《平均数》 教案
作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?以下是小编为大家整理的《平均数》 教案,欢迎大家分享。
《平均数》 教案1
一、教学目的
1.进一步理解平均数的意义。
2.掌握求较复杂的平均数的解题方法,会根据收集到的数据求平均数。
3.培养学生具体问题具体分析的能力。
4.使学生认识到求平均数这一知识在现实生活中的意义,激发学习兴趣。
二、教学重点
使学生掌握较复杂的平均数应用题的解题方法。
三、教学难点
通过学习,使学生能够找准问题与条件,条件与条件之间相对应的关系,运用所掌握的方法灵活解答相关问题。
教学对象分析
低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。
教学策略及教法设计
教学时有意识创设情境,激发学生探索问题的`欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用。
1.多媒体教学
运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性。
2.动手操作法
引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化。
四、教学过程
1.复习较简单的平均数问题
出示复习题。
求平均数需要知道哪两个条件?怎样求平均数?
把复习题稍微改动一下,就是我们今天要学习的较复杂的求平均数问题。
2.学习例题①
(1)指名读题。
(2)启发提问。
①例题①的已知和问题与复习题的有什么不同?
②要求全班平均每人投中多少个,必须先知道什么条件?
③怎样求全班共投中多少个?
怎样求全班共有多少人?
怎样求平均数?,
(3)列综合算式并解答问题。
3.学习例题②
(1)指名读题。
(2)启发提问。
①例题②与刚学过的例题①有什么异同?
②要求全班平均每人投中多少,必须先知道什么条件?
③怎样求全班一共投中多少人?
怎样求全班一共有多少人?
怎样求平均数?
(3)列综合算式并解答问题。
(教师应告诉学生,求得的平均数有时不能恰好除尽,这时只要根据具体情况取近似值就可以了。这道题中已知数只有一位小数,因此得数取一位小数就可以了。)
(4)例题①与例题②有什么不同,解答时应注意什么?
(再次强调例题①与例题②的区别,培养学生具体问题具体分析,防止死套公式。)
4.完成书后“做一做”
五、课堂练习
●基础练习
1.填空。
(1)平均数=( )÷( )
(2)( )×( )=总数量
(3)总份数=( )÷( )
2.选择题。
(1)五年级两个班为希望工程捐款,一班42人共捐168元,二班45人共捐210元,平均每个班捐款多少元?正确列式为 ( )
A.(168+210)÷2 B.(168+210)÷(42+45)
(2)一个工厂前3天烧煤4.8吨:后4天烧煤7.8吨,这个工厂一星期平均每天烧煤多少吨 ( )
A. (7.8+4.8)÷(4—3) B. (4.8+7.8)÷(4+3)
●综合练习
1.劳动实践。
(1)同学们在校办工厂里糊纸盒。第一小组10人,平均每人糊7个;第二小组8人,平均每人糊6个;第三小组5人,平均每人糊4个。三个小组平均每人糊多少个?
(2)春光小学五年级同学参加春季植树,领来白杨树苗140棵,梧桐树苗60棵,桑树苗25棵,共分给5个班种,平均每班种多少棵?
2.下表是四年一班各组同学寒假阅读课外读物情况统计表。全班平均每人看多少本课外读物?(得数保留整数)
各组人数
12
14
13
12
平均每人阅读本数
6
4.5
5
5
●实践与应用
王华同学五次语文、数学单元练习成绩如下:
第一次:语文92.5分 数学100分
第二次:语文88分 数学97分
第三次:语文94分 数学98.5分
第四次:语文98.5分 数学100分
第五次:语文99分 数学97分
先分别算出五次语文、数学两科的平均分,再制成统计表。
王华同学五次语文、数学单元练习成绩统计表
年 月
板书
求平均数
① 五年级一班分成3组投篮球第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?
(1)全班一共投中多少个?
28+33+23=84(个)
(2)全班一共有多少人?
10+11+9=30(人)
(3)全班平均每人投中多少个?
84÷30=2.8(个)
综合算式:(28+33+23)÷(10+11+9)=2.8(个)
答:全班平均每人投中2.8个。
② 下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数。)
各组人数
12
11
10
平均每人投中数
2.5
3
3.2
(1)全班一共投中多少个?
2.5×12+3×11+3.2×10=95(个)
(2)全班一共有多少人?
12+11+10=33(人)
(3)全班平均每人投中多少个?
95÷33≈2.9(个)
综合算式:(2.5×12+3×11+3.2×10)÷(12+11+10)≈2.9(个)
答:全班平均每人投中2.9个。
《平均数》 教案2
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对权的理解
3、难点的突破方法:
首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的`分子。
在教材P136讨论栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?
通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。
《平均数》 教案3
教材分析:
平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。
本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。
学情分析:
本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。
教学目标:
1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。
3、情感态度与价值观:在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。
重难点:
重点:理解平均数的含义,会求平均数。
难点:平均数的统计意义。教学准备:PPT、教具。
教学过程:
一、激情引入
师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)
师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)
师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)
师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。
二:学习新知
师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)
师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)
师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)
师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。
师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。
师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)
师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)
师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。
师:老师问问你们,求出的`平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。
师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。
师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?
三、知识运用
师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?
(播放踢毽比赛的视频)
师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?
生:不公平,人数不同,不应该比较总数,应该比较平均数。
师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。
师:那同学生动手计算出男女两队的平均成绩,判出胜负。
师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)
师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。
四、课堂小结
师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)
五、作业
92页做一做第二题
六、板书
平均数代表总体水平
总数÷ 份数=平均数
(14+12+11+15)÷ 4 =13(个)
最大的数>平均数>最小的数
《平均数》 教案4
教学内容:
教学目标:
1.通过观察、比较、计算等方法,理解平均数含义。
2.引导学生探索求平均数的一般方法。
3.理解平均数的特征,体验平均数的价值。
教学重点:
理解平均数的含义。
教学难点:
理解平均数的特征。
教学过程:
一、谈话引入
二、探究
1.平均数的意义
出示:某工厂两个生产小组进行制作海宝比赛。
每位工人1时加工情况如下:
第一组
第二组
1)你认为哪一组工人获胜?
