《近似数》教案(精选16篇)
作为一名专为他人授业解惑的人民教师,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?以下是小编精心整理的《近似数》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《近似数》教案 1
教学目标:
1.知识与技能:能理解商的近似数的意义。
2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。
教学重点:
掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。
教学难点:
根据题意正确求出商的近似数。
教学方法:
注重新旧知识的迁移,引导学生自主学习、总结。
教学准备:
多媒体。
教学过程:
一、复习导入
复习旧知:(出示如下题目)
1.用“四舍五入”法将下面的数改写成一位小数。
8.7693.45212.7118.64
2.计算下面各题,得数保留两位小数。
2.43×4.67 12.15×3.41
订正答案,并通过问题:你是用什么方法求这些数的近似数?
(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)
引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)
二、互动新授
1.出示教材第32页例6情境图。
阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?
引导学生自主列算式,并试着计算:19.4÷12
学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?
通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。
教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的.时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)
然后再引导学生想一想:算到分和角时分别需要保留几位小数?
(算到分要保留两位小数,算到角就要保留一位小数。)
师引导学生思考并讨论:除的时候应该怎么算?
小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。
让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书
2.提问:说一说如何求商的近似数?
让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。
3.引导学生比较求商的近似值和求积的近似值的异同点。
小组讨论后发言:相同点:都是用“四舍五入”法求近似数。
不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。
师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。
三、巩固拓展
完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。
四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?
引导学生归纳
1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。
《近似数》教案 2
教学内容:
p.40、41例9及相应的试一试、练一练,完成练习七第4~8题
教学目标:
1、结合现实的情景,通过学生自主观察、合作学习探索出求小数近似数的方法并理解为了保证近似数的精确值,近似小数末尾的0不能去掉。
2、培养学生有条理、有依据地进行思考的习惯,以及独立思考、合作交流、用自己的方法解决问题和有条理地描述学习过程的能力。
3、在主动参与学习活动的过程中,获得成功的体验。
教学重点:
求小数近似数的方法。
教学难点:
理解为了保证近似书的精确值,近似小数末尾的0不能去掉。
教学过程:
一、复习:
1、昨天学了改写小数,板书:改写
说说改写的最本质的要求是什么?(大小不变)
指出在改写中主要的2个问题:
(1)漏写单位名称;
(2)改写好后,小数末尾的0要化简。
2、改写
分别改写成“万”和“亿”为单位的小数。
指名说说具体的方法。说“万”的时候注意末尾的0,说“亿”的时候注意位数不够的时候用0补。
二、学习新知:
1、理解“精确”:
通过预习,你知道今天要学什么?(板书:近似数)你想到什么?(≈、四舍五入)
2、读,并写书数据:地球和太阳之间的平均距离大约是1.496亿千米。问:这是一个几位小数?
现在学习精确到整数?精确到十分位?精确到百分位?分别是多少。
(1)精确到整数,你怎么理解的?结果是多少?为什么?
(2)精确到十分位,你怎么理解的?结果是多少?为什么?
(3)精确到百分位,你怎么理解的?结果是多少?为什么?
比较两个小数:1.5,1.50这后面的小数能不能也写成1.5?为什么?指出:题中要求要精确到百分位,也就是保留两位小数,不能化简。
3、补充:0.9946
分别请学生思考并回答:保留整数?一位小数?两位小数?三位小数?注意进位问题
4、比较两个概念:改写、精确你能说说它们的'区别在那里?达成共识:改写时大小不改变,用“=”,精确时得到的是近似数,用“≈”
三、巩固练习:
1、试一试。指名说出近似数。指出要看清楚保留的位数。
2、练一练。
(1)求下面各小数的近似数。(略)指名说说结果,遇到困难的加以指导。
(2)先改写成用“万人”作单位的数,再写出它们的近似数。注意解答的顺序、联系。指名交流。
3、完成p.43的练习。
(1)第4题。写出表中各小数的近似数。
(2)第5题。身高、体重的精确。要注意精确的位数。
(3)第6题。在下面的○里填上=或≈上下两个数对比,说说为什么一个填“=”?一个填“≈”?
(4)第7题。注意审题:“改写”。按要求完成并交流。
(5)第8题。审题,明确题目要求,规范地书写解答。交流。
四、布置作业。
《近似数》教案 3
一、教学目标:
1.通过组织学生探讨,培养学生在解决实际问题时要根据实际情况取商的近似值的应用意识。
2.使学生能联系生活实际体会取商的近似值的不同情况,并能根据实际需要选择“进一法”和“去尾法”解决生活中的问题。
3.培养学生联系生活实际灵活解决问题的能力,体会数学与生活的密切联系。
二、教学重、难点:
感受商的'近似值的现实意义,结合生活实际正确地选择“进一法”、“去尾法”解决问题。
三、教学过程:
(一)谈话导入,揭示课题
同学们,昨天老师去逛超市。花10元钱买了3斤苹果。谁能告诉老师苹果的单价是多少呢?
