《平行四边形的面积》教案(精选20篇)
作为一位兢兢业业的人民教师,时常要开展教案准备工作,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?以下是小编为大家整理的《平行四边形的面积》教案,欢迎阅读,希望大家能够喜欢。
《平行四边形的面积》教案 1
教学目标设计:
1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
教学重点:探究平行四边形的面积公式
教学难点:理解平行四边形的面积计算公式的推导过程
教学过程设计:
一、创设情境,激发矛盾
拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽
教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。
教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底边长×邻边长吗?
今天这节课我们就来研究“平行四边形的面积”。教师板书课题。
学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?
二、另辟蹊径,探究新知
1、寻找根源,另辟蹊径
教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?
引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?
学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?
2、适时引导,自主探索
教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?
(1)学生操作
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。
第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较
刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?
(3)课件演示
是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型
既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?
B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的'宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底 × 高
4、变化对比,加深理解
引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?
5、自学字母公式,体会作用
请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用
1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)
2、看图口述平行四边形的面积。3分米 2.5厘米
3、这个平行四边形的面积你会求吗?你是怎样想的?
4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?
《平行四边形的面积》教案 2
教学目标
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
复习引入
(一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高)。
(二)观察老师出示的几个平行四边形,指出它的底和高。
(三)教师出示一个长方形和一个平行四边形。
1.猜测:哪一个图形面积比较大?大多少平方厘米呢?
2.要想我们准确的答案,就要用到今天所学的知识——“平行四边形面积的计算”
板书课题:平行四边形面积的计算
二、指导探究
(一)数方格方法
1.小组合作讨论:
(1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
(2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
(3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
(4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
2.集体订正
3.请同学评价一下用数方格的方法求平行四边形的面积。
学生:麻烦,有局限性.
(二)探索平行四边形面积的计算公式。
1.教师谈话
不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
3.学生到前面演示转化的方法。
4.演示课件:平行四边形的面积
5.组织学生讨论:
(1)平行四边形和转化后的长方形有什么关系?
(2)怎样计算平行四边形的面积?为什么?
(3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?
(三)应用
例1.一块平行四边形钢板,它的.面积是多少?(得数保留整数)
4.8×3.5≈17(平方米)
答:它的面积约是17平方米.
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
(一)列式并计算面积
1.底=8厘米,高=5厘米,
2.底=10米,高=4米,
3.底=20分米,高=7分米
(二)说出下面每个平行四边形的底和高,计算它们的面积。
(三)应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
(四)量出你手里平行四边形学具的底和高,并计算出它的面积。
教案点评:
该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。
《平行四边形的面积》教案 3
教学内容:
课本第73-74页练习十七第4-9题
教学要求:
1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。
2、养成良好的审题习惯,树立责任感。
教学重点:
能比较熟练地运用平行四边形的计算公式,解答有关的应用题。
教具准备:
口算卡片。
教学过程:
一、复习
1、平行四边形的面积计算公式是什么?
2、口算:
4.9÷0.75.4+2.64×0.250.87-0.49
530+2703.5×0.2542-986÷12
3、求平行四边形的面积。
(1)底12米,高是7米;(2)高13分米,底长6分米;
(3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米
4、出示课题。
二、新授
1、补充例题
一块平行四边形的`麦地底长125米,高24米,它的面积是多少平方米?
(1)独立列式后,指名口述,教师板书。
(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?
让学生议一议,然后自己列式解答,最后评讲。
(3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?
与上题比较,从数量关系上看,什么是相同的?什么是不同的?
让学生自己列式。
辨析:老师也列了三个算式,到底哪个对呢?帮个忙!
A900×(125×24÷10000)
B900÷(125×24)
C900÷(125×24÷10000)
2、(略)
三、巩固练习
练习十七第6、7题
四、课堂作业
练习十七第8、9题
⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?
⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?