2)比总数公平吗?怎么比比较合理?
3)你有什么办法能知道平均每人加工的个数?(揭题:平均数)
a.用移多补少(根据学生的回答演示课件)
b.列式计算
(7+8+6)3=7(个)
(3+7+4+10)4=6(个)
4)观察:6是哪个工人加工的个数?
5)归纳:在人数不相等的情况下,比哪一组的成绩好,一般比平均结果比较公平。
2.平均数的概念 出示条形统计图:上海世博会9月1日至9月5日参观人数统计图。
1)尝试计算
2)观察交流:什么是平均数?
3)归纳:将一组资料中数值的总和除以这组数值的个数,所得到的数叫做这组数值的平均数。
3.平均数的计算方法:平均数=总和个数
4.平均数的特征 出示10月1日至10月5日参观人数统计图
1)估计平均数
2)计算、交流、分析
3)观察讨论:观察一下这几个平均数,你发现了什么? 归纳:也就是说,一组数据的平均数,它的大小是在这一组数据的最小值与最大值之间。
4)思考:9月份5天的平均数代表什么?是某一天入园的人数吗?你怎样理解这个数?10月份的.呢?这两个39万人的意义相同吗?
归纳:所以说平均数并不代表某一个具体的数量,它指的是一组数据的总体水平。
4.小结:通过刚才的学习,
我们知道了什么叫平均数,也知道通常情况下可以用总和除以个数来计算平均数,一般情况下,一组数据的平均数,它的大小是在这一组数据的最小值与最大值之间;平均数并不代表一个具体的数量,它指的是一组数据的总体水平。
《平均数》 教案5
一、教学内容:
人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》
二、教学准备:
直尺、三角板,学生按矮到高的顺序坐好。
三、教学目标与策略选择:
以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:
1、通过观察、比较,理解平均数不是一个具体的数(实际的数);
2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;
3、学生能掌握求平均数的方法:(1)移多补少;(2)先求总数再平均分等;
4、体现总体与样本的关系。
鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:
1、以“情”、“趣”开路。
2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。
四、教学流程设计及意图:
教学流程
设计意图
一、活动导入,引出平均数的意义。
1、创设情境:比身高。
(1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)
(2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?
(3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)
师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......
(4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?
师:如果不请男同学上来了,你觉得还有其它比较的办法吗?
2、同桌学生讨论。生:求出几个同学的平均数。
3、现场测量台上同学的身高。
4、学生尝试练一练,指名板书。
5、比较结果。是男同学高,还是女同学高。
6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。
二、延伸拓展,形成统计观念。
1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?
2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?
生:先把所有的身高加在一起,再除以有40人。
师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?
生:......
3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?
(1)学生参考选取第一排或第五排。
(2)选取第一组的学生比较有代表性。
4、估计。
师:你们先估计一下,第一组5个同学的平均身高是多少?
生:......(不会比最大的大,比最小的小)
5、学生计算。
6、进一步感悟平均数。
师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。
7、小结方法。
师:我们来观察一下,刚才我们是怎样求平均数?
生:先求总数(板书),除以人数,等于平均身高。
三、应用提高,深化统计观念。
1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......
2、你觉得有危险吗?
小朋友说:我身高140厘米,在这里游泳不会有危险。
2、猜猜看:
3根小棒,平均3根小棒,平均
每根长10厘米每根长15厘米
(1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?
(2)举例。师:能举个例子吗?同桌商量一下。
(3)汇报。
3、变式练习。
(1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?
①(39+87)divide;2=63(万张)
②(39+87)divide;3=42(万张)
(2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?
①(39+22+23)divide;2=42(万张)
②(39+22+23)divide;3=28(万张)
质疑:为什么两个数要除以3?三个数相加要除以2呢?
小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)
4、读信息,了解最新动态,解决实际问题。
(1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?
(2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?
(3)计算--课件验证。
(4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?
四、全课总结。
以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的'量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。
通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。
在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。
五、教学片断实录:
片断一:
开场白:今天我们进行一场比赛--比身高。板书:男、女
师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)
师:你们说谁比较高?
生:男同学。
师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?
生:还是男同学。(男同学似乎很得意)
师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)
此时学生大笑。
师:你们笑什么呢?
生:这个男同学这么矮?
师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。
师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?
生:是男同学。生:是女同学。生:一样高。
师:怎么比呢?
生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)
生:可以把男同学或女同学的身高加起来,再比较。
另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。
......
师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?
生:女同学或不公平。
生:还得再叫一位男生上来。
师:如果不请男同学上来了,你觉得还有其它比较办法了吗?
同桌讨论。
生:求出男、女生的平均身高。......
六、教学反思:
1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。
2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。
《平均数》 教案6
教学目的:
⒈、经历平均数产生的过程,理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。
⒉、在解决问题的过程中培养学生的分析、综合、估算和说理能力。
⒊、渗透统计初步思想。
教学实录:
一、创设情境,提出问题
师:从孩子喜欢的球类运动入手:“小朋友们,你们都喜欢什么球类运动?”
生:“足球!”“篮球!”“乒乓球!”……
师:“这么多小朋友都喜欢足球,我也和你们一样是个球迷!不过,今天由于场地的限制,我们想组织一次拍球比赛,有兴趣吗?”
生:“有!”
师:“咱们全班男女生分为两大组,每组商量一下,先为本组起一个名字。”
(很快,男生组起名叫“必胜队”,女生组起名叫“快乐队”。)
师:“如果一个人一个人地来拍球,时间肯定不够,咱们想个办法,应该怎样进行比赛呢?”
