- 相关推荐
六年级数学广角鸽巢问题教案
作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?以下是小编为大家收集的六年级数学广角鸽巢问题教案,欢迎大家借鉴与参考,希望对大家有所帮助。
六年级数学广角鸽巢问题教案1
教学目标:
1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。
2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。
3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。
教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。
教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。
教学过程:
一、 唤起与生成
1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。
2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!
3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。
确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。
4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!
二、探究与解决
(一)、小组探究:4放3的简单鸽巢问题
1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
2、审 题:
①读题。
②从题目上你知道了什么?证明什么?
(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)
③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?
“不管怎么放”:就是随便放、任意放。
“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。
“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。
3、探 究:
①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?
②活 动:小组活动,四人小组。
听要求!
活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。
听明白了吗?开始!
3、反 馈:汇报结果
同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?
可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)
追 问:谁还有疑问或补充?
预设:说一说你比他多了哪一种放法?
(2,1,1)和(1,1,2)是一种方法吗?为什么?)
只是位置不同,方法相同
5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?
(1)逐一验证:
第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?
符合总有一个笔筒里至少有2支铅笔。
第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。
第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。
符合条件的.那个笔筒在三个笔筒中都是最多的。
(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?
(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。
所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。
(二)自主探究:5放4的简单鸽巢原理
1、过 渡:依此推想下去
2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。
3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)
4、验 证:你们的猜测对吗?让我们来验证一下。
活动要求:
(1)思考有几种摆法?记录下来。
(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。
好,开始。(教师参与其中)。
5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法
分别是:5000 、4100、 3200、 3110 、2200、2111
(课件同步播放)
预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。
6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。
7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:
①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。
②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。
不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。
(三)、探究鸽巢原理算式
1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?
还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?
(好麻烦,是啊, 想想都觉得麻烦!)
2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?
其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?
3、平均分:为什么这样分呢?
生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)
师:你为什么要先在每个笔筒中放1支呢?
生:因为总共只有4支,平均分,每个笔筒只能分到1支。
师:为什么一开始就要去平均分呢?
生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。
师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?
生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
师:看来,平均分是保证“至少”数的关键。
4、列式:
①你能用算式表示吗?
4÷3=1……1 1+1=2
②讲讲算式含义。
a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。
b、真棒!讲给你的同桌听。
5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。
5÷4=1……1 1+1=2
说说算式的意思。
a、同桌齐说。
b、谁来说一说?
师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。
(四)探究稍复杂的鸽巢问题
1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?
2、题组(开火车,口答结果并口述算式)
(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔
7÷5=1…… 2 1+2=3?
7÷5=1…… 2 1+1=2
出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)
你认为哪种结果正确?为什么?
质 疑:为什么第二次还要平均分?(保证“至少”)
把铅笔平均分才是解决问题的关键啊。
(3)把笔的数量进一步增加:
8支铅笔放5个笔筒里,至少数是多少?
8÷5=1……3 1+1=2
(4)9支铅笔放5个笔筒里,至少数是多少?
9÷5=1……4 1+1=2
(5)好,再增加一支铅笔?至少数是多少?
还用加吗?为什么 10÷5=2 正好分完, 至少数是商
(6)好再增加一支铅笔,,你来说
11÷5=2……1 2+1=3 3个
①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)
②那同学们再想想,铅笔的支数到多少支时,至少数还是3?
③铅笔的支数到多少支的时候,至少数就变成了4了呢?
(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6
(8)算的这么快,你一定有什么窍门?(比比至少数和商)
(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)
3、观察算式,同桌讨论,发现规律。
铅笔数÷笔筒数=商……余数” “至少数=商+1”
你和他们的发现相同吗?出示:商+1
4、质疑:和余数有没有关系?
(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)
(五)归纳概括鸽巢原理
1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?
100÷30=3…… 10 3+1=4 至少数是4个
(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)
2、推广:
刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:
(1)书本放进抽屉
把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?
8÷3=2……2? 2+1=3
(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)
(2)鸽子飞进鸽巢
11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?
11÷4=2……3? 2+1=3
答:至少有 3只鸽子飞进同一只鸽笼。
(3)车辆过高速路收费口(图)
(4)抢凳子
书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。
3、建立模型:鸽巢原理:
同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:
知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。
5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?