板书设计:
平行四边形面积的计算
《平行四边形的面积》教案 4
教学内容:
教科书第79~81页
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学过程:
一、导入
1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的.面积。
说明要求:一个方格表示1c㎡,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为长方形的面积=长×宽,
所以平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
三、巩固和应用
1.出示例1。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
《平行四边形的面积》教案 5
教学内容:
课本第72页。
教学要求:
使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。
教学过程:
一、复习。
1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)
2.填空。
0.28平方米=()平方分米=()平方厘米
32000平方米=()公顷
0.5平方千米=()公顷。
3.求下面平行四边形的面积。(口答)
(1)底18厘米,高10厘米
(2)底25分米,高4分米
(3)底12.5米,高8米
(4)底16米,比高多6米
(5)底和高都是30厘米
二、新授。
1.揭示课题。
师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的.应用)
2.出示例题。
一块平行四边形钢板,它的面积是多少?(得数保留整数)
学生口述解题思路:求钢板的面积就是求平行四边形的面积。
学生独立解答
4.8×3.5?17(平方米)
答:它的面积约是17平方米
补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?
总重量=每平方米重量×平方米数
学生试做。
集体评讲。
钢板重量:3.9×17=66.3(千克)
三、巩固练习。
1.P72页做一做。
通过书面练习第1题达到巩固求平行四边形面积的计算能力。
指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。
2.练习十七第6题。
先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)
学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)
得出:底和高分别相等的平行四边形,面积也相等。
判断:下面的平行四边形面积相等吗?
3.练习十七第7题。
学生独立完成。集体核对。
4.练习十七第8题。
先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。
四、作业。
练习十七第9题。
五、补充练习。
已知一个平行四边形的面积是28平方米,底是7米,求高是多少?
引导学生思考:因为:a·h=S
所以:h=S÷a
《平行四边形的面积》教案 6
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的.方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑
四、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
五、巩固运用
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
六、全课小结
(略)
《平行四边形的面积》教案 7
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
3.培养同学们分析问题、解决问题的能力。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
卡片
教学过程:
一、基本练习
1.口算。
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,底6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1.95公顷,
再求共收小麦多少千克:70001.95=13650千克
(3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与(2)比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的`面积是多少?
(1)你能找出图中的两个平行四边形吗?
(2)他们的面积相等吗?为什么?
(3)生计算每个平行四边形的面积。
(4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习第10题:已知一个平行四边形的面积和底,求高。
分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
第7题。
四、小结
本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?
《平行四边形的面积》教案 8
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的'高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
《平行四边形的面积》教案 9
教材分析
本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
教学目标
1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”
教学方法
《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
设计意图
一、创设情境,引入新知
二、动手实践、探索新知
三、尝试练习,提升能力
四、课堂小结,梳理提高
以争论面积大小的故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
(一)提出猜想
【提问】平行四边形的面积可能等于什么?
受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)
(二)动手验证
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
【追问】如果让你测量花坛的面积,你也用数格法吗?
【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?
再次验证,并提出活动要求
(1) 你把平行四边形转化成什么图形?
(2) 什么变了,什么没变?
(3) 平行四边形的面积怎么算?
2.交流反馈(一个演示,一个讲解)
【提问】看懂这种方法吗?有谁的和他不同?
(三)动眼观察
【提问】这两种方法有什么共同之处?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
【追问】什么变了,什么没变?
学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的'高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
(四)自学课本
引导学生自学课本,用字母表示公式。
S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)
【追问】要求平行四边形的面积,必须知道什么?
(一)基本技能训练
(1) 计算平行四边形的面积
(2) 蓝色线这条高的长度
(二)解决实际问题
快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
(三)提升思维能力
1.在方格纸上画一个面积是24平方厘米的平行四边形
2.如果这个平行四边形的底是4厘米,那么能画出几种?
这节课你学习了什么,有哪些收获?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
感受数格法不受用,从而激发起探究欲望。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
打破学生思维定势,感受高和底的对应。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
《平行四边形的面积》教案 10
教学目标:
1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。
2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:
平行四边形面积公式的推导方法――转化与等积变形。
教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:
多媒体课件、平行四边形纸片、长方纸卡,剪刀等。
教学过程:
一、情境激趣
二、自主探究
古时候,有一位老地主给他的`两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?
在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?
1、数方格,比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格平行四边形底底边上的高面积
长方形长宽面积
(6)引导学生交流自己的发现。
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?
2、动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)
(3)观察并思考:
①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
观察面积公式,要求平行四边形的面积必须知道哪两个条件?(平行四边形的底和高)
(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?
(转化图形的形状)
(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3、运用公式,解决问题。
(1)出示例1
例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?