【课伊始,趣已生。从孩子喜欢的游戏入手,激发了学习兴趣;让孩子自己想出比赛的办法,把自主权留给了孩子。】
二、解决问题,探求新知
1、感受平均数产生的需要
问题提出,同学们马上有办法,各队推选一名最有实力的代表进行比赛。比赛开始,男生10秒钟拍球19个,女生10秒钟拍球20个,老师宣布“快乐队”为胜。男生马上不服气,“不行!不行!一个人代表不了大家的水平!再多派几个人!”于是,两队又各派四人上台。比赛结果:男生队拍球数量为:17、19、21、23。女生队拍球数量为:20、18、15、23。同学们用计算器算出:“必胜队”拍球总数为80个,“快乐队”拍球总数为76个。老师高高地举起男生代表的小手宣布:“必胜队胜利!”“吔!”男孩子们高兴地跳了起来,女生们则沮丧地低下了头。
这时老师来到了弱者的一边,安慰女生“快乐队的小朋友们,不要气馁,我来加入你们队好不好?”“太好了!”于是,我现场拍球29个。“快算算,这回咱们快乐队拍球的总数是多少?”女生很快算出:105个。“这一次我宣布:快乐队胜利!”女同学的脸上现出了微笑,男生们却马上反驳:“不公平!不公平!我们是4个人,快乐队是5个人,这样比赛不公平!”
“哎呀,看来人数不相等,就没法用比较总数的办法来比较哪组的拍球水平高,这可怎么办呢?”
一个胖胖的'小男孩站起来伸开双臂,结结巴巴地说:“把这几个数匀乎匀乎,看看得几,就能比较出来了。”
“求平均数!”几个孩子脱口喊了出来。
【在一次又一次的矛盾激化中,在现实生活的需要中,学生请出了“平均数”。可爱的孩子一句“匀乎匀乎”,表明孩子们已经从实际问题的困惑中产生了求平均数的迫切需求。】
2、探索求平均数的方法
“我们怎样求出平均数呢?你能想办法试一试吗?”很快,有同学把大数多的部分匀乎给了小数,使数字平均;有的学生用计算的方法:(17+19+21+23)÷4=20(个)(20+18+15+23+29)÷5=21(个)通过求平均数,比较得出“快乐队”为胜方。
3、理解平均数的意义
平均数已经求出来了,但探讨并没有就此停止,我继续引导大家:“快乐队拍球的平均数是21,21代表什么?你怎么认识理解21这个数?”
孩子此时也发现了问题:“怎么没有一个人拍球的数量是21呀?“
“是呀,21是谁拍的数量呀?”老师俨然一个大朋友般地与孩子们一起陷入了思考。此时的课堂很安静,老师在耐心地等待着。
终于,一个清秀的小女孩站起来说:“21是这几个数的平均数。”
老师我马上追问:“什么是平均数呀?”
生1:“就是把大数多的部分往小数上匀乎匀乎。”
生2:“平均数是一个虚的数,比最小的数大一些,比的数小一些,在它们中间。”
生3:“平均数不是某一个人具体的拍球数量,它代表的是几个人拍球的平均水平。”
此刻,老师再也抑制不住激动的心情:“孩子们,你们真是太棒了!平均数正如你们所说,它不是一个实实在在的数,而是代表一组数的平均值。你们的学习精神和理解能力真让我佩服!”
【在老师精心创设的情境中,在孩子们的亲身感受中,他们用自己稚嫩的语言道出了他们对平均数意义的理解,虽然这只是初步的,但却是非常有价值的。】
三、联系实际,拓展应用
少儿歌手比赛(出示题目)你知道1号歌手的实际得分是多少吗?
同学们经过计算得出:(93+98+95+83+92+96+94+)÷7=93(分)。
此时电脑上出现1号歌手的实际得分是94分。
师:“咦?这是怎么回事?”“为什么小朋友们计算1号歌手的得分是93分,而电脑给出的却是94分呢?是我们错了,还是电脑错了?”教师里一片寂静。
突然,一个小朋友大声说:“是我们错了!我们看歌手比赛的时候,还要去掉一个分和一个最低分呢?”
师:“噢!想起来了,是这样的。”
孩子们用自己的生活经验找到了症结所在。同学们马上自觉地又伏案计算,去掉一个分98分,去掉一个最低分83分,(93+95+92+96+94)÷5=94(分)。电脑给出的答案是正确的。
【一个生活实例的巧妙运用,使孩子们深深地体会到在生活中不能死套公式,知识的运用要结合具体情况具体分析。那一段时间的沉默,留给孩子的是一片思考的空间。等待是一种艺术,空白也是一种艺术,我们在课堂上应该善于等待,恰到好处地运用等待艺术。】
四、总结评价,布置作业
通过这节课的学习,你有什么收获?还有什么遗憾?你认为应该给自己布置什么样的作业?”
《平均数》 教案7
教学目标:
1. 经历用平均数描述一组数据特征的过程,在具体的问题情境中体会平均数的意义,掌握求简单平均数的方法。
2. 自主探究移多补少及先合后分的求平均数的方法,会估计平均数的范围,能灵活选择合适的方法解决求平均数的实际问题。
3. 体会平均数在生活中的应用价值,在运用平均数知识解决问题的过程中,增强应用意识,发展统计观念。
教学重点:
体会平均数的意义,掌握求平均数的方法.
教学难点:
根据平均数的意义,对一些简单事件做出合理的分析和判断.
教学过程:
一.问题导学,自主学习:
1.创设问题情境:
师: 在光明小学举行的趣味运动会上,二年级第一小组的男女生进行了一场激烈的套圈比赛.让我们一起去看看比赛情况.(课件演示,引导学生观察)
a.问题:观察男女生套圈成绩统计图,从图中你知道些什么?
b.设疑:你认为男生套得准一些还是女生套得准一些?
c.说明:要想判断谁套得准一些,为了体现公平性,就要用到平均数.
2.揭示课题:认识平均数明确学习目标:
a.了解平均数的意义.
b.掌握求平均数的.方法.
3.预习交流:
[小组内简单交流对平均数含义的理解和求平均数的方法,提出质疑.]
过渡:
回归课前的疑问,让我们一起去探究有关平均数的问题.
4.自主预学:
a.男生队套圈总数:6+9+7+6=()个
b.女生队套圈总数:10+4+7+5+4=()个
思考:
a.比较男女生套圈总数,这样比,你认为公平吗?为什么?
b.怎样比才够公平?
学情分析:
[能否从男女生参赛人数上的不同去衡量.]