板书:学生的列式计算。引导学生说出用“四舍五入”的方法取得近似值。
设计意图:除了让学生在体会学习数学是一件快乐的事情,更要让学生深刻地体会到数学知识来源于生活的实际,又服务于生活实际,体验学习探索成功给学生带来的愉快。
(二)创设情境,探究新知
1.出示例12(1):小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,(每个最多可盛0.4千克)需要准备几个瓶?
①学生独立思考,列式解答。
预设:生1:2.5÷0.4=6.25(个)
生2:2.5÷0.4=6.25(个)≈6(个)
生3:2.5÷0.4=6.25(个)≈7(个)
②组织学生以小组为单位进行讨论,说出自己的看法及理由。(小组汇报)
预设:
生1:瓶子需要整个数,不能用小数表示。把6.25个用“四舍五入法”约等于6个。
生2:6个只能装0.4×6=2.4(千克),不够装应需要7个。
③教师概括。
师:两种答案哪一个更符合生活实际?(第二种)
师:像这样,在实际生活中,将6.25中的小数点后面的尾数舍去,向个位进1,这种求近似值的方法叫做进一法。
2.再来看看王阿姨遇到的问题,如何解决?出示例12(2):王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?
①先独立思考。
预设:生1:25÷1.5=16.666……(个)
生2:25÷1.5=16.666……(个)≈17(个)
生3:25÷1.5=16.666……(个)≈16(个)
②全班交流答案,组织学生讨论,强调以理服人。
预设:生1:盒数应取整数,把16.666……(个)用“四舍五入”法应进1,约等于17个。
生2:但实际包装时,17个礼盒要用1.5×17=25.5(米)的红丝带,丝带不够包装,应是16个。
生3:16个礼盒用了1.5×16=24(米)红丝带,剩下1米不能再包装一个礼盒,所以只能16个。
③教师概括。
师:我们应取哪种呢?
师:像这样根据实际情况,将16.666……中小数点后面的尾数去掉,这种求近似值的方法叫做“去尾法”。
(三)教师小结:看来,“四舍五入”法取近似值只适用于一般情况,在解决问题时,要根据实际情况取商的近似值,有时要多一点,即“进一法”;有时要少一点。即“去尾法”。这是我们今天所学的商的近似值实际应用。(板书)
(四)巩固练习,拓展提高
第一关:试一试
第二关:比一比
第三关:选一选
第四关:说一说:
五、课堂总结:
同学们,通过今天这节课的学习,你对商的近似数又有哪些新的认识?
(一般情况下采用“四舍五入”法取商的近似数。但在解决实际问题时,要根据实际情况,用“进一法”和“去尾法”取商的近似数。)
六、板书设计:
商的近似数
10÷3= 3.333···(元)≈3.33(元)四舍五入法
2.5÷0.4 = 6.25(个)≈7(个)进一法
25÷1.5=16.66……(个)≈16(个)去尾法
《近似数》教案 4
教学内容:
用“四舍五人”法写出一个数的近似数
教学目标:
1、能说出“四舍五人”的含义。
2、能运用“四舍五人法”省略万或亿后面的尾数,用近似数表示出来。
教学重点、难点
用“四舍五人法”省略万或亿后面尾数,求出近似数。
教学过程
(一)实例导入
在我们周围的生活中,经常碰到一些与实际数值完全符合的数。如教室中有25张桌子,我们班24个男生,26个女生,像这些25、24、26都叫准确数。但在实际生活叶,有时我们很难得到或不需要准确数。如我国的粮食总产量约是4149亿千克,世界人口约60亿,像这些都是近似数。今天这节课我们就要学习用“四舍五人法”写出一个数的近似数。
(二)学习新知
1、明确“四舍五人法”
要省略万后面的尾数,就是省略什么数?看什么位?怎样的情况采用五人法?四舍法呢?它们分别怎样操作?
2、把下面各数四舍五人到万位。
(1)出示182300,指名读数。
(2)提问:这个数要四舍五人到万位,就是要省略哪一位后面的尾数?尾数的.最高位是什么?
(3)操作:保留到万位,就是要省略尾数千位、百位、十位、个位,看尾数的最高位千位,现在千位是2,比4小,所以把2300舍去,近似数就是18万。182300≈18万,强调“≈”的读写法。
(4)练习。784700≈( )万 94800≈( )万
3、尝试改写2497300。
(1)引导观察万后面尾数的最高位是几?你认为该怎样求它的近似数?
(2)反馈评讲2497300≈250万。
4、练习:297210≈( )万 2376500≈( )万
5、想想怎样求省略万后面尾数的近似数?归纳方法
(1) 看被省略尾数的最高位上的数。
(2) 比较,选用四舍法还是五人法。
(3) 写出得数。
6. 把下面各数四舍五人到亿位。
8470000000 460000000
学生先尝试练习,说说改写的思路,然后自己小结求省略亿后面尾数的近似数方法。
(三)巩固新知
396400≈( )万 2380000000≈( )亿
(四)课堂总结
1、什么叫四舍五人法。
2、用四舍五人法求一个数的近似数,主要看哪一位决定“舍”还是“人”。
3、怎样写一个数的近似数?
