《圆柱的表面积》教案(15篇)
作为一无名无私奉献的教育工作者,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。我们应该怎么写教案呢?以下是小编为大家收集的《圆柱的表面积》教案,希望能够帮助到大家。
《圆柱的表面积》教案1
教学目标:
1.理解圆柱表面积的含义。
2.掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。
3.能灵活运用求表面积的有关知识解决一些简单的实际问题。
教学重点:理解求圆柱的表面积的计算方法并能正确计算。
教学难点:灵活运用表面积的有关知识解决实际问题。
教学方法:探索发现,归纳总结,实际应用
学法指导:小组合作,探究发现
教学准备:
课件
圆柱模型
教学过程:
一、激情导思(5分)
1、填空
(1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。
(2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。
(3)圆柱的侧面积=
2、求下面各圆柱的侧面积。(只列式,不计算)
①c=9.42厘米,h=5厘米。
②d=8米,h=3米。
③r=2分米,h=6分米。
二、探究新知(15分)
小组交流:
1、圆柱的表面积怎么计算?
2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?
3、归纳总结:
(1)s表面积=s侧面积+2s底面积
(2)烟囱表面积=侧面积
(3)水桶表面积=侧面积+一个底面积
(4)油桶表面积=侧面积+两个底面积
4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少平方分米的铁皮?
(1)学生独立尝试解决
(2)全班交流:
油桶的'侧面积:3.14×4×6=75.36(平方分米)
油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)
油桶的表面积:75.36+25.12=100.48(平方分米)
答:做这个油桶至少需要100.48平方分米的铁皮。
三、课内练习:
1、数学书33页第2题求表面积并填表
2、计算下现各圆柱的表面积。(图中单位:厘米)
四、拓展应用
3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少平方米的铁皮?
4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
5、数学书33页第6题
四:总结:
1、圆柱表面积的有关知识,在实际应用时要注意什么呢?
应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。
五、布置作业(8分)
数学书33页第3、4、5题
板书设计: 圆柱的表面积
例2:油桶的侧面积:3.14×4×6=75.36(平方分米)
油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)
油桶的表面积:75.36+25.12=100.48(平方分米)
答:做这个油桶至少需要100.48平方分米的铁皮。
《圆柱的表面积》教案2
教学内容:教材第4~5页例2、例3和练一练及练习一。
教学要求:
1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。
教学重点:掌握圆柱侧面积的计算方法。
教学难点:能根据实际情况正确地进行计算。
教学过程:
一、铺垫孕伏:
1.复习圆柱的特征。提问:圆柱有什么特征?
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
3.提问:圆柱的`一个底面面积怎样计算?
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)
二自主研究:
1.认识表面积计算方法。
(1)请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。
5.组织练习。
(1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。
三、课堂小结
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用四舍五入法。
四、布置作业
练习一第8、10、11题及数训。
五、板书设计:
圆柱的表面积
圆柱的表面积=圆柱侧面积+两个底面的面积
例2(1)S侧:20xx.1444=5526.4(平方厘米)
(2)S底:20203.14=1256(平方厘米)
(3)S表:5526.4+12562=8038.4(平方厘米)
答:-------。
《圆柱的表面积》教案3
教学内容:
P13-14页例3-例4,完成做一做及练习二的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学重点:
掌握圆柱侧面积和表面积的计算方法。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长宽.
二、新课
1.圆柱的侧面积。
(1)圆柱的.侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
①这两道题分别已知什么,求什么?
②计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3.理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积2
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
①侧面积:3.142028=1758.4(平方厘米)
②底面积:3.14(202)2=314(平方厘米)
③表面积:1758.4+314=20xx.42080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页做一做。(求表面积包括哪些部分?)