二.小组合作探究:
问题:
1.怎样求男生,女生平均每人套中的个数呢?
2.你认为先求什么?再求什么?
学法指导:
a.明确总数份数和每份数三者之间的关系.
b.根据求每份数的方法,引导学生探索求平均数的方法.
三.展示交流,点拨提升:
1.探究展示:
学情预设:
男生:6+9+7+6=28(个)
28÷4=7(个)
女生:10+4+7+5+4=30(个)
30÷5=6(个)
说明:7和6就是男女生套圈个数的平均数,它反映了一组数据的一般水平,并不表示每个人套中的实际个数.
2. 质疑:
分别用套圈的总个数去除以他们的什么?(总人数).
3. 精要点拨:
明确:求平均数,要找准和总数对应的份数.
方法:总数÷份数=平均数
过渡:
师:除了用先合后分的方法求平均数,还有其他求平均数的方法吗?
课件演示:移多补少的方法.
说明:
先合后分和移多补少都是求平均数的方法,在计算时,我们可以选用先合后分的方法求平均数,而移多补少的方法适合于操作时使用.
4. 平均数的范围:
观察与思考:
平均数7和6,相比它们所在的一组数据的大小,有什么特点?
重难点突破:
明确::在一组数据中,平均数比最大的数小,比最小的数大.
四.训练检测,总结反思:
小华家1月~5月用水情况统计表
1月2月 3月 4月 5月
13吨 10 吨 11吨 9吨 12吨
(1).小华家平均每月的用水量在( )吨和( )吨之间.
(2).算一算:平均每月的用水量是多少吨?
[学生独立完成,小组内交流]
想一想:
1. 怎样确定平均数的取值范围?
2. 求平均数的方法是什么?你先求的什么?
归纳与总结:
a.最大的数>平均数>最小的数
b.平均数等于总数除以对应的份数
五.综合实践与应用:
1.想一想,下面的说法是否正确,简单说明理由。
①、小明期中考试语文、数学、英语三门功课的均分是95分,那么他的三门功课一定都是95分.()
②、小马过河:河的平均水深为130厘米,小马身高140厘米,小马过河不会有危险。( ) [学生独立思考后,小组里交流判断依据]
重点明确:
根据平均数的意义,并不表示:1.每门的成绩都是95分,有的高于95分,有的低于95分.
2.处处水深130厘米,有的低于130厘米,而有的地方比130厘米深的多.
2.知识达标:
同学们收集标本,小红收集了14个,小兰收集了12个,小丽收集了11个,小明收集了15个,平均每人收集多少个标本?
[进一步巩固求平均数的方法]
3.智能积累:
三年级的8名同学分两组向灾区捐款,一组捐了220元,二组捐了180元。
①、平均每名同学捐款多少元?
②、平均每组同学捐款多少元?
思考:两道题在解答时,有什么相同点和不同点?
重点明确:
相同点:都是先求捐款的总数.
不同点:各自对应的份数不同.
知识延伸:
小力前5次英语测验的平均分是91分,第6次得了97 分,他6次测验的平均分是多少分?
六.全课总结:
通过学习,你有什么收获?还有哪些疑惑?
当堂检测:
有3条彩带,长度分别是9厘米,17厘米,10厘米,平均每条彩带长多少厘米?
板书设计:
认识平均数
(一)1.移多补少
2.先合后分 男生:6+9+7+6=28(个)
28÷4=7(个)
女生:10+4+7+5+4=30(个)
30÷5=6(个)
方法:总数÷份数=平均数
(二)平均数的特点
最大的数>平均数>最小的数
教学反思:
“平均数”是苏教版小学数学三年级下册《统计》里面的内容,它与我们的现实生活紧密联系,本课教学把重点放在掌握求平均数的方法上,而难点则是运用平均数的意义分析数据,从而体会到平均数的应用价值。
“平均数”的概念比较抽象,如何让学生初步理解它的概念并掌握正确的求平均数方法?我一开始就设计了贴近学生生活的熟悉的活动情境,通过引导学生观察统计图,获得数学信息,提出数学问题,自主预学和小组合作探究来解决数学问题,掌握问题解决的多种有效方法,引导学生在解决问题的过程中,让学生体会到平均数在生活中的应用价值,较好的完成了本节课的教学目标。这节课我为学生提供了充分的从事数学活动的时间和空间,让学生参与到知识的发生,发展,形成过程中去,引导学生利用数学知识解决实际问题,提高了学生的综合学习能力。
《平均数》 教案8
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容 .
2.了解平均数的意义,会计算一组数据的平均数 .
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .
(二)能力训练点
培养学生的观察能力、计算能力 .
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯 .
2.渗透数学来源于实践,反地来又作用于实践的观点 .
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算 .
2.教学难点:平均数的简化计算 .
3.教学疑点:平均数简化公式的应用,a如何选择 .
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .
2.平均数的概念及计算公式
一般地,如果有n个数 .
那么 ①
叫做这n个数的平均数, 读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .
3.平均数计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温 .
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量 .(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .
讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的'结果与前面毛算的结果相同 .
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .
3.推导公式②
一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,
那么 ,
因此,
即 ②
为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .
2.求n个数据的平均数的公式① .
3.平均数的简化计算公式② .这个公式很重要,要学会运用 .
方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .
八、布置作业
教材P153中1、2、3、4 .
《平均数》 教案9
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。
4、教学目标
在学生计算出平均数的基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的.体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
《平均数》 教案10
一、导入新授:
通过师生谈话引出两个小组投球比赛成绩的数据。
二、新授:
1.出示投球记录:
第一组 第二组
姓名 投中个数
刘杰 9
杨立 8
孙梅 5
王丽 3
丁鹏 5
姓名 投中个数
张华 8
王云 7
李英 6
赵明 7
2.比较哪组的成绩好。
(1)让学生进行讨论,学生可能会说出不同的比较方法和想法,重点引导学生考虑怎样比较才是"公平"的。
(2)如果学生不能说出平均每人投中的个数,教师可以作为参与者提出并让学生讨论。
3.学生试做。
4.交流计算结果,并根据平均数比较两组的.成绩,说明哪组的成绩好。
第一组(8+7+6+7)÷4 第二组(9+8+5+3+5)÷5
= 28÷4 =30÷5
=7(个) =6(个)
7>6
答:第一组成绩好。
三、求平均数:
1.下表是亮亮家一周丢弃塑料袋的情况。
星期 一 二 三 四 五 六 日
个数 1 3 2 3 2 6 4
2.算一算:平均每天丢弃几个塑料袋?