(2)学生独立完成并反馈答案。
三、看书释疑P79~81
四、巩固运用
1、判断,平行四边形面积的概念。
(1)、两个平行四边形的高相等,它们的面积就相等( )
(2)、平行四边形的高不变,底越长,它的面积就越大( ) 。
(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。
2、计算,平行四边形的面积。
3、拓展1,你有几种方法求下面图形的面积?
4、拓展2 比较,等底等高的平行四边形的面积。
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
《平行四边形的面积》教案 11
教学目标:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。
3、培养学生的小组合作意识,发展学生的空间观念。
教学重难点:
1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教具准备:
教学课件、平行四边形教具和学具、剪刀等。
教学过程:
一、情境引入
师:这节课老师将和大家一起学习一个新知识,同学们有信心吗?
师:看到同学们精神饱满的样子,老师也有信心。让我们一起努力吧!
师:首先老师想考考大家,知道的同学请举手。
t1:你们认识哪些平面图形?
t2:你们认识老师手中的图形吗?
t3:(出示课件2)请同学们观察学校门前的两个花坛,它们分别是什么形状?
t4:哪个花坛面积大?你会计算它们的面积吗?(出示课件3)
师小结:(板书;长方形的面积=长×宽)
这节课我们就来学习平行四边形的面积。(板书:平行四边形的面积)
二、探究建模
(一)数格子法
1、师:前面我们已经知道可以用数格子的方法得到一个图形的面积,看大屏,请同学们用数格子的方法数数出这两个图形的面积。注意一个方格代表1平方米,不满一格的都按半格计算。
t1:谁来汇报一下你数的结果?
2、师小结:刚才,我们用数格子的方法得到了这个平行四边形的面积,可是,在日常生活中,是不是每一个平行四边形的面积都有方格让我们去数呢?(不是)所以说数方格的方法也不是任何时候都适用的。如果平行四边形的面积也能像长方形一样有它的.面积计算公式就更好了,对不对?
那么在研究这个问题之前,让我们看大屏幕,继续观察这两个图形,并且完成第80页下方的表格。
t2:通过这个表格,你发现了什么呢?
3、师小结:是的,通过这个表格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
t3:根据你的发现,请同学们做个大胆的猜测,平行四边形的面积可以怎样计算?(师板书学生的猜测)
(二)转化法
1、用画图的方法验证猜想一。(平行四边形的面积=邻边之积)
学生画图,同桌交流,教师演示。
师小结:可见“平行四边形的面积=邻边之积”的猜测是不对的。
2、用“剪—平移—拼”的方法验证猜想二(平行四边形的面积=底×高)学生剪拼,同桌讨论,课件演示。(出示课件5)
t1:拼成的长方形和原来的平行四边形相比,什么变了,什么没有变?
t2:再看看,转化后的长方形的长与平行四边形的底,转化后的长方形的宽与平行四边形的高有什么关系?
生:转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高。
t3:那么,现在同学们知不知道平行四边形的面积可以怎样计算呢?
生:平行四边形的面积=底×高
t4:有没有不同的验证方法呢?
师小结:其实,我们沿着平行四边形的任意一条高都能将一个平行四边形转化成长方形,因为转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高,所以,平行四边形的面积=底×高
(三)整理结论
1、师:我们一起读一下我们发现的结论。
刚才同学们不仅用不同的方法验证了两个猜想,并且用了转化的方法,真是了不起。
2、师:现在请同学们翻开书,自己看书学习81页倒数第2自然段的内容。
3、师:你学到了些什么?
4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah
师:有了平行四边形的面积计算公式,现在同学们就可以用它来计算了。
t5:现在同学们能知道这两个花坛哪个的面积大了吗?
师小结:同学们学得真不错!我们鼓掌奖励自己吧!
师:下面老师再出几个题考考大家,敢挑战吗?
三、解释应用
1、计算平行四边形车位面积。
t6:要计算一个平行四边形的面积需要知道哪些条件?
t7:(教师画图,平行四边形的底和高不对应)你能计算书这个平行四边想的面积吗?
2、选择条件计算平行四边形的面积。
3、终极挑战。
4、奖励题。知道平行四边形的面积和底,求高。
四、课堂总结
通过这节课的学习你有哪些新的收获?