2.练习七第6题。
板书:
圆柱的侧面积=底面周长高
圆柱的表面积=圆柱的侧面积+底面积2
例4:①侧面积:3.142028=1758.4(平方厘米)
②底面积:3.14(202)2=314(平方厘米)
③表面积:1758.4+314=20xx.42080(平方厘米)
《圆柱的表面积》教案4
设计说明
1.在情境中建立数学与生活的联系。
《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。
2.在操作中渗透转化思想。
转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。
3.在应用中培养学生解决问题的能力。
“培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。
课前准备
教师准备 多媒体课件
学生准备 纸质圆柱形物体 剪刀 长方形纸板
教学过程
⊙提出问题、设疑导入
1.说一说。
师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的'应用非常广泛,和我们的生活是密切相关的。
2.想一想。
课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)
师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?
3.汇报。
小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。
4.交代学习目标,导入新课。
师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)
设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。
《圆柱的表面积》教案5
一、教学目标
【知识与技能】
结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。
【过程与方法】
通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。
【情感态度与价值观】
能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。
二、教学重难点
【教学重点】
圆柱表面积的计算方法以及在生活中的应用。
【教学难点】
圆柱表面积的计算方法在生活中的应用。
三、教学过程
(一)导入新课
师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的`物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)
(二)生成原理
(1)介绍圆柱的侧面积、底面积和表面积
师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。
(2)创疑激趣
师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?
(3)小组合作交流
师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的特征研究)ppt展示
小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。
(4)学会计算圆柱的表面积
师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)
师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。
(三)深化原理
圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。
(四)应用原理
如果给圆柱形笔筒侧面裹一层彩纸,笔筒底面半径是5cm,高是10cm。那么想想得准备多少彩纸?
(五)课堂小结
师:今天收获了哪些知识?能不能用今天所学的知识制作一个常用的学习用品?能否设计一个笔筒?在设计过程中需要解决哪些问题?
生:测量、确定笔筒的大小
师:如何确定?
生:确定底面半径,还有笔筒的高
师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。
四、板书设计
《圆柱的表面积》教案6
教学目的
1.使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2.理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
3.根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。
教学过程
一、复习:
师:出示各种平面图形,让学生指出各图形面积的计算方法。重点突出圆的面积求解方法,并引出圆周长的求解方法。
使学生熟悉圆的周长和面积公式:S=πr2,C=2πr或C=πd。
二、新课
1.导入新课
教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的`物体是什么形状的?他们有什么特征?引导学生复习长方体和正方体的一些特征。
教师出示例题图例:观察下面这些物体,它们有什么特点?
2.圆柱的认识。
让学生拿着圆柱形的物体观察后,说出自己观察的结果。认识圆柱体的外部特征以及与长方体与正方体的区别。
总结:长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。
指出:(沿着这些圆柱形物体的轮廓画线)像这样的物体就叫做圆柱体,简称圆柱。这节课我们就来学习这种新的立体图形。
指出:这样得到的图形就是圆柱体的几何图形。
(1)认识底面
教师拿出一个圆柱体:请大家再观察一下,这些圆柱的上、下两个面有什么特点?
引导学生发现:圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。
教师指出:圆柱的上、下两个面叫做底面。(在图上标出底面以及两个圆的圆心O)
同时还要指出:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。
(2)认识侧面
让学生用手摸一摸圆柱周围的面,使学生发现圆柱有一个曲面。
由此指出:圆柱的这个曲面叫做侧面。(在图上标出侧面。)
(3)认识圆柱的高
让学生看圆柱形物体,指出:圆柱的两个底面之间的距离叫做高。然后在图上标出高。
提问:圆柱的高有多少条?他们之间有什么关系?
使学生明白:圆柱的高有无数条,他们都相等。
然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和高。
3.圆柱的侧面展开图
师:我们认识了圆柱体,老师这里有一个圆柱形的容器,你们想一下,这个容器是怎么做出来的呢?
指导学生分析自己手中的模型,得出圆柱的侧面展开图。
教师出示罐头盒,沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。
教师:这个展开后的长方形它的长宽与圆柱体有什么关系呢?