(1)让学生观察统计表,说一说得到了哪些信息?
(2)自己试做。
(3)交流计算的方法和结果。
3.议一议:求出的"3个"是每天实际丢弃的塑料袋的个数吗?
四、做一做:
先让学生想一想,再动手操作。教师注意观察学生的方法。交流操作的过程,有意识的指几名学生说说是怎样想的、怎样做的。
《平均数》 教案11
教学目标:
1.知道平均数的含义和求法。
2.加强学生对平均数在统计学上意义的理解。
3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。
教师重点和难点:理解平均数的含义,掌握求平均数的方法。
教具/学具准备:多媒体、长方形。
一、创设情境、激趣导入
1.谈话引入:(出示幻灯教师家的书架)
师:这是老师家的书架,咱们一起来看看。现在我的书架上上层有8本书,下层有4本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。你有什么办法?
2.感知
(1)学生思考,想象移的过程。
生:把上层书架上的8本书 ,拿2本放在下层书架上,现在每层书架上的书就一样多了。
(2)教师操作并问:现在每层都有几本书了?(6本)
(3)师:像这样把多的移给少的,解决问题的方法,我们给它起个名字叫:移多补少。
(4)师:你还有什么方法?
生:把上层书架上的书和下层书架上的书先合起来,再平均放在两层书架上,这样每层书架上的书就一样多了。
师:像这种把几个不同的数先合并起来,再平均分成这样的几份的到相同的数,解决问题的方法我们也给它起个名字叫:先合后分。
(5)师:现在每层书架上的书一样多了吗?
生:一样多了。
师:都是几本?(6本)
师:它是我们通过什么方法得到的数?(或者:谁来说一说我们可以通过什么方法来得到这个数?)
生:用的是移多补少和先合后分的方法。
师:像这样得到的数,它也有自己的名字—平均数。
师:所以6就是8和4的平均数。谁再来说说6是谁和谁的平均数?(生说)
(6)师:今天,我们就来认识一下“平均数”这个新朋友,好吗? (板书:平均数)
二、合作探究,深化理解
1、师:老师又新增添了一层书架,第三层书架上有几本书了?
生:第三层书架上有3本书了.
师:用我们刚才解决问题的方法,你能求出这三层书架上书的本数的平均数吗?
师:请拿出学具,来摆一摆,注意摆时要一一对应。
摆完把你的想法讲给你的同伴听一听。(学生活动,教师巡视。)
师:谁来说一说,你的方法。
学生汇报:
生:从8本书里拿出1个放在第二层4本书里,再从第一层拿出2本书放在第三层书里,这样他们每层就一样多了。
师:现在每层有几本书了?
生:现在每层有5本书了。
师:5就是8、4、3的什么数?
生:5就是8、4、3的平均数。
师:还有其他方法吗?
生:先把三层书合起来,在平均分成3层。
师:你能有算式表示表示出来吗?
生:(8+4+3)÷3=5(本)(师板书)
师:8+4+3表示什么?为什么要除以3?5表示什么?
(1) 找2-3人来汇报。
(2) 把这个算是各部分表示什么?同伴之间互相说一说。
2、师:下面我们来解决一个生活中的小问题。(出示统计图)
(1)师:仔细观察这幅统计图,你获得了那些数学信息?
生:小红收集了47个矿泉水瓶。小兰收集了33个矿泉水瓶。小亮收集了25个矿泉水瓶。小红收集了35个矿泉水瓶。
师:根据数学信息,你能提出一个跟我们今天学习有关的数学问题吗?
生:这一小队平均每人收集了多少个矿泉水瓶?
师:怎样求出这一小队平均每人收集了多少个矿泉水瓶?
师:你先独立思考一下,把自己的想法和同伴交流交流,再把自己的'想法用算式表示出来。
学生活动,教师巡视。
组织汇报:
生:(47+33+25+35)÷4
=(80+60)÷4
=140÷4
=35(个)
答:这一小队平均每人收集了35个矿泉水瓶。
师:观察这个算式,哪部分体现了合?哪部分体现了分?哪个数是平均数?
生:47+33+25+35体现了合, ÷4体现了分, 35是平均数。
师:35是哪些数的平均数?
生:35是47、33、25、35平均数。
师:有用移多补少的方法的吗?
师:你们怎么不用这种方法呢?
生:数太大不好操作。
师:好,老师把这种方法放到了上了,我们一起来看一下吧。(放,学生体验一本一本的移比较麻烦)。
师小结:看起来,真像同学们说的一样,用“移多补少”的方法解决这个问题真是不方便。我们以后在遇到问题时,一定要根据不同问题选择合适的方法来解答。
(2)师:老师把平均数也放到了统计图中,请你用这个平均数与这四位同学实际的收集的矿泉水瓶个数比一比,你发现了什么?(看情况,让学生小组交流)
生:小红收集的个数比平均数多;小兰和小亮收集的个数比平均数少;小明收集的个数与平均数同样多。
师:它是每个人实际收集到的矿泉水瓶吗?
生:不是。
师:它只是反应了这组数据的总体情况。
三、应用知识,解决问题
师:看来同学们已经对平均数有了较深的认识,那我要出几道题考考大家。
1、判断并说明理由
学校篮球队队员的平均身高是160厘米。
(1)李强是学校篮球队队员,他身高155厘米,可能吗?(生判断。)说说你的理由。
师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一道题。
(2)学校篮球队可能有身高超过160厘米的队员吗?