《平行四边形的面积》教案 12
教学目标
知识与技能:
在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。
过程与方法:
通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。
情感态度与价值观:
通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。
教学重难点
教学重点:
掌握平行四边形的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学工具
多媒体课件,平行四边形纸片,剪刀,学具袋
教学过程
教学过程设计
1 、复习旧知
请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)
2 、情境引入
(一)、故事激趣
同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)
(二)、学生思考、猜测
学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积
3、探究新知
(一)利用方格,初步探究
1、以前用数方格的方法得到了长方形和正方形的.面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。
课件出示:比较两个图形的大小,然后引进格子图。
师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)
2、同桌交流方法
3、生汇报想法
4、通过数方格你发现了什么?
生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等
5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?
如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?
(二)动手操作,深入探究
1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?
2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。
师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。
(板书:割补法)
3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。
4、展示学生作品:不同的方法将平行四边形变成长方形。
提问:观察拼出的长方形和原来的平行四边形,你发现了什么?
平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。
引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah
(边说边板书)
4 、学以致用
(一)、课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
(板书:S=ah=6×4=24㎡)
(二)、课件出示练习题,学生独立完成。
1、有一块地近似平行四边形,底43米,高20、1米,面积是多少平方米?
2、填表
3、判断:
(1)平行四边形的底是7米,高是4米,面积是2 8米。()
(2)a=5分米,h=2米,S=100平方分米。()
4、下面对平行四边形面积的计算对吗?
6×3=18(平方米)()
5、下面对平行四边形面积的计算对吗?
8×7=56(平方分米)()
6、思考题:你有几种方法求下面图形的面积?
课后小结
回想一下刚才我们的学习过程,你有什么收获?
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推
板书
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
《平行四边形的面积》教案 13
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:
平行四边形面积的计算。
教学难点:
平行四边形面积公式的推导过程。
教学准备:
学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的`长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学P44~P45有关内容
集体交流:S=a×h
S=a·h
S=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a) 例题
学生列式解答,并说出列式的根据。
b) 做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3.5厘米 底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
《平行四边形的面积》教案 14
教学目标:
1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认以转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3、引导学生初步理解转化的思想方法,培养学生的逻辑思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导平行四边形面积的计算公式。
教学准备:
平行四边形纸板一个
教学过程:
一、创设情境,引入新课。
(课件出示主题图)引导学生观察小羊和小马的草地分别各是什么形状?师:猜想这两块草地的面积哪一块大?哪一块小?课件出示:长方形草地的平面图。学生用自己喜欢的方法计算出它的面积。
二、探究新知。
1、探索计算平行四边形面积的方法。
(1)用数格子的方法计算面积。(课件出示:平行四边形草地)问:这块平行四边形草地的面积怎样计算?今天我们就来探究平行四边形而积的计算方法。
板书课题:平行四边形的面积
(2)出示课件:平行四边形草地的格子图。
说明要求:一个方格表示1个平方米,不满1格按半格计算,两个半格拼成一个整格。
让学生用数格子的方法计算出它的面积。
把图形放在方格纸上比,通过数方格,我们发现两个图形的面积一样大。学生演示数的方法。随他的演示一起操作一下。
学生数方格,数出长方形,l个方格是1m2,1个图形有24个方格,它的面积是24m2。平行四边形满格有20个,半格有8个算为4m2,他的面积是24m2,证实两个图形的面积是一样大的。
师:做的真棒。强调数的方法。
2、推导平行四边形而积计算公式。用割补转化的方法计算面积。
(1)引导。
用数格子的方法计算很不方便,我们来找一种既简单、又有规律的方法来计算平行四边形的面积。
师:把图形重叠起来观察,你们又有什么发现?学生:我们把两个图形重叠起来比,发现平行四边形一边多了l个小三角形,一边少了l个小三角形。
学生:我发现这两个三角形是一样大的。这两个三角形一样大,我们就可以把多的小三角形,补在少了的那边,这样平行四边形就变成了长方形。
3、师:把多的小三角形剪下来,通过平移的方法补在少了的那边,这种方法叫割补法。你能把平行四边形通过割补的方法转化成长方形吗?学生动手操作。
学生汇报演示:沿平行叫边形的高剪丌,得到一个直角三角形和一个直角梯形,把得到的直角三角形沿反方向平移,使两条斜边重合就拼成了一个长方形。
教师课件演示:把平行四边形转化成长方形的剪拼过程,并展示演示同。师:同桌观察讨论,你有什么发现:
汇报:生答
(1)拼成的长方形的面积等于原平行四边形的面积。
(2)拼成的长方形的长等于原平行四边形的底。拼成的长方形的宽等于原平行四边形的高。
师小结:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。板书公式:平行四边形的面积=底×高
4、用字母表示平行四边形的面积公式。
(1)介绍字母的意义及读法板书字母公式:S=ah。
(2)全班齐读公式。
(3)师小结:从公式看出要求平行四边形的面积必须知道它的底和底边上的高。
5、应用面积公式解决问题。
(1)黑板出示例1和图示。学生读题,师生共同完成。板书:S=ah
=6X 4
=24(m2)(2)课件出示:计学生算一算、比一比这两块草地的面积哪一块大?哪一块小?