=
《圆柱的表面积》教案7
教学目标
1.经历认识圆柱展开图和探索表面积计算方法的过程。
2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。
3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。
教学重点
圆柱体表面积公式的推导。
教学难点
运用表面积公式计算实际图形的表面积。
教具准备
圆柱表面展开示意图。
教学过程
一、读题导入
1.齐读课题。
师:看到这个课题,你们想到了哪些与之相关的知识。
生:长方体和正方体的表面积;圆柱的底面和侧面。
2.复习相关知识
(1)什么是长方体、正方体的.表面积?它们是怎么计算的?
二、探索新知
1.课件出示圆柱,揭示圆柱的表面积公式
师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。
生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。
2.教学圆柱的表面积
(1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。
(2)谁还记得圆柱侧面积的计算公式。
学生:圆柱的侧面积=底面周长高
(3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。
(4)议一议:怎样求圆柱的表面积?学生讨论。
学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。
(4)教学例题:
出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。
(5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。
三、练习
试一试
(1)提出试一试的问题,让学生尝试计算。
(2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。
四、巩固
练一练1:则由学生独立完成。
练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。
练一练3:先指导学生明确解决问题的思路,再自主解答。
五、家庭作业
自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。
《圆柱的表面积》教案8
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的`侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)
二、实际应用
1、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
2、练习二第7题
(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)
(2)学生独立完成这道题,集体订正。
3、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
4、练习二第16题
(1)学生读题理解题意后尝试独立解题。
(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
5、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。
三、布置作业
练习二第8、10、15、17、18及20题完成在作业本上。
板书: 圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
教学反思:
《圆柱的表面积》教案9
教学内容
教材33页、34页例1、例2、例3及做一做,练习七第2-5题。
素质教育目标
(一)知识教学点
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
(二)能力训练点
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤
一、铺垫孕伏
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3.14×0.5×1.8
=1.75×1.8
≈2.83(平方米)
答:它的侧面积约是2.83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
3.教学圆柱的表面积
(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的`面积;表面积包含着侧面积。
4.教学例2
(1)投影片出示例题2、圆柱的几何图形和表面积的展图。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
6.阅读课本33页、34页。
三、巩固发展
1.完成练习七第2题。
指两名学生板演,教师巡视指导,然后订正。
2.完成练习七第3题的前两题。
学生在练习本上做,教师巡视指导,然后订正。
3.完成练习七第5题。
(1)每组一个茶叶筒,学生分组进行测量。
(2)教师巡视,指导学生测量的方法。
(3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。
四、全课小结
教师:这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?
教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
五、布置作业练习七第3题的第3小题、第4题。
课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。
《圆柱的表面积》教案10
一、检查复习,引入新课
1、复习圆柱体的特征
师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)
2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?
引入:今天这节课,我们就一起来学习圆柱的表面积。
【设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。】
二、引导探究,学习新知
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)
要求圆柱的表面积,首先应该计算出它的底面积和侧面积。
(二)测量直径,计算圆柱的底面积。
圆柱的底面是圆形,怎样计算它的面积吗?(S=∏r2)需要知道什么条件? 现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)
学生口答算式和结果
(三)教学圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
(2)学生动手操作。(剪圆柱形纸筒)
(3)汇报交流研究结果。(随着学生回答课件展示)
百度图片:
小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体茶叶罐的侧面包装纸的面积
师:(课件呈现圆柱茶叶罐侧面包装图片)
求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积) 再次测量茶叶桶的高,并把结果记录下来,独立计算。
(四)教学求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算。
3、汇报计算方法及结果,强调单位的使用
小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。
【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】
三、解决问题,强化认知。
(一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。
(二)根据要求练习。
1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)
2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)
3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)
根据学生的'计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。 讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】
四、课堂回顾,总结提升
1、本节课你有何收获?