师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数,那么。。。。
生:那就一定有人身高不到平均数。
师:没错。看来,平均数只反映一组数据的总体水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看小马过河的问题。
2、有一匹小马要过河,可是河上没有桥,河边有个告示牌:平均水深120厘米,请注意安全!小马想:我的身高是140厘米,比平均水深要高,一定能安全过河。
师:同学们,你们说小马能安全过河吗?和你的同伴讨论讨论。
学生们判断并说明理由。
师:看来小马能否安全过河是不确定的,小马听了你们的分析,一定会谨慎从事的,谢谢同学们。
3、在一次采摘活动中,小明摘了52个苹果,小刚摘了56个苹果,小红和小兰共摘了84个苹果,他们平均每人摘了多少个苹果?(列 综合算式)
学生独立解决,集体订正。
四、小结:通过今天的学习,你有哪些新的收获?
五、师总结:同学们,刚才我们利用平均数解决了这么多的问题,走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。
《平均数》 教案12
一。 教材分析
1、教材的地位和作用
在信息社会“数字”社会里,常常需要在不确定的情况下,根据大量纷繁杂芜的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地制定决策提供依据及建议。平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。本节内容是继平均数学习之后的后续内容,既是对前
面所学知识的深化与拓展,又是联系现实生活培养学生应用数学意识和创新能力的良好素材。
2、课时安排和说明
参照新教材教师用书建议:“10。2平均数、中位数和众数”这一节准备安排三个课时,第一课时主要承上启下地回顾探索平均数的一些性质及简单应用。第二课时探索得到众数和中位数的概念,并会正确计算众数和中位数,了解平均数、众数和中位数的各自适用范围。 第三课时是练习实践课,目的是巩固和深化本节知识及会用计算器计算平均数,用计算机计算平均数、众数和中位数。本次说课内容为第二课时。
3、教学重点和难点
教学重点:众数和中位数两概念的形成过程及两概念的简单运用。
教学难点:利用收集的数据整理分析,对刚接触统计不久的学生来说,他们原有的认知结构中尚缺乏这方面的知识经验,因此,对统计数据从多角度进行全面分析,使学生形成一定的统计观念(即数据感)是教学难点。
二.学情分析
认知分析:学生已初步了解统计的意义,理解平均数的含义及会计算平均数,这两者形成了学生思维的“最近发展区”。
能力分析:学生已初步具备一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。
情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。
基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。
三.教学目标
根据教材分析和学生的认知特点,本节课设置的教学目标为:
知识目标:理解众数和中位数的含义,会正确计算众数和中位数。
能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。
情感目标:通过各种真实的,贴近学生生活的素材和适当的`问题情境,激发学生学习数学的热情和兴趣;在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。
四.教学方法
根据本节课的教学内容和建构主义教学理论,从发展学生认识问题、探索问题、研究问题的能力角度考虑,准备采用“以问题为中心”的讨论发观法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程当中发现概念的产生过程,思想方法的概括过程从而逐步建立完善的认知结构。
具体说本节课由五个基本环节组成:创设情境,提出问题--合作交流,探索问题--理性概括,构建新知――实践应用,鼓励创新――归纳小结,反思提高。
五.教学过程
1. 创设情境,提出问题
(1) 创设情境(用多媒体课件演示)
某小厂欲招工人一名,小张应征而来,经理告诉他:“我们这里报酬不错,平均工资水平是每周300元。”小张工作几天后,找到经理说:“你骗我,多数工人的工资水平没有超过每周200元,”这时,工会主席过来说:“小张,经理说得没错,其实我们厂有一半人达到或超过中等工资水平即每周250元,不止每周200元的!不信,看看这张工资表。”看后,小张感慨:“难道是我错了?”
基于学生原有认知结构的问题情境,更诱发了学生的认知冲突,从而引发学生提出问题:究竟什么数据能反映工人的真实工资水平? (2) 问题:真是公说公有理,婆说婆有理,平均数真能客观反映工人的真实工资水平吗?
2. 合作交流,探索问题
在导出以上问题后,分三人小组开小型辩论会(三人分别充当经理、小张、工会主席三个角色展开辩论)。各小组再拿出最能反映工人真实工资水平的数据全班交流。
学生会用人数最多的工种的工资200元或中等水平工资250元来回答,从而引出:今天要学习的内容----众数和中位数。
通过学生合作交流,相互完善,在自主探索中发现概念的形成过程。让学生体验生活中的角色,认识到研究数据的必要性。
3.理性概括,构建新知
(!)启发建构
在上述数据中象“200”这样的数我们就叫做这组数据的众数,象“250” 这样的数我们就叫做这组数据的中位数,它们与其它几个数相比是不同的,有何不同?我们能用自己的语言来描述它们吗?在学生描述的基础上为加深印象,教师可适时补充说明:“众数”中“众”即多,也就是某个数据在一组数据中出现次数最多;而“中位数”中“中位”是指位置居于中间,即某个数据在按照大小顺序排列的一组数据中,位置处于最中间。形象语言的描述更易新知的构建。
(2)完善建构
练习:
① 在一次英语考试中,11名同学得分如下:80 70 100 60 80 70 90 50 80 70 90 请指出这次英语考试中,11名同学得分的中位数和众数。
② 10名工人某天生产同一零件,生产的件数是:13 15 10 14 19 17 16 14 12
你能说出这一天10名工人所生产零件数的众数和中位数吗?
学生独立思考后讨论回答。
结合学生回答的实际情况,对练习追问:a、能说出1 2 3 4 5 6 的众数吗?b、如何求一组数据的中位数?c、在一组数据中平均数,众数和中位数会都是同一个数吗?d、实话实说,对平均数、众数和中位数知道多少?谈谈它们的区别和共同特点.