(3)学生计算后,发现计算的面积与数方格的面积相等。(师:我国是人口大国,土地资源是有限的,我们要珍惜,要学会合理利用)
教师:从中可以得出什么结论?
学生:可以知道这个平行四边形面积的计算公式是正确的。
(4)小结:回顾刚才的活动过程,我们是怎样推导出平行四边形的面积?
生:运用割补的方法,将平行四边形转化成学过的长方形探索出了平行四边形的面积公式。
教师:在学习这个内容的过程中,我们用到了学习数学的一种重要方法——转化法,转化法在今后的数学学习中我们还会用到,很多问题我们无法解决的时候,就可以用转化法把这个问题转化成我们能够解决的问题加以解决。希望大家能够灵活运用。
齐读面积公式。
师:求平行四边形的面积必须知道什么?(平行四边形的底和底边上的高)
三、解决问题,深化认识。
1、练习十五第1题,让学生独立完成后反馈答案。
2、你能想办法求出下面平行四边形的面积吗?
12dm
四、全课总结。
通过今天的学习,你有什么收获?
教学反思:
1、创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的.又是学生感兴趣的学习情境有利于让学生积极弘动地投入到数学活动中去。在探索的过程中找到解决问题的方法,使学生不仅是在学习纯粹的数学知识,而且是在解决生活中的数学问题。在解决问题中了解到平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。学生爱学、乐学,在玩中初步理解了抽象的问题,突出了学生为主体的教学理念,而使课堂教学充满了活力。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。教师对传统的平行四边形而积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到”灵感”的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,从而以积极的姿态投入到数学中。
《平行四边形的面积》教案 15
教学内容:
人教版五年级上册教材P87~88例1及练习十九第1、2、3题。
教材分析:
《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。
学情分析:
学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。
教学目标:
知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。
过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。
情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。
教学重点:
探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。
教学难点:
理解平行四边形的面积公式的推导过程。
教学方法:
迁移式、尝试、扶放式教学法
教学准备:
师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。
教学过程:
一、情境导入
1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)
2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。
3.提问:你会算它们的面积吗?
生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)
师:非常好!那平行四边形的面积怎样计算呢?
4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)
二、互动新授
(一)利用方格,初步探究。
1.想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?
生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。
出示教材第87页方格图以及平行四边形和长方形。
(引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)
2.同桌交流方法并完成教材87页的表格。
3.汇报想法。谁愿意说说你数的方法?
4.根据填表的结果进行讨论:你发现了什么?
生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
5.小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。
提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)
6.引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。
(二)动手操作,深入探究
1.介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。
2.活动要求:
(1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。
(2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。
(3)尝试推导出平行四边形的面积公式。
比一比,那个小组做得又快又好。
3.汇报交流。
让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。
质疑:你们为什么要沿高剪呢?
生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。
4.课件演示剪拼过程。
师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。
运用生动形象的`课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。
5.引导学生小组思考讨论:
(1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
(2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?
(3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?
学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。
6.引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)
追问:要求平行四边形的面积必须知道什么条件?
学生得出结论:必须知道平行四边形的底和对应的高。
7.教学用字母表示。
师:翻开教材自学第88页倒数第二自然段的内容。
师:你学到了什么?
