- 《的概念》教案 推荐度:
- 相关推荐
《集合的概念》教案
作为一名教职工,时常需要用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。优秀的教案都具备一些什么特点呢?下面是小编收集整理的《集合的概念》教案,仅供参考,大家一起来看看吧。
《集合的概念》教案1
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:
集合的基本概念
教学过程:
1、引入
(1)章头导言
(2)集合论与集合论的创始者—————康托尔(有关介绍可引用附录中的内容)
2、讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象。
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
(3)元素:集合中每个对象叫做这个集合的元素。
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写。
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了。
(2)互异性:集合中的元素一定是不同的
(3)无序性:集合中的元素没有固定的顺序。
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的.集合。记作N
(2)正整数集:非负整数集内排除0的集。记作N*或N+
(3)整数集:全体整数的集合。记作Z
(4)有理数集:全体有理数的集合。记作Q
(5)实数集:全体实数的集合。记作R
注:
(1)自然数集包括数0。
(2)非负整数集内排除0的集。记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
课堂练习:
教材第5页练习A、B
小结:
本节课我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:
第十页习题1—1B第3题
《集合的概念》教案2
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:集合的基本概念
教学过程:
1.引入
(1)章头导言
(2)集合论与集合论的创始者-----康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于: 如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的`元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记 作N
(2)正整数集:非负整数集内排除0的集.记作N* 或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
课堂练习:教材第5页练习A、B
小结:本节课 我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:第十页习题1-1B第3题
《集合的概念》教案3
【教学目标】
1.了解集合、元素的概念,体会集合中元素的三个特征;
2.理解集合的作用,会根据已知条件构造集合;
3.理解元素与集合的“属于”和“不属于”关系,并会正确表达;
4.掌握常用数集及其记法;
5.了解数合的含义,记忆基本数集的符号;
6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.
【导入新课】
一、实例引入:
军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.
二、问题情境引入:
我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:
⑴45人组成的班集体能否组成一个整体?
⑵班长易雪芳和45人所组成的班集体是什么关系?
⑶假设张三是相邻班的学生,问他与高一(3)班是什么关系?
三、课前学习
1.学法指导:
(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;
(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;
(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。记忆常用数集、空集的符号表示。
2.尝试练习:见《数学学案》P1
四、课堂探究:见《数学学案》P1
1.探究问题:
探究1
探究2
2.知识链接:
3.拓展提升:
例1、下列各组对象能否组成集合?
(1)所有小于10的自然数;
(2)某班个子高的同学;
(3)方程的所有解;
(4)不等式的所有解;
(5)中国的直辖市;
(6)不等式的所有解;
(7)大于4的自然数;
(8)我国的小河流。
例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。
(1)1、3、5、7、9组成的集合;
(2)你班学号为单数的学生组成的集合。
例3、已知A是我国所有省的省会城市构成的集合。用符号或填空。
(1)武汉_____A,北京_____A,南京_____A,郑州_____A;
(2)-1_____N,8_____,6_____N,_____N;
(3)1_____Z,-2.45_____Z,_____Q,_____Q,_____R.
例4、判断下列各句的说法是否正确:
(1)所有在N中的元素都在N*中()
(2)所有在N中的`元素都在Z中()
(3)所有不在N*中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N中的数组成的集合中一定包含数0()
(6)不在N中的数不能使方程4x=8成立()
答案:×,√,×,√,√,√
例5、已知集合P的元素为,若且-1P,求实数m的值
解:根据,得若此时不满足题意;若解得此时或(舍),综上符合条件的.
点评:本题综合运用集合的定义和元素与集合的关系解题,注意集合的性质的运用.
例6、设集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},C={x|x=4k+1,k∈Z},又有a∈A,b∈B,判断元素a+b与集合A、B和C的关系.
解:因A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则集合A由偶数构成,集合B由奇数构成.
即a是偶数,b是奇数设a=2m,b=2n+1(m∈Z,n∈Z)
则a+b=2(m+n)+1是奇数,那么a+bA,a+b∈B.
又C={x|x=4k+1,k∈Z}是由部分奇数构成且x=4k+1=2·2k+1.
故m+n是偶数时,a+b∈C;m+n不是偶数时,a+bC
综上a+bA,a+b∈B,a+bC.
4.当堂训练:见《数学学案》P2
5.归纳总结:
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.
2.一般地,我们把由某些确定的对象组成的总体叫做集合(set),也简称集,组成集合的对象叫做这个集合的元素(element)
注意:集合的概念中,“某些确定的对象”,可以是任意的具体确定的事物,例如数、式、点、形、物等.
3.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)无序性:给定一个集合与集合里面元素的顺序无关.
(4)集合相等:构成两个集合的元素完全一样.
(二)元素与集合的关系
1.(1)如果a是集合A的元素,就说a属于(belongto)A,记作:a∈A;
(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA,
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,,4A,等等.
2.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示.
3.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作Nx或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R.
课后巩固――作业
1.习题1.1,第1-2题;
2.《数学学案》P3
3.预习集合的表示方法.
《集合的概念》教案4
1.1集合-集合的概念
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解属于关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的'教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的一般地,某些指定的对象集在一起就成为一个集合,也简称集 这句话,只是对集合概念的描述性说明
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人康托尔(德国数学家)(见附录);
4.物以类聚,人以群分
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它
数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作aA
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q
元素通常用小写的拉丁字母表示,如a、b、c、p、q
⑵的开口方向,不能把aA颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (aZ, bZ)的数,求证:
(1) 当xN时, x
(2) 若xG,yG,则x+yG,而 不一定属于集合G
证明(1):在a+b (aZ, bZ)中,令a=xN,b=0,
则x= x+0* = a+b G,即xG
证明(2):∵xG,yG,
x= a+b (aZ, bZ),y= c+d (cZ, dZ)
x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵aZ, bZ,cZ, dZ
(a+c) Z, (b+d) Z
x+y =(a+c)+(b+d) G,
又∵ =
且 不一定都是整数,
= 不一定属于集合G
四、小结:本节课学习了以下内容:
1.集合的有关概念:(集合、元素、属于、不属于)
2.集合元素的性质:确定性,互异性,无序性
3.常用数集的定义及记法
五、课后作业:
六、板书设计(略)
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的高一数学教学设计,能受到大家的欢迎!
【《的概念》教案】相关文章:
《集合的概念》教案3篇03-25
函数概念说课稿11-28
集合的概念说课稿12-16
《导数的概念》说课稿12-14
《函数概念》说课稿07-07
《函数的概念》说课稿07-26
函数的概念教学反思02-07
数学概念的教学反思03-05
实数的概念教学反思04-06