(五)作业
《近似数》教案 5
课题:
积的近似数
教学内容:
人教版教材P10页例6及P13页练习二第1、2、3题
教学目标:
知识与技能:
理解积的近似值,掌握求小数乘法的积的近似值的方法。
过程与方法:
经历求小数乘法的积的近似值的过程,体验迁移学习的方法。
情感态度与价值观:
在学习活动中,激发学生的学习兴趣,体验知识源于实际生活的思想
教学重点:
用“四舍五入”法取积是小数的近似值的`一般方法。
教学难点:
根据题目要求与实际需要取积的近似值。
教法与学法:
教法:创设情境,质疑引导
学法:小组合作,运用旧知迁移
教学准备:
口算卡
教学过程:
一、复习引入
(1)口算。
1.2×0.3=0.7×0.5=0.21×0.8=1-0.82=1.3+0.74=
(2)用“四舍五入”法求出每个小数的近似数。(多媒体出示)
保留整数
保留一位小数
保留两位小数
1.436
0.835
6.574
1.994
思考并回答:(根据学生的回答填空)
怎样用“四舍五入”法将这些小数保留整数、一位小数或两位小数,取它们的近似值?
小结:求小数的近似数,可以用“四舍五入”法。即要看精确数位的下一位是几,如果是4或比4小,就把尾数舍去,如果是5或比5大,就把尾数舍去,然后在精确的数位上加上1。
(3)揭题谈话:在实际应用中,小数乘法得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、探究新知
(1)创设情境。
教师:同学们,你们知道什么动物和嗅觉最灵敏吗?(学生回答:狗)所以人们常用狗来帮助侦探、看家。
教师出示教材第10页的例6的主题图。
教师:这幅图画上,你看到了什么?学生描述图画上的内容。
教师:是啊!你看狗是多么勇敢的动物,它敢把持刀的坏人抓住,我们也要有这种敢于与坏人作斗争的精神。它是怎么发现坏人的呢?
(2)教师投影出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。狗约有多少亿个嗅觉细胞?(得数保留一位小数)
学生读题,理解题意。
①怎样计算狗约有多少亿个嗅觉细胞呢?(提示:实际是要求0.049的45倍是多少)
学生思考后,在练习本上独立列式解答,教师指名学生板演。
0.049×45
0 . 0 4 9
× 4 5
2 4 5
1 9 6
2. 2 0 5
②学生思考:保留一位小数应该怎么做?
组织学生在小组中讨论,说一说取积的近似值的方法,然后指名汇报。
学生汇报时可能会说出:要保留一位小数,看百分位上是几,如果满5就舍去后向前一位进1,如果比5小,就直接舍去,2.205的百分位是0,比5小,所以舍去后面的0和5,保留一拉小数,约等于2.2.
③教师根据学生的汇报,完成板书答题。
0.049×45≈2.2(亿个)
(4)拓展:
教师:如果题目要求保留两位小数,怎样取它的近似值?
学生在小组中议一议,相互说说保留两位小数取近似值的方法:看千分位上是几,千分位上是5,所以舍去后要向前一位进1,结果是2.21。
三、巩固应用
(1)教材第10页“做一做”及P13页练习二第1题
学生独立练习后,在小组中相互交流。教师点名学生演板,集体更正。
(2)教师出示:如果两个因数的积保留两位小数的近似值是3.58,准确的值可能是下面哪个数?
3.059 3.578 3.574 3.583 3.585
学生独立思考后,在小组中讨论,使学生明确:准确值可能在3.575到3.584之间。
四、全课小结:
通过这节课的学习,你学到了什么?
五、作业:P13页练习二第2、3题
六、板书设计:
积的近似数
例6 0.049×45≈2.2(亿个)
0. 0 4 9
× 4 5
2 4 5
1 9 6
2.2 0 5
0<5,舍去0和5,保留一位小数
答:狗约有2.2亿个嗅觉细胞。
七、教学反思:
本节的教学内容是把小数乘法的计算和求小数的近似数的知识结合在一起。在教学时,主要采用的是引导学生复习旧知识,然后将两个原来没有联系的知识通过例6中的具体问题加以结合,在教学中提出这样的问题:你能用我们学过的知识自己试着解决吗?学生基本上都是利用以前的知识来解决。在此基础上组织学生交流怎样求积的近似值。在学生们交流的基础上引导他们总结出具体的步骤和方法。通过一系列练习,巩固所学的知识,增强学生的熟练度。
《近似数》教案 6
一、教学目标
(一)知识与技能
通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
(二)过程与方法
掌握用“四舍五入”法截取商的近似数的一般方法。
(三)情感态度和价值观
在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
二、教学重难点
教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:理解求商的近似数与积的近似数的异同。
三、教学准备
多媒体课件。
四、教学过程
(一)复习旧知,揭示课题
1.按照要求写出表中小数的近似数。(PPT课件出示题目。)
2.求出下面各题中积的近似值。(PPT课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
【设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。
(二)创设情境,自主探究
1.教学教材第32页例6。
(1)出示例6题目信息。(PPT课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)
【设计意图】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)
(3)引导学生交流、概括。(PPT课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的'小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
【设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。
(三)巩固应用,内化方法
1.基本练习。
(1)完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
(2)完成教材第36页练习八第3题。
①学生独立练习,教师巡视,适时指导。
②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。
2.提高练习。
判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
3.解决问题。
(1)完成教材第36页练习八第2题。
①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)
②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。
③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。
(2)完成教材第36页练习八第4题。
①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。
②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。
③完成第(2)问:提出其他数学问题并解答。
【设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。
(四)课堂小结,畅谈收获
这节课你学会了什么?有什么收获?