有信心用我们发现的原理继续接受挑战吗?
3、巩固与应用
那我们回头看看课前小魔术,你明白它的秘密了吗?
1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。
答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。
正确应用鸽巢原理是表演成功的秘密武器!
2、飞镖运动
同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。
课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。
在练习本上算一算,讲给你的同桌听听。
谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)
41÷5=8……1? 8+1=9
在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。
3、我们六年级共有367名学生,其中六(2班)有49名学生。
(1)六年级里至少有两人的生日是同一天。
(2)六(2)班中至少有5人的生日是在同一个月。
他们说的对吗?为什么?
同桌讨论一下。
谁来说说你们的想法?
1、367人相当于鸽子,365、或366天相当于鸽巢......
2、49人相当于鸽子,12个月相当于鸽巢......)
真理是越辩越明!
3、星座测试命运
说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?
你用星座测试过命运吗?你相信星座测试的命运吗?
我们用鸽巢原理来说说你的想法。
全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。
4、柯南破案:
“鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?
(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:
年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?
大爷:是什么手机号呢?这么贵?
年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!
老大爷:哦!
听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。
聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?
(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)
4、 回顾与整理。
这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!
下 课!
板书设计:
鸽? 巢? 问? 题
物体? 抽屉 至少数
4? ÷ 3 =? 1……1 1+1=2?
5? ? ÷ 4? =? 1……1? ? ? 1+1=2?
7? ? ÷ 5? =? 1……2? ? ? 1+1=2
9 ÷ 5? =? 1……4? 1+1=2
11 ? ÷? 5? =? 2……1 ? 2+1=3
28 ÷ 5? =? 5……3? 5+1=6
100 ? ÷ 30? =? 3……1 3+1=4?
m ÷ n = 商……余数? 商+1
六年级数学广角鸽巢问题教案2
教学目标:
1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。
2.通过操作发展学生的推理能力,形成比较抽象的数学思维。
教学重点:
经历“鸽巢问题”的`探究过程,初步了解“鸽巢问题”。
教学难点:
运用“鸽巢问题”,解决一些简单的实际问题。
教具准备:
每组都有相应数量的杯子、小球、扑克牌、多媒体课件。
教学过程:
一、游戏引入:
师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。
请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。
师小结:一定有一个杯子里至少有两个小球。
同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题
二、探究原理:
1、动手摆一摆,感受原理。
(1)探究物体个数比抽屉多1的情况。
例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。
全班分小组摆一摆。
各组长边摆边记录。教师板书,全班同学报数,一起记录。
联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。
师:总有一个杯子至少有……
师:a、总有是什么意思?
师:b、“至少”又是什么意思? “至少squo;的意思是2根或2根以上。
师:如此往下想,7根小棒放在6个杯子里,
10根木棒放进9个杯子里
100根木棒放进99个杯子里会有怎么样的结论?
要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。
学生讨论。
师:想出什么办法?谁来说说。
刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?
(边摆边说。如果用算式怎样表示?板书(4÷3=1……1)
学生得出:只要小棒数量比杯子数量多1都有这样的结论。
2、探究商不是1的情况。
讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?
那8本书进3个抽屉里。
10本书放进3个抽屉里又是怎样?你发现了什么?