生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)
8.课件演示,加深理解。
9.小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。
(三)应用公式,解决问题。
出示教材第88页例1.
学生读题,理解题意;独立完成;教师板书。
三、巩固新知,拓展提升。
1.计算出下面每个平行四边形的面积。
4.快速填表。
5.比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。
练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。
四、回顾总结
师:这节课你学会了什么,有哪些收获?
五、布置作业:教材第89页练习十九第1、2、3题。
板书设计:
平行四边形的面积
长方形的面积=长×宽S=ah
↑ ↑ ↑ =6×4
平行四边的面积=底×高=24(m2)
S=ah
《平行四边形的面积》教案 16
教学内容:
第70-73页练习十七第1-3题
教学要求:
1、理解平行四边形面积计算公式,能正确地计算平行四边形面积;
2、在割补、观察与比较中,初步感知与学习转化、变化的数学思想方法,并发展学生的空间观念。
教学重点:
运用面积公式解答实际问题。
教具、学具准备:
教师准备微机及多边形、平行四边形课件两组、边可活动的平行四边形框架。学生准备任意大小(画有高)的平行四边形纸片、剪刀。
教学过程:
一、质疑导入
1、指出下面平行四边形的底和高各是几厘米?
2、向学生出示可拉动的长方形框架,问:要求这个长方形的面积,怎么办?(学生回答,教师板书:长方形面积=长×宽)
3、分别用手拉长方形相对的一对角,使其变形为平行四边形后,问:原来的平行四边形变成了什么图形?它的面积怎样求呢?(揭示课题:平行四边形面积计算)
二、引导探究
(一)、初探
1、微机出示第70页左图,让学生说出平行四边形底和高各是多少厘米,然后数出它的面积。
2、出示第70页右图,让学生说出长方形长和宽各是多少厘米,然后算出它的面积。
3、让学生观察、比较:
(1)两图形的.面积都是18平方厘米,那么平行四边形的底和高与长方形的长和宽有什么关系?
(2)从上面的比较中你想到什么?
(二)、深究
1、做导引题下图中阴影部分面积是多少?
微机演示剪拼过程后让学生回答:
(1)剪拼前后,图形形状变了没有?面积改变没有?
(2)阴影部分面积是多少?
(3)解这道题你想到什么?
2、剪拼
(1)刚才用剪拼的方法解决了一个求面积的问题,你能不能用剪拼的方法,把平行四边形转化成学过的图形,求出它的面积呢?拿出平行四边形纸片,剪一剪,拼一拼,试试怎么样。
(2)请剪拼方法不同的学生展示剪拼结果,说一说是怎样想的。根据学生的回答,教师演示。
3、引导学生分析得出:沿着平行四边形底边上的任意一条高,都可以把平行四边形剪拼成一个长方形。
4、归纳
(1)讨论:
A平行四边形剪拼成长方形后,两种图形的面积是否改变了?
B剪拼成的长方形的长和宽分别与原平行四边形什么线段长度相同?
C剪拼成上面三种情况的图形后,哪些面积可以直接求出来?怎样算?
(2)归纳、总结,推导公式。
A因为长方形面积=长×宽
所以平行四边形面积=底×高
B先启发学生用字母分别表示三个量,写出字母公式,再告诉学生一般的字母表示公式:S=ah
C引导学生分析公式,使学生知道,要求平行四边形面积必须知道两个条件,平行四边形的底和高。
三、深化认识
1、验证公式:
让学生用面积公式算出课本第70页平行四边形面积,看结果与数方格法得出的结果是否一样。
2、应用公式:
(1)引导学生解课本第72页例
(2)完成课本第72页做一做1
3、求下图表示的平行四边形的面积,列式为3×2.7,对吗?为什么?
四、全课总结
五、课堂作业
1、第72页做一做2
2、练习十七1
3、练习十七2、3
板书设计:
平行四边形的面积
《平行四边形的面积》教案 17
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的'特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:
使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
《平行四边形的面积》教案 18
教学目标
1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2、养成良好的审题习惯。
教学重点
运用所学知识解答有关平行四边形面积的.应用题。
教学难点
运用所学知识解答有关平行四边形面积的应用题。
教学准备
三角板,直尺等。
教学过程
一、基本练习
1.口算。
4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49
530+270 3.5×0.2 542-98 6÷12
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,再求共收小麦多少千克:7000×1.95=13650千克
⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
三、巩固练习
1.测量右图中平行四边形的一条底边和它对应的高,并计算它们的面积。
2.分别计算图中每个平行四边形的面积,
你发现了什么?(单位:㎝)
四、总结全课
通过本节课的练习,你有什么收获?你还有哪些疑难问题?