(五)作业练习,及时巩固
1.课堂作业:教材第36页练习八第1题。
2.课外作业:教材第36页练习八第5题。
《近似数》教案 7
教学目标:
1.使学生掌握求小数乘法的积的近似数的方法。
2.使学生经历求小数乘法的积的近似数的过程。
3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。
教学重点:
掌握求小数乘法的积的近似数的方法。
教学难点:
根据要求与实际需要取积的近似数。
教学准备:
多媒体课件。
教学过程:
一、基础训练
1.436保留整数、一位小数、两位小数分别是多少?
15.7394精确到个位、十分位、百分位、千分位分别是多少?
一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?
二、导入新课
师:同学们你们知道什么单位的嗅觉最灵敏吗?
生:狗,人们用狗来做侦探,看家。
三、进入新课
师出示教材11页情境图
师:从图上你都看到了什么?
生:描述画面内容。
师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。
投影出示例6
生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。
1.尝试题
师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)
2.自学课本
有困难的同学借助课本来学习
3.尝试练习
生:独立完成在练习本上。指名学生板演。
0.049×45≈2.2(亿个)
4.学生讨论
师:充分展示学生出现的情况,组织学生讨论,探究。
强调:横式后面写的是近似数所以要用约等号而不用等号。
明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?
生:看千分位是几,千分位上是5舍去后向前一位进一。
讨论:怎样求积的.近似数?
5.教师讲解
小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。
四、巩固练习
1.11页做一做第1题.
求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)
2.11页做一做第2题.
明确为什么保留两位小数?(生活中没有比分更小的钱币)
五、课堂作业
练习三1~3题。
六、小结:谈谈收获。
练习题
1.计算下面各题。
0.8×0.9(得数保留一位小数)
1.7×0.45(得数保留两位小数)
2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?
练习三
1.按要求保留小数数位
(1)保留一位小数
1.2×1.40.37×8.43.14×3.9
(2)保留两位小数
0.86×1.22.34×0.151.05×0.26
2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)
3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)
《近似数》教案 8
一、教学目标
(一)知识与技能
1、认识“四舍五入”法是截取积的近似数的一般方法。
2、掌握求小数乘法的积的近似数的方法。
(二)过程与方法
经历求小数乘法的积的近似数的`过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。
(三)情感态度与价值观
在学习活动中,激发学生的学习兴趣,感受知识源于生活。
二、教学重点
会用“四舍五入”法截取积是小数的近似数。
三、教学难点
能根据生活实际灵活截取积是小数的近似数。
四、新授
(一)导入(复习导入)
师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?
生:小数成整数和小数成小数。
师:今天学习积的近似数。一说到求近似乎,想一想,我们四年级学过求什么数的近似数?
生:求小数的近似数。
师:还都记得怎么做吗?
生:记得(忘了)。
师:让我们先来热热身,看看谁掌握的最为牢固。
(PPT展示题目)
求下列小数的近似数,并说出你的思考过程。
5.3456.2680.402
要求:
1、(精确到十分位)
2、省略百分位后面的尾数。
通过做题,总结规律:
1、先确定保留的数位,在要保留的数位下划条横线;
2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)
3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉
(二)情景导入
例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)
找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。
0.049×45=2.205≈2.2(亿个)竖式略
答:
此处强调两点,一个单位,一个答句不能丢。
(三)、经典练习
0.95×0.95(得数保留一位小数)
0.95×0.95=0.9025≈0.9(竖式略)
想一想,若此题改为保留两位小数,怎么做?(做在练习本上)
0.95×0.95=0.9025≈0.90(取近似数)
(四)、做一做(书上)P11现学现练,加深印象。
1、计算下面各题
0.8×0.9=0.72≈0.7(得数保留一位小数)
1.7×0.45=0.765≈0.77(得数保留两位小数)
2、一种大米的价格是每千克3.85元,买2.5Kg应付多少钱?(联系实际生活,保留适当的小数位数)
延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!
五、小结
1、学生自己谈收获。
2、老师总结课程重点。
《近似数》教案 9
教学内容:
P47,例6,练一练,第1~4题。
教材分析:
小数除法经常会出现除不尽或者商的小数位数较多的情况。但在实际生活和工作中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课让学生掌握,在一般情况下用四舍五入的`方法求近似值,但也有特殊的情况,要根据实际情况保留位数。
教学过程:
一、复习:
1.用“四舍五入”法求近似数:43.9095保留整数是( )
43.9095精确到十分位是( )
43.9095保留两位小数是( )
43.9095精确到千分位是( )
提问:用“四舍五入”法怎样保留位数的?你是怎样想的?