我发现7÷3=2……1
8÷3=2……2
10÷3=3……1
板书:至少数=商+1。
小结:我们今天探究的原理就是数学中有名的鸽巢原理。
三、本课总结:
鸽子÷鸽巢=商……余数
至少数=商+1
四、用今天知识来解决生活中的一些实际问题。
1、做一做
2、玩扑克的游戏。
五、板书:略
六年级数学广角鸽巢问题教案3
设计说明
本节课复习的是“图形与几何”领域的知识,注意引导学生构建知识网络,加强学生动手操作能力的培养,把所学知识运用到实际生活中,使复习课的数学课堂鲜活而精彩。
1.引导学生归纳总结,构建知识网络。
复习整理重在引导学生回忆学过的知识,并梳理成知识网络,构建良好的知识体系。由于长方体和正方体的知识点众多,各概念之间的联系十分紧密,学生容易混淆,因此尝试让学生回忆相关知识点,列出复习纲要,利用表格的形式分别对长方体和正方体的特征、表面积和体积的意义等知识进行整理,建构知识网络,从而形成良好的认知结构。
2.注重知识间的融会贯通。
在练习的`过程中,如果要将长方体和正方体所有的知识点一一进行练习,那么显然题型过多,题量过大,不利于知识间的比较。因此,本节课在练习时利用“鱼缸”这个素材,把一个个知识点系统地贯穿起来,让学生围绕“鱼缸”这一情境提出相关的问题,并加以解决。这样的设计不仅能加深学生对各知识点之间的联系与贯通,还能培养学生灵活运用知识的能力。
课前准备
教师准备ppt课件
教学过程
⊙直接引入,回顾知识
1.直接揭示课题:长方体和正方体及确定位置的复习。
2.整理知识点。
(1)展示整理要求:
①想一想关于长方体、正方体及确定位置的相关知识点。
②概括出各知识点,用自己喜欢的方式表示出来,尽量做到简洁明了,便于记忆。(提示:可以用图表法、树形图法或列举法表示)
(2)小组交流,要求:组长和组员相互介绍自己整理了哪些知识点。比较一下谁整理得简洁明了,便于记忆。
(3)展示学生的学习成果。(投影展示)
长方体和正方体
确定位置必备的要素:确定观测点和方向,同时还要量出距离和角度。
设计意图:复习本节课的重要目的是知识的综合化,因此,复习时要注意对知识进行归纳整理,使之条理化、系统化,并构建知识网络。
⊙归纳整理,系统复习
1.复习长方体和正方体的特征。
长方体和正方体有什么相同点和不同点?它们之间有什么联系呢?怎样整理才能让人很清楚地看出它们之间的异同与联系呢?
(1)学生小组合作整理表格。
(2)展示交流,构建知识网络。
(1)关于表面积、体积和容积,你都知道些什么?你能用自己喜欢的方式把这些知识进行整理吗?
2.长方体和正方体的表面积、体积、容积。
(2)学生独立整理。
(3)展示交流,构建知识网络。
六年级数学广角鸽巢问题教案4
教学目标:
通过复习练习,进一步掌握分数、百分数、小数的互化的方法。进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。分数、小数等有关性质。
教学设计:
一、复习小数、分数、百分数、成数、折扣等互化
表格出示:给出其中一种,要求转化成另外几种数。学生独立完成后,指名交流,说明转化方法。
0.35 1/4 140%六成五八折
二、分数、小数有关性质及其关系
出示:12÷( )=3/4=( ):36=( )/12=( )%
学生独立填写。交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?
三、巩固练习
1、第86页第12题
独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.
第2小题:后面的数总比前面小,越来越接近0
2、第86页第13、14题
读题理解要求。再按要求完成。
四、补充练习
填空题
1.有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作( ),读作( ),它的计数单位是( )。
2.六亿零六十万零六十写作( ),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。
3.两个相邻的自然数,它们的差是( )。一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。
4.如果a+1=b,那么它们的最小公倍数是( ),最大公因数是( )。
5.把0.625的小数点向左移动两位是( ),它缩小了( )倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是( )
7.五个连续自然数的和是200,这五个自然数分别是( )、( )、( )、( )、( )。
8.最大的`一位纯小数比最大的两位纯小数小( );最小的两位纯小数比最小的三位纯小数大( )。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是( )。
10.按从小到大的顺序排列下列各数:
0.329 1.024 1.6 0.705 1 0.333…… Π 0
选择题
1.最大的小数单位与最小的质数相差( )。
a. 1.1 b. 1.9 c. 0.9 d. 0.1
2.一个自然数的最小倍数是18,这个数的约数有( )个。
a. 2 b. 4 c. 6 d. 8
3.小数点向右移动两位,原来的数就( )。
a.增加100倍b.减少100倍c.扩大100倍d.缩小100倍
【六年级数学广角鸽巢问题教案】相关文章:
《鸽巢问题》教学反思03-23
鸽巢问题教学反思07-02
鸽巢问题教学反思07-04
鸽巢问题教学反思(通用12篇)03-15
《鸽巢原理》教学反思03-23
数学广角教案11-18
《数学广角》教案05-19
数学广角《重叠问题》教学反思04-08
《数学广角》教案(通用)07-22