归纳探索结果:
众数、中位数都是用来描述一组数据的集中趋势。众数是一组数据中出现次数最多数据;一组数据中的众数可能不止一个,也可能没有。中位数是指:将一组数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数的平均数),一组数据中的中位数是惟一的。
这一环节,由浅入深设置问题链,使学生思维分层递进,目的是突出本节重点;通过追问层层引导,又把学生的探索逐步引向最近发展区,启发学生运用类比、归纳、猜想等思维方法探究问题,揭示概念的实质,不断完善新的知识结构。同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力。
4.实践应用,鼓励创新
(!)请你当厂长
某鞋厂生产销售了一批女鞋30双,其中各种尺码的销售量如下表所示:
② 从实际出发,请回答①中三种统计特征量对指导本厂的生产是否有实际意义? ① 计算30双女鞋尺寸的平均数、中位数、众数
问题①在同一具体问题中分别求平均数,中位数,众数,目的是为了比较三个量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别。问题②具有很强的生活色彩,体现了众数,中位数在日常生产上的应用。
(2)请你评判
甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入的个数经统计计算后得到下表:
由已知中位数估计"中间"位置,培养学生的逆向思维,同时也是从不同角度理解概念。 请你评判两班的学生成绩的平均水平、优秀率(每分钟输入汉字数≥150个为优秀)的高低。
(3)请你参政:
某市实行中考改革,需要根据该市中学生体能的实际状况,重新制定中考体育标准为此抽取了50名初中毕业的女学生进行一分钟仰卧起坐次数测试,测试情况见如下统计图:
(图中右边的人数是指取得对应左边次数的女生人数)
请你运用所学知识对以上数据进行分析,并思考:该市中考女生一分钟仰卧起坐项目测试的合格标准应定为多少次较为合适?请简要说明理由。
由学生独立思考后,全班交流。在学生解答的基础上追问:
追问:据上述你认为合格的标准,试估计该市中考女生一分钟仰卧起坐项目测试的合格率是多少?
让学生会用数据多角度进行全面分析,制定科学决策,在用数学中学会创新.
这一环节通过对实践问题的分析解决,突破教学难点,强化学生对知识的理解,促进知识的迁移、深化、巩固,进一步完善知识结构;鼓励学生用数学的眼光分析实际问题,增强用数学意识。
引例的解决:
略解:经理的工资数据与其它数据大小悬殊,用平均数不能反映工人的真实工资水平。这时用众数(200元)或中位数(250元)来表示工人的真实工资水平比较合适。
追问学生:如果你找工作,你会怎样去了解工作报酬?
由于前面已将问题的难点进行分解突破,问题的解决水到渠成。同时也使学生更深层地意识到:要学会用数据说话,科学地分析身边的事例,以免上当受骗。
5. 归纳小结,反思提高
教师采用谈话法与学生小结交流:
(1) 列表对比
作业: (2)在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。
(1)巩固型作业:课本P101,练习:1 2
(2)实践操作型作业:(一周后交)
每分钟的心跳次数也称为心率,请你们分组抽样调查初一年级50名同学的心率,并思考若你是医务室的医生,请你谈谈初一年级学生的心率情况,据此数据向校长提出一些合理建议。
布置一短一长作业,巩固本节和上节知识,也为下节课学习作好铺垫,同时也是为课本P125的课题学习“心率与年龄”的开展打好扎实基础;既让学生了解自身,同时引导学生参与研究性学习,促进学生的全面发展。
六、设计说明:
1.板书设计
2.时间安排
课题引入约5分钟,概念探索约18分钟,实践应用约17分钟,小结与作业约5分钟。(注:一节课45分钟)
3。 教学特色
1)以问题作为教学主线,在趣味性情境中发现问题,在层层递进的问题链中,展开探索,在实践应用性问题中感悟数学的思维与方法,培养统计观念。
2)以课堂作为教学的辐射源,通过教师、学生、多媒体多点辐射,带动和提高所有学生的学习积极性与主动性。
个人简介:徐小路,男,1971年生,浙江杭州人,杭州市长征中学一级教师,硕士
通讯地址:310005 浙江省杭州市长征中学 电话:0571-88084357-8034
《平均数》 教案13
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容 .
2.了解的意义,会计算一组数据的 .
3.当一组数据的数值较大时,会用简算公式计算一组数据的 .
(二)能力训练点
培养学生的观察能力、计算能力 .
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯 .
2.渗透数学来源于实践,反地来又作用于实践的观点 .
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .
重点·难点·疑点及解决办法
1.教学重点:的概念及其计算 .
2.教学难点:的简化计算 .
3.教学疑点:简化公式的应用,a如何选择 .
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的`问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .
2.的概念及计算公式
一般地,如果有n个数 .
那么 ①
叫做这n个数的, 读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .
3.计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温 .
让学生动手计算,以巩固计算公式(一名学生板演)
教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量 .(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .
讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .
3.推导公式②
一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
,
那么 ,
因此,
即 ②
为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .
2.求n个数据的的公式① .
3.的简化计算公式② .这个公式很重要,要学会运用 .
方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .
八、布置作业
教材P153中1、2、3、4 .
九、板书设计
《平均数》 教案14
一、单元教学内容
平均数与条形统计图
二、单元教学目标
1、理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。
2、认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。
3、在体验数据的收集、整理、描述和分析的过程中,发现信息进行简单的数据分析,并进行有条理的思考。
4、体会统计在现实生活中的作用,运用已经掌握的知识解决生活中简单的数学问题。
5、体会数学知识与实际生活的紧密联系,激发学习兴趣,培养细心观察的良好学习习惯。
6、发展统计观念,培养自主探究的能力及合作意识。
三、单元教学重、难点
理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。
四、单元教学安排
3课时
第1课时
平均数
一、教学内容:
平均数
二、教学目标
1、经历探索平均数的过程,学会寻找平均数的方法移多补少、先总后分,理解平均数的含义。
2、在运用平均数的知识解释简单的生活现象、解决简单的实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。
三、教学重难点
重点:理解平均数的含义。难点:会简单的求平均数的方法。
四、教学准备多媒体课件
五、教学过程
(一)导入新授
1、课件出示:班级图书角的`书架上层有8本书,下层有4本书。
提出问题:同学们能帮忙重新整理一下,使每层书架上的书一样多吗?
2、学生思考,交流讨论。
师生交流后,教师用课件操作并提问:现在每层都有6本书了,这个6是它们的什么数?(平均数)我们是如何求出平均数6的呢?
师生交流后明确是通过把上层书本移2本至下层得到的相同数。今天,我们就来深度认识一下“平均数”这个朋友。板书课题:平均数。
(二)探索发现
1、教学例1。
(1)课件出示教材第90页例1统计图:环保小分队的四名同学收集的矿泉水瓶如下(课件出示统计图)。
师:从统计图中,你能获得哪些数学信息?