2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。
【设计意图:不仅对本节课的知识要点进行回顾整理,更重要的是提醒学生在解决问题时要具体情况具体分析。】
《圆柱的表面积》教案11
圆柱的表面积练习课
教学内容:教材14页例4和练习二余下的练习。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(只列式,不计算)
二.教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20xx.4≈20xx(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、指导练习
1、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
2、练习二第17题
先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。
3、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
4、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。
四、布置作业
练习二第10、15、20题
第三课时教学反思
学生有上一节课扎实的表面积教学作基础,这节课例4的学习显得十分轻松。在这一环节,学生共提出两个有价值的问题:“求做这样一顶帽子需要多少面料,也就是求哪几部分的面积总和?”“结果20xx.4按四舍五入法保留整十数应该约等于20xx,可为什么教材中应是约等于20xx?”我在此环节,将教学重点放在联系生活实际,引导学生思考所求问题到底是求什么,即要求学生能够具体问题具体分析。在教学完例题后,运用一组选择题,提升学生灵活应用知识解决实际问题的能力。练习题目如下:
做通风管需要多少铁皮
圆柱形水池的.占地面积
做无盖的圆柱形水桶需要多少铁皮
做圆柱形油桶需要多少铁皮
卫生纸中间硬纸轴需要多大的硬纸板
求水池底部和四周贴瓷砖的面积
压路机滚筒滚动一周的面积
(1)求侧面积;(2)求1个底面积与侧面积的和;(3)求底面积;(4)求2个底面积与侧面积的和
指导练习内容较多,难以在一课时完成,所以准备再补充一节练习课。
两个惊喜
1、没想到班上有一名同学(数学科代表袁文杰)通过比的知识发现了底面积与侧面积之间的倍数关系,从而利用这一关系提高求表面积的速度。因为底面积=πr2,而圆柱体的侧面积=2πrh,所以S底:S侧=(πrr):(2πrh)=r:2h,2S底:S侧=r:h。当已知圆柱体底面半径和高求表面积时,如果先求出圆柱体侧面积,就可用侧面积÷h×r快速求出两个底面的面积,从而提高计算速度。
2、没想到班上居然有一名同学(数学科代表江赐阳阳)会用课前我查找资料中所介绍的转化方法来推导圆柱体的表面积。在他的带领下,同学们推导得出新的表面积计算公式:圆柱体的表面积=圆柱的底面周长×(高+底面半径)。正因为了解到这种方法,在练习中计算已知底面周长3.14米,高5米,求表面积时,全班前30名同学完成的同学不约而同地采用了这种方法,体现出这种方法对于已知周长和高求表面积的简便之处。
《圆柱的表面积》教案12
教学目标
1.经历灵活运用知识自主解决实际问题的过程。
2.能灵活运用圆柱表面积的知识解决生活中的简单实际问题。
3.体验数学在日常生活中的广泛应用,培养应用意识。
教学重点
运用圆柱表面积公式计算水桶的表面积。
教学难点
注意水桶的表面积只有一个底面积。
教学过程
一、新授
观察教材中无盖圆柱形铁皮水桶示意图,了解提供的信息。
师:读题之后,你有什么想对同学们说的?