为什么要用约等于号?
2.引入新课:求商的近似值。
二、新授:
1.自学例6:五年级一班有42名学生,在一次救灾活动中共捐款384元。全班平均每人捐款多少元?
①学生试做例题,发现除不尽,然后交流怎么办?
②商为什么要保留两位小数?(根据实际情况回答)
③商要保留两位小数,只要除到小数部分第几位?用什么方法保留位数?
④说说余数的意义,表示几个几分之一?
2.小结:求商的近似值,一般先除到比需要保留的小数位数多一位,再按照“四舍五入”法取商的近似值。
三、巩固练习:
1.练一练,第1题。
求商的近似值,保留两位小数。(做完之后,让生说说怎么想的)
3.6÷1.7 19÷7
2.小结:判断说明。
如果要保留两位小数,那么只除到小数部分第二位,能不能判断出千分位上满不满五?
(如果除到要保留的商的位数以后,也可以看余数满不满除数的一半来取商的近似值…)
1. 练一练,第2题。
求商的近似值。保留三位小数。方法不限。
45.5÷38 0.2÷0.64
4.练习十二,第2题,填表。
想一想,每到除法算式,先除到商的哪一位上 ,再分别取近似值比较方便?
5.根据实际情况去近似值:
①有一种油桶,最多能装油2.6千克,要装40千克油,需要这种油桶多少个?
②一件衬衫要钉6粒纽扣,现有100粒纽扣,能钉多少件衬衫?
做完之后肯定有不同意见,可以让学生自己商量、讨论解决。
老师可以介绍一下两种保留位数的方法:进一法和去尾法。并交流一般在什么情况下要用到。
四、全课总结:略。
五、课堂作业:第1、4题。
《近似数》教案 10
教学目标
1进一步巩固小数乘法计算
2根据题目要求,会应用“四舍五入”法取积的近似数
3体会“四舍五入”法是解决实际问题的重要工具
知识重点
应用“四舍五入”法取积的近似数
教学难点
要根据哪个数位来进行四舍五入
教学用具
电子幻灯PPT
教学过程
教学方法和手段
引入
幻灯片出示几个语句,你知道哪些句子表述的是准确数,哪些是近似数,你是根据句子中的哪些字、词来判断的呢?
(1)我们班有52人
(2)仙岳小学现有学生数约600人
(3)小明的身高是172厘米,体重大约60千克
通过一些语句,让学生回顾准确数和近似数以及判断方法
概念分析
我们生活中有时候需要很精准的数字,比如:
但有些时候又往往不需要知道很精准的数字,只需要知道它们的近似值就可以了。那我们一般用什么方法来取近似数呢?
让学生体会生活中有时候只需要近似数,回顾四舍五入
例题讲解
一、小数四舍五入的练习
保留一位小数
0.5964≈1.025≈1.9937≈
保留两位小数
12.038≈12.3045≈
是“舍”还是“入”,要看省略的`尾数部分的最高位是小于5还是等于大于5。
二、P10例6
现在公安警察在捉拿坏人的时候经常要携带一种嗅觉非常灵敏的动物,你们知道是什么动物吗?幻灯片出示《狗抓坏人》情境图以及问题
(1)让学生自读主题、读图,用自己的话讲述题意。
(a)题目的条件(b)条件的之间关系(c)题目求什么,有什么地方需要注意
(2)独立列横式和竖式求解
(3)根据题目问题要求,如何用四舍五入求积的近似数。
四舍五入的练习是让学生判断根据哪一位来进行四舍五入。
因为题目要求保留一位小数,这时候四舍五入要看哪一位?
(百分位,百分位上是0,小于5,舍去0和5,保留一位小数)
课堂练习
P10做一做(2)P13第1、2题
《近似数》教案 11
教学目标:
通过准确数与近似数的比较,理解近似数的含义。
初步知道准确数与近似数的区别,会正确辨别准确数与近似数,并会恰当选用近似数。
通过学生的数据收集与交流,能对近似数和准确数互相转化。
体会近似数在生活中的作用,体验数学与生活的密切联系。
教学重点:
理解近似数的含义。
教学难点:
合理地取近似数。
教具准备:
铅笔
教学过程:
情境引入
师:今天老师带来了一把铅笔,请同学们猜一猜老师手中的铅笔有几支?
让学生充分地、大胆地猜。师根据学生的回答适时地提示“多得多、少得多、多一些、少一些”,并根据学生的回答在黑板上面板书。
现在老师想请你们猜一猜手中的铅笔是几十支?
根据学生的回答,板书后出示准确的数据。(18支)
现在让你们猜手中的铅笔是几十支,你会怎样说?(学生回答:大约20支)
像这样大概的数就是近似数,今天这节课我们就一起来研究近似数。
交流共享
1. 汇报课前调查各个年级的学生数。
师:老师要求你们课前调查各个年级的学生数,你们做到了吗?来看大屏幕:二年级(1)班有学生50人,那么二年级三个班大约有多少人呢?请你们猜一猜。
学生猜,老师板书后出示准确数,留下接近的数。
师:如果让你们用两句话来说这两个数字,你会怎样说呢?师引导说:二年级有学生154人,大约150人。
师:二年级有154人,那么全校有6个年级大约有多少人呢?
