少?

  B、看板书,你还能比较这些分数的大小吗?任选两个数比较大小,根据学生的回答加以板书),你发现了什么?(分的份数越多,其中的一块就越小)上面这些分数中哪个最大,哪个最小?

  (4)、练习:做一做第2题。

  [设计说明:再次用讲故事的的方法引出分数的大小比较,让学生从解决故事的疑问中寻找正确的答案,同时故事中也蕴含了正确的答案,把分数的大小比较和生活实际紧密地联系在了一起,学生不难发现正确答案。并且再次用圆片代替月饼来进行证明,验证答案。]

  4、说说想想,课堂小结: 说说你对分数有了哪些了解?

  想想分数中的两个数字分别表示的是什么?你分清楚了吗?

  九、板书设计

  分数的初步认识

  1/2 2:表示平均分成2份

  1/2 > 1/4

  1:表示其中的1份

  (平均分) 1/4、1/8、1/3、1/6、1/10

  十、作业设计

  《课堂作业》

  分数的教案 篇15

  教学目标:

  1.组织学生动手实践、自主探究,明确把谁看作单位“1”,引导学生采用数形结合的方法——画线段图分析数量之间的关系。

  2.引导学生从分数乘法意义的角度思考,理解“求一个数的几分之几是多少”应该用乘法计算,学会解决“求一个数的几分之几是多少”的实际问题。

  3.使学生能综合运用所学的知识解决一些简单的问题,逐渐形成技能,增强应用意识;引导学生形成一些解决问题的策略,促进学生分析、判断和推理能力的发展。

  重点难点:

  1.掌握解决求一个数的几分之几是多少的方法,能解决相关实际问题;

  2.理解算理,会用线段图正确地分析题意。

  教学方法:

  讲授法、讨论法、谈话法、探究法

  教学准备:

  教师准备多媒体课件。

  教学过程:

  一、回顾旧知,导入新课

  谈话:我们在信息窗1和信息窗2已经初步解决了分数乘整数和分数乘分数的问题,还会做吗?

  出示练习:20的4/5是多少?6的2/3 是多少?

  请同学说一说这两个题为什么用乘法计算。

  谈话:同学们,我们知道,已知求一个数的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,运用这一知识还可以解决什么问题呢?今天我们就来一起研究。

  二、合作探究,获取新知

  (一)创设情境,提出问题

  谈话:在学校举行的泥塑大赛中,同学们制作出许多精美

  的作品,请看大屏幕。

  出示课本10页的情境图和信息。

  谈话:从图中你获取了哪些信息?

  谈话:根据上面的信息你能提出什么数学问题?

  学生提出问题,教师板书:一班男生做了多少件?二班女生做了多少件?

  谈话:同学们提的问题比较准确,下面我们分别来解决这些问题。

  (二)探究方法,建立模型

  1.解决第一个问题:一班男生做了多少件?

  谈话:请同学们尝试用自己喜欢的方法先来分析题目中数量之间的关系,再试着解决这个问题,不仅要得出答案,还要把道理说清楚。

  (1)讨论操作。学生分小组进行尝试活动,教师巡视指导,了解信息。

  (2)小组内说想法。

  (3)交流展示。指名到展示台前进行汇报。

  方法一:画线段图分析数量关系

  谈话:你是怎样画图的?先画什么?再画什么?怎样想的?

  学生回答的过程中,教师重点引领学生理解谁是找单位“1”,如何找单位“1”?如何在线段图中表示出已知条件“3/5”?

  谈话:线段图是个很好的`工具,同学们用的非常棒!它可以清楚表示出题中数量间的关系,这个工具用的好,即使以后解决一些复杂的问题也会得心应手。

  方法二:不借助于直观图,直接列式解决

  谈话:你是怎样想的?教师适时引领:题中哪句话是关键句?谁是单位“1”?“3/5”这个分数在题中的具体意义是什么?为什么用乘法做?

  (男生做了总数的3/5,总数是单位“1”,把总数平均分成5 份,求其中的3份,也就是求15的3/5是多少,所以15×3/5)

  2.学生自己解决第二个问题:二班女生做了多少件?

  谈话:小组交流,自己想办法来分析题意,解决问题。组织学生汇报交流,说自己的分析思路,其他小组可以给予完善补充。

  着重引导学生理解:谁是单位“1”?怎么找单位“1”?为什么画两条线段?结合学生汇报,教师课件动态演示P11图示

  (三)观察比较

  谈话:你在分析解决这两个问题时,有哪些相同点?哪些不同点?

  学生回答时,教师适时引领:相同点都是“求一个数的几分之几是多少”,用乘法做;不同点是第一组是部分与整体的关系,通常画一条线段图来表示它们之间的关系,第二组是两种量之间的关系,通常画两条线段图来表示它们之间的关系。画线段图时通常先画出表示单位“1”的量。

  三、应用模型,解决问题

  1.课本11页自主练习2:出示短吻鳄照片

  帮助学生理解题意,引导学生利用画线段图的办法分析数量关系,自己列式解决问题。

  2.自主练习4:这一题和第2题属于同一类型,都是研究部分与整体的关系,画一条线段图,让学生自主完成,全班交流自己的想法和思路。

  3.自主练习

  这一题与前两题有什么不同之处?研究的是两个数量之间的关系,应该怎样用线段图表示?

  尝试自主解决,全班交流,说出自己的想法和思路。

  四、引导总结,构建网络

  谈话:我们应该如何解决“求一个数的几分之几是多少”的问题?(引导学生总结解决问题的方法)

  五、作业布置

  自主练习5、6题

  板书设计:

  求一个数的几分之几是多少”的实际问题

【分数的教案】相关文章:

真分数与假分数教案03-15

《分数》教案08-25

分数的教案12-30

分数比教案12-18

《把假分数化成带分数》教案03-10

真分数和假分数教案02-23

《分数的意义》教案06-20

分数乘法的教案02-28

分数乘法教案01-17

分数的意义教案01-24