五、作业
优化作业。
《平行四边形的面积》教案 19
教学目标:
使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重、难点:
探索并掌握平行四边形的面积计算公式及推导过程。
教具学具:
课件、平行四边形卡片、剪刀、三角板、直尺等。
教学模式:
“我能行”四步教学法。(详见文后注)
课前交流:
同学们,你们想了解老师吗?你想知道关于我的什么情况?
预设:
老师的年龄是多少?教几年级?
师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?
生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。
师:想得真好,许老师就是(30)岁。
师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。
一、情境导入,确定目标
师:
1.在数学课堂上哪些地方用到了“转化”?
预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。
看来,“转化”是一位非常高深的、不见踪影的`高人,在背后帮助着我们。
2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?
生:演示方法。
3.师:为什么把它拼成一个长方形呢?
预设:学过长方形面积的计算,而且能够拼成长方形。
这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。
4.刚才的图形“转化”过程,什么变了,什么没变?
5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。
(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。
(2)我会用平行四边形面积公式解决实际问题。
【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。
二、互动展示,生成问题
师:
1.你猜一猜平行四边形的面积会与什么有关?
预设:长方形、正方形、底、高、夹角、相邻的边等。
2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。
3.请带着问题自学。(课件)
4.四人小组交流一下你是怎样“转化”平行四边形面积的。
【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。
三、启发思路,引导归纳
师:
1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?
2.平行四边形的面积怎么算?
3.板书:平行四边形的面积=底×高
4.你是怎样推导的?说一下你的操作过程。
5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)
6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)
7.这个平行四边形与剪拼的长方形之间有什么关系?预设:平行四边形的面积与长方形的面积相等(板书)
8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?
9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)
【设计意图】
在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。
四、练习检测,拓展链接
1.练习检测卡一题。
2.课件:判断、选择题、口答列式。
3.练习检测卡二、三题。
4.谈谈你对这节课的收获,好吗?
拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。
【设计意图】
归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。
板书设计:
(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)
《平行四边形的面积》教案 20
教学内容:
平行四边形面积的计算。
教学目标:
知识目标:通过长方形面积计算知识迁移,理解长方形面积的计算公式,并能正确计算平行四边形面积。
能力目标:在比一比,动一动中发展空间观念,在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。
情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的'精神,感受数学与生活的密切联系。
教学重点:
平行四边形面积的计算。
教学难点:
推导平行四边形面积计算公式的过程。
教具学具的准备:
投影机,平行四边形,剪刀,三角板。
教学过程:
一、创设情景,设疑导入。
从小朋友劳动图片,出示长方形,平行四边形清洁区,设疑导入课题。
二、初步探究,数格求积。
分别出示一个平行四边形,长方形,用数方格的方法求出它们的面积。
三、动手操作,获取新知。
1、小组动手剪拼图形。
2、交流剪拼法及发现。
3、建立平行四边形与长方形的联系,推导平行四边形面积的计算公式。
4、自学课本第64、65页的内容。
5、利用公式解决课前问题。(比较两块清洁区的大小,在学生选择清洁区的同时进行思想教育)
6、课堂质疑:验证用公式算出来的结果和用数方格求出来的结果是否一样。
四、拓展练习,开创思维。
五、开放题。
六、通过这节课的学习,你有什么收获?
板书设计:
平行四边形面积的计算
长方形的面积=长╳宽
平行四边形的面积=底╳高
S=a╳h=a.h=ah
【《平行四边形的面积》教案】相关文章:
平行四边形的面积教案04-07
平行四边形的面积教案03-28
平行四边形面积教案02-09
《平行四边形的面积》教案06-01
《平行四边形面积的计算》教案09-14
数学平行四边形的面积教案02-28
关于《平行四边形的面积》教案03-13
数学《平行四边形的面积》教案02-14
平行四边形面积的计算教案03-03
平行四边形的面积教案15篇03-28