生:这道题是求做这个水桶要用铁皮多少平方厘米,实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的'圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
多人板演,一人说想法。
水桶的侧面积:3.143035=3297(平方厘米)
水桶的底面积:3.14(302)2
=3.14152
=3.14225
=706.5(平方厘米)
需要铁皮:3297+706.5=4003.5(平方厘米)
答:做这个水桶要用4003.5平方厘米。
二、尝试:试一试
1)读题理解题意。先讨论一下:画水桶用料的示意图,应该画什么?再让学生自己计算并画出水桶示意图。
注意水桶底面直径和高都是20厘米,怎样在图上画出来。
有的学生可能会说运用比例尺,老师要加以表扬。
2)交流学生画图的过程和结果。
三、巩固:练一练
1.先让学生独立完成,再交流。
选择哪一个蛋糕盒,说一说自己选择蛋糕盒的合理性。
2.读题,使学生了解木墩的底面不漆。
3.读题,帮助学生理解题意,接缝处按1厘米计算怎样运用到题中,也就是怎样处理。学生可能不理解,这时老师可进行提示,把这一厘米应该加在底面周长上,也就是计算出底面周长后再加上1厘米,再去乘高,才是一节烟囱的侧面积。
四、课堂小结
这节课我们所研究的是有关圆柱表面积的计算问题,圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
五、家庭作业
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)
(三)练一练第3小题。
《圆柱的表面积》教案13
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是、和。
2、底面是形,它的面积=
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个形。它的长等于圆柱的,宽等于圆柱的。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=,所以圆柱的侧面积=。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的和这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由和组成。
(2)圆柱的表面积的计算方法:
圆柱的.表面积=
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。
列式计算:
①帽子的侧面积=
②帽顶的面积=
③这顶帽子需要用面料=
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
布置学生课下复习本节课内容。
《圆柱的表面积》教案14
教材分析
《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。
例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的.实际问题,并让学生了解进一法取近似值的方法。
学情分析
本班学生动手能力不是很强,自主探究方法、方式较少。
教学目标
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。
教学重点和难点
理解和掌握求圆柱表面积的计算方法。
教学过程
(一)创设生活情景,激励自主探索
在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?”
(二)创设探究空间,主动发现新知
1、 认识圆柱的表面
师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?
生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。
师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)
生:我知道了,圆筒是用长方形纸卷成的
师:各小组试试看,这位同学说的对吗?
(其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。)
师:还有别的可能吗?如三角形、梯形。
生:不能。如果是的话,就不是这种圆柱形的饮料罐了。
(评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)
2、 把实际问题转化为数学问题
师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?
学生观察、思考、议。
生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。
生B:求饮料罐铁皮用料面积就是求:
圆面积X2+ 长方形面积
生C:必须知道圆的半径、长方形的长和宽才能求面积。
生D:我看只要知道圆的半径和高就可以求出用料面积。
师:我们让这位同学谈谈他的想法。
生D:长方形的长与圆的周长相等,长方形的宽与高相等。
所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。
师随着板书:长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
(三)自主总结规律 验证领悟新知
让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h
师:如果圆住展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(四)解决生活问题 深化所学新知
师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。
生汇报。
师:通过计算,你有哪些收获?
生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。
生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。
板书设计
长方形 = 长 × 宽
↓ ↓ ↓
圆柱的侧面积 = 底面周长 × 高
《圆柱的表面积》教案15
教学目标
1:理解圆柱体侧面积和表面积的含义。
2:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
3:体验成功与失败的收获,体会合作的愉悦
教学重点:动手操作展开圆柱的侧面积
教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
教具准备: 圆柱表面展开图
学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。 教学过程
一、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说) 师:谁能说说上一节课你学过圆柱体的哪些知识?
生:...........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:..........
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
二、探索交流,解决问题。
导语:圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(指名说)
提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)
(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的.方式验证刚才的猜想。
2.操作活动:(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的'那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长 × 宽
↓ ↓↓
圆柱的侧面积 =底面周长× 高
所以,圆柱的侧面积=底面周长×高
S 侧= C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
练习
求圆柱的侧面积(只列式不计算)
1. 底面周长是1.6米,高是0.7米
2. 底面直径是2分米,高是45分米
3. 底面半径是3.2厘米,高是5分米
研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?
得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2
4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
三,巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒
提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)
重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
四.回顾整理,反思提升
根据板书总结:本节课你收获了什么?老师希望同学们能够应用本节课所学知识制作出一个笔筒,送给你的好朋友,下课。
【《圆柱的表面积》教案】相关文章:
圆柱的表面积教案02-16
《圆柱的表面积》教案02-27
圆柱的表面积教案03-10
《圆柱的表面积》教案03-19
《圆柱的表面积》教案15篇02-27
《圆柱的表面积》数学教案12-15
《圆柱的表面积》教案精选15篇03-29
《圆柱表面积》说课稿07-12
《圆柱的表面积》说课稿06-10