学生猜,老师板书,出示正确的数后留下最接近的数字。
提问:现在我们来观察一下,前面一排的数字和后面一排的数字有什么特点?(前面一排是准确的数,后面一排是大概的数)。
像这样大概的数我们就把它叫做近似数,板书。
教学例9
创设情境:小明是龙岗小学的学生,小华是东山小学的学生,一天他们俩相遇了,都说自己学校的人最多,看大屏幕。
显示:小明:“我是龙岗小学的,我们学校大约有700人”。
小华:“我是东山小学的,我们学校大约也有700人”。
同学们你们知道这两个学校到底哪个学校的`人数多吗?在小组里面说一说。
学生在充分讨论后老师指名回答,只要有道理都要给予肯定。
师:现在我来告诉你们答案吧!教师出示龙岗小学695人,东山小学703人,并引导得出:695人比700人少一些,接近700人,所以说大约有700人;703人比700人多一些,也接近700,所以也可以说大约有700人。我们可以这样用数学的方法表示:
板书:695≈700 703≈700
师边板书边引导学生说:695约等于700,703约等于700.
师问:“≈”这个符号怎么读的?(约等于。)这个符号就叫约等号。
教学“试一试”。
出示:实验小学有学生2016人,大约是几千人?
让学生充分地猜以后,优化得出2016大约是2千人,所以写成:2016≈2000
反馈检测
1.完成“想想做做”第1题。
先让学生说一说数轴上面的数有什么规律,再让学生独立完成。
完成后师问:我们一共填了哪些数,这些数中哪些接近500,哪些接近600?
2.完成“想想做做”第2题。
引导学生读题后强调题目要求:大约是几百或几千元,独立完成后集体评价。
3.完成“想想做做”第3题。
独立完成后集体评价。
总结:我们在说近似数的时候通常都是约等于几百或几千。
4.完成“想想做做”第4题。
师引导依次讨论三个子问题。
5.完成“想想做做”第5题。
怎样摆接近2000的数?先摆一摆,再读一读。你知道怎么摆接近9000、5000、1000的四位数吗?
学生独立完成,集体评价。
反思总结
提问:这节课我们学习了什么?你有什么收获和体会?
归纳:这节课我们学习了近似数,近似数是一个大概的数。
《近似数》教案 12
课题四:
商的近似数
教学内容:
教科书第23页的例7和“做一做”中的题目。
教学目的:
1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.
2、提高学生的比较、分析、判断的能力。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
3.724.185.256.037.98
2.按“四舍五入”法,将下列各数保留两位小数.
1.4835.3478.7852.864
7.6024.0035.8973.996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
二、新课
1.教学例6.
教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的`时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
教师问:保留一位小数,应该等于多少?表示计算到“角”。
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
2.做第23页“做一做”中的题目.
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
教师问:你解题时用了什么技巧?
三、巩固练习
1、求下面各数的近似数:
3.81÷732÷42246.4÷13
2、书上的作业。
《近似数》教案 13
教学内容:
教科书第14-15页例5、例6,“做一做”及练习二第3-5、7-8题。
教学目的:
1.会将整万的数改成用“万”作单位的数。
2.会用“四舍五入”法省略亿以内数万后面的尾数,求出它的近似数。
3.引导学生观察、体验数学与生活的密切联系,让学生体会数学知识来源于生活,服务于生活,培养学生主动探究的精神和用数学的意识。
教学重点、难点、关键:
1.重点:能把整万的数改写用“万”作单位的数。
2.难点:能正确地省略万后面的尾数写出它的近似数。
3.关键:把生活中的某些镜头带到学生面前,由果到因,让学生体会“近似值”在社会生活中的实际应用。
教学过程:
一、教学把整万的数改写成用“万”作单位的数。
1.投影出示白细胞和红细胞的图片,介绍白细胞:能消灭病菌,清洁血液;红细胞:能输送氧气。一小滴血液含有:红细胞:5000000个,白细胞:10000个。
2.让学生把红细胞 和白细胞的个数读出来。
①按照四位分级的方法把上面三个数表示成下面形式:
500 0000 1 0000
②让学生读出二个数:五百万、一万。
③教师:读了这些数以后,你发现了什么?
④教师根据学生的读数过程作如下板书:
500 0000=500万 1 0000=1万
3.学生观察、比较等号右边与等号左边的数。
①同学们仔细观察一下,等号右边的数与等号左边的数有什么不同?
(等号右边的数省略了万位后面的尾数,等号左边的数没有省略万位后面的尾数。
②它们有哪些相同的地方?(等号两边的数大小完全相同)
4.学生小组讨论:
①请同学们想一想,怎样用“万”作单位表示整万的数?(用万作单位表示整万的数只需要去掉万位后面的四个“0”,并写上“万”字。)
②用万作单位表示数有什么好处?
(用万作单位表示数既简单又不容易写错,使人一看就知道数的大小。)
5.小结:为了读数和写数的方便,今后我们可以直接用“万”作单位表示整万数。
6.练习:
⑴让学生独立完成第14页“做一做”1、2题,师巡视。
⑵改写完后,抽一部分同学把完成的练习在展示台上展示出来,集体评价。
二、教学用“四舍五入”法求近似数。
1.导入:
有些较大的数,有时没有必要或者无法说出它的准确数。比如,重庆市开展万人长跑活动,参加的人数约15000人,这个15000人就是一个近似数。又比如北京申办2008年奥运会的经费是20000000(2千万)美元,折合人民币约为1亿6千万元,这个1亿6千万也只是一个大概数据。既然生活中用到近似数这么多,那我们就应重视近似数的.学习,怎样求一个数的近似数呢?
我们已经学过用四舍五入法求一个数的近似数。
2.复习:
用什么方法省略4926和9375千位后面的尾数?两个数的省略方法有什么不同?(引导学生说出省略千位后面的尾数要根据百位上的数进行“四舍五入”的方法。)
师:如果把数扩大到比万大的数,还可以用同样的方法来求它的近似数吗?
3.教师出示例6
①让学生试做,同时指定一名学生在黑板上完成。
②集本订正,然后分组议一议:⑴在省略12756和1389000万位后面的尾数时,要根据哪一位上的数进行“四舍五入”?⑵在求近似数时,12756的千位上的数不满5,应该怎么办?1389000千位上的数比5大,该怎么办?⑶求出的近似数为什么不使用“等号”而要使用“约等号”?
③引导学生通过讨论,解决以上三个问题。要特别注意让学生搞清楚:因为是求一个数的近似数,不是准确数,所以要使用“约等号”。
④让学生完成第15页“做一做”的题目,然后抽学生说说是怎样想的?
4.小结:
①同学们,我们学习了把一个较大的数省略万位后面的尾数,求出近似数;我们还学习了把一个整万的数改写成用“万”作单位的数。这两方面内容在意义和方法上有什么相同的地方和不同的地方?
②学生分小组讨论,然后由每小组推荐一个代表汇报讨论结果,最后由教师总结:求近似数和改写数都要改变数的表现形式,但它们的实质是不同的,求近似数改变了原数的大小,而用“万”作单位只改变了数的表现形式,没有改变数的大小。
三、巩固练习
①完成练习二第3、5题。
订正时让学生说说改写成用“万”作单位的数和省略万后面的尾数求出近似数在方法上有什么不同。
②学生独立完成练习二第4题。
四、课堂小结
教师:同学们回忆一下,这节课我们都学了哪些知识?把一个数改写成用“万”作单位的数以及求一个数的近似数时要注意些什么?
学生小结后教师做概括性的总结和评价。
《近似数》教案 14
教学内容:
教材P77—P80
教学目的:
1、结合现实素材让学生认识近似数,并能结合实际进行估计。
2、通过教学活动培养学生的数感。
3、知识与生活实际结合,让学生体会到近似数在生活中的作用和意义。
教学重、难点:
初步理解近似数的意义。
教学过程:
一、游戏引入:猜数:教师或学生悄悄指定一个4位数,学生猜猜是什么数。猜的过程中提示学生所猜数是否与目标数接近,猜中为止。
二、探究新知
1、教学例8
(1)出示主题图和近似数“约是1500人”。
请猜猜育英小学的准确数是多少。
猜中之后提问:你如何想到这个数的?
(2)比较1500和1506两数
指出:1506是一个准确数,1500是它的`近似数,在不需要准确数据的情况下,选择一个近似数可方便记忆。
(3)一个数的近似数不唯一
出示主题图2“新长镇有9992人”
9992的近似数有什么?
同学们说的数哪个最接近9992?
在不要求准确的情况下,你会选择哪个数来表示新长镇的人数?为什么?
小结:一般情况下选择最接近的整十、整百、整千数,方便记忆。
2、生活中的数学
近似数的使用
举例:二年级同学304人,可说大约300人。
购物总价钱2998元,可说大约3000元。
学生举例
3、练习:P794、5、6
三、课堂作业P808、9
四、课后任务P807
教学反思:
《近似数》教案 15
教学目标
1.使学生把握亿级的数的大小比较方法.
2.会用“四舍五入法”求亿以上的数的近似数.
3.建立自然数的概念.
4.培养学生比较、分析的思维方法.
教学重点
比较亿以内的数的大小
教学难点
省略亿后面的尾数,求近似数
教学过程
一、教学自然数概念.
我们数物体的个数用的1,2,3,4,…,10,11,…叫做自然数.
提问:
1.这些自然数是怎样排列的?
2.每相邻的两个自然数的差是几?
3.最小的自然数是几?
4.有没有最大的自然数?
引导学生得出:自然数每相邻的两个数中,后面的一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以后还可以再数出一个比它大1的数,所以自然数的个数是无限多的
提问:
1.一个物体也没有怎样表示?
2.0是不是自然数?
引导学生得出:一个物体也没有,用0表示.0不是自然数.
自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示.
二、教学整数大小的比较.
1.复习预备.
在下面○里填上“>”、“<”或“=”.
99999999○10000000065432○754328909034○8908034
提问:
(1)每一组两个数是怎样比较的?
两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”.
(2)第二组两个数都是五位数,你是怎样比较的?
两个五位数比较,万位上大的那个数就大;所以应该填“<”.
(3)第三组的两个数你是怎样比较的?
这两个数的位数相同,就从最高位比起;假如最高位上数相同,依次比较下一位……相同数位上数大的那个数大,所以应填“>”.
2.新课引入.
我们已经学过亿以内的数比较大小,今天我们要学习的第一个内容是亿以上数比较大小.(板书课题:整数大小的比较)
3.出示例4.
比较下面每组中两个数的大小.
999999999○1000000000654320000○7543200008909034000○8908034000
第一组:
提问:
(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?
(2)假如两个数的位数不同,怎样比较大小呢?
(两个数的位数不同,位数多的那个数大)
第二组:
思考:这两个数有什么特点?怎样比较它们的大小?
(这两个数位数相同,从最高位比起,6亿多比7亿多小,应该填“<”=
第三组:
提问:这两个数都是十位数,并且左起第一位都是8,你怎样比较?
(左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大,所以应填“>”)
4.总结比较数的大小的方法.
提问:
(1)比较两个数的大小有几种情况?
(2)位数相同的两个数怎样比?先从哪一位比?假如左起第一位上的数也相同,怎么比呢?
5.练习.
比较下面每组中两个数的大小.
1231500000○9078000008036700000○796300000
40870000000○41050000000
三、教学求近似数.
1.复习.
我们学过求一个亿以内数的近似数,请你们把下面各数省略万后面的尾数,求出近似数.
7293805384000
提问:省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法.
2.新课引入.
省略亿后面的尾数,我们也可以用同样的方法求它的'近似数,这就是我们今天要学习的另一个内容.(板书课题:求近似数)
3.出示例5、省略下面各数亿位后面的尾数,求它们的近似数.
(1)1034500000(2)20897000000
学生试做,集体反馈
教师强调:省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5.不要管尾数后的几位是多少.
如第(1)题:
千万位上的数不满5,把亿位后面的尾数舍去.
如第(2)题;
千万位上的数满5,把亿位后面的尾数舍去,在亿位上加14.总结求近似数的方法.
求一个整数的近似数,要看所省略尾数的左起第一位上的数是不是满5.假如不满5,就把尾数都舍去;假如满5,把尾数都去后,要在它的前一位上加1.
四、课堂练习.
1.写出最大的九位数和最小的十位数.
提问:应该怎样想?
(要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数.同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000)
2.判定正误.
4528800000=45亿()
1214000000人≈12亿()
608754000000≈6088()
强调三种错误原因:
(1)求近似数应用“≈”符号.
(2)省略尾数后不要忘记写单位名称.
(3)求出一个数的近似数后,要写上计数单位.
3.总结性提问:
(1)怎样比较两个整数的大小?
(2)怎样省略亿后面的尾数,求它的近似数?
五、课后作业.
1.省略下面各数亿位后面的尾数,求出它们的近似数.
4280000006680000005083000000
2.先写出下面各数,再用“亿”作单位写出它们的近似数.
二亿零八百九十六万五十九亿八千三百万
四亿九千九百七十万六百二十九亿四千万
六、板书设计.
《近似数》教案 16
教学目标:
1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。
教学重点:
掌握用“四舍五入法”求一个小数的近似数。
教学难点:
求小数的近似数时,小数末尾的“0”不能去掉的理解。
教学过程:
一、复习旧知,情境导入。
1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!
2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。
先写黑板:12953≈1万
3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)
师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。
师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)
4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?
学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!
二、整合情景,探究交流。
1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)
这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?
保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。
谁再来说一遍?(2-3名同学。表扬。)
2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?
(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。
3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的.近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。
4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)
5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)
不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。
求得的近似数1.0和1比较,哪一个更精确一些,为什么?
幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。
三、练习。(智力闯关。)
同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。
1.第一关。保留一位小数。
0.58≈0.63.788≈3.8
精确到百分位。精确到百分位就是保留几位小数?
12.004≈12.001.987≈1.99
保留整数。
9.956≈109.0448≈9
2.第二关。在□里填数。
2.9□≈2.98.5□7≈8.56
3.第三关。
姚明的身高约为2.2米,姚明的身高可能是多少米?
2.15(6、7、8、9)2.155……
2.20(1、2、3、4)2.……
四、全课。
你今天有哪些收获?保留一位小数,就是精确到十分位,……
板书设计
求小数的近似数
12953≈1万0.984≈0.98保留两位小数,看千分位。
小于5,舍去。小于5,舍去
0.984≈1.0保留一位小数,看百分位。
0.984≈1保留整数,看十分位。
大于5,向前一位进1。
【《近似数》教案】相关文章:
《商的近似数》教案03-13
商的近似数教案02-26
《积的近似数》教案03-30
比较数的大小,求近似数教案05-31
小数近似数的教案模板02-21
《求小数的近似数》教案03-18
《求小数的近似数》教案07-01
《近似数》教案15篇03-15
比较数的大小,求近似数07-29