学生交流后反馈:从统计图中,可以知道:小红收集了14个,小兰收集了12个,小亮收集了11个,小明收集了15个。
师:根据数学信息,你能提出什么数学问题?教师从学生提出的问题中选择求平均数的问题。
(2)解决问题:平均每人收集了多少个矿泉水瓶?
师:你是怎样理解“平均每人收集多少个”的?你会解决这个问题吗?如何解决?小组交流探讨。教师巡视指导。
(3)汇报展示。
汇报预测:方法一:移多补少,学生汇报,多媒体演示移多补少的过程。
师:像这样,把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫移多补少,得到的这个相等的数叫做这几个数的平均数。13是14、12、11,15的平均数。
方法二:根据总数量÷总份数=平均数,得。(14+12+11+15)÷4=52÷4=13(个)。
(4)小结:我们可以用移多补少的方法求平均数。也可以用数据的总和除以数据的个数求出平均数。数据较少时,我们可以用移多补少的方法。数据较多时,用先求总数再求平均数的方法计算比较简便。
(5)教师追问:平均每人收集13个,是不是每个人真的都收集了13个?你是怎么理解“平均每人收集13个”这句话的?
师生交流后明确:“平均每人收集13个”表示每个人收集的数量可以比13个多,也可以比13个少,也可以刚好是13个。
(6)区分“平均分”和“平均数”。
①把52个矿泉水瓶平均分给4个人,每人分得几个?
②每人分到13个和平均每人收集13个,这两个“13”所表示的意义相同吗?师生交流后小结:平均分是实实在在的量,平均数是虚拟的量。2、教学例2。
(1)创设问题情境。
四(1)班第4小组男生队和女生队进行踢毽比赛,我们来看看他们的比赛情况。课件出示教材第91页的情境图和两张统计表。
师:这两张统计表给出了他们踢毽的成绩。观察两张表,你能从中知道些什么?(参加人数、每人的踢键个数等)
(2)探索解决问题。
提出问题:你认为是男生队的成绩好一些还是女生队的成绩好一些呢?说说你的理由。让学生充分从多个角度分析表示男、女生队的踢毽情况。在尝试中体会到用平均数能较好地说明问题。
学生动手列式计算:
男生队:(19+15+16+20+15)÷5 =85÷5 =17
女生队:(18+20+19+19)÷4 =76÷4 =19
(3)全班汇报交流。
师:为什么男生队除以5而女生队是除以4呢?你认为是男生队还是女生队成绩好?师生交流后明确:因为男生队有5人,所以要除以5,而女生队只有4人,所以除以4。男生队平均每人踢17个,女生队平均每人踢19个,女生队的成绩好一些。
师:问题解决了吗?你有什么收获?
师生交流后明确:用求平均数的方法来分析得到的数据,常常能反映一般情况,帮助我们解决问题。
(三)巩固发散
1、指导学生完成教材第92页“做一做”。
学生独立完成,集体交流时说一说自己是如何求出平均数的。
2、四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了多少棵?
3、想一想:游泳池的平均水深是120厘米,小明身高130厘米,他在游泳池中学游泳,会不会有危险?为什么?
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:求平均数可以采用“移多补少”的方法,也可以先求几个数据的总和再除以这几个数的个数,所得的结果即为平均数。
(五)板书设计
六、教学后记
略
平均数
求平均数的方法:
数据较少:移多补少法常用方法:总数÷份数=平均数
第2课时
复式条形统计图
一、教学内容
复式条形统计图
二、教学目标
1、在数据的收集、整理、描述和分析的过程中,进一步体会统计在生活中的作用,体会数学与生活的密切联系。
2、认识两种形式的复式条形统计图,能根据统计图提出并回答问题,能发现信息并进行简单的数据分析。
3、通过对生活事例的调查,激发学习兴趣,培养学生细心观察的良好习惯,以及合作意识和实践能力。
三、教学重难点
重点:正确画出复式条形统计图。
难点:根据统计图发现信息、分析信息,提出并回答简单的实际问题。
四、教学准备
多媒体课件、彩笔、直尺、三角板。
五、教学过程
(一)导入新授
你们知道中国有多少人吗?那你们知道自己所在的区有多少人吗?(学生回答)下面我们一起对收集到的信息进行整理和分析。
(二)探索发现
1、教学纵向单式条形统计图。
(1)课件出示教材第95页例3某地区城乡人口统计表。
提出问题:怎样才能清楚地表示这个地区这几年城镇和乡村的人数变化呢?学生交流后,得出可以制作统计图来表示。让学生根据教师提供的统计表,分别完成某地区城镇和乡村人口的纵向单式条形统计图。
(2)展示学生绘制的统计图。
提出问题:从这两个统计图中,你能获得哪些信息?
师:如果我要很快地知道xx年与xx年中城镇人口与乡村人口的变化情况?那该怎么办?学生讨论,汇报。引导学生把两个统计图并列排放来比较,并思考怎样把它们合并起来。
2、教学纵向复式条形统计图。
(1)提出问题:如何才能把两个单式条形统计图合并成一个统计图呢?学生在小组内交流探讨,试着绘制统计图。教师巡视指导。
(2)展示学生绘制的复式条形统计图。
讨论交流:复式条形统计图与单式条形统计图有什么区别与联系?让学生先独立思考,然后把自己的想法与小组内其他同学交流。
(3)全班交流、汇报。
通过小组合作交流复式与单式条形统计图的联系与区别,使学生认识到为了区分两个内容,采用不同颜色的长方形来表示。
(4)分析复式条形统计图。
从这个统计图中你获得了哪些信息?
小结时可引导学生通过观察统计图发现:该地区近年来城镇人口逐年增加,农村人口逐年下降,人口总数逐年上升,同时对学生进行人口教育。
3、教学横向复式条形统计图。
(1)出示教材第96页不完整的横向复式条形统计图。让学生独立把横向复式条形统计图补充完整。
(2)展示作品。
请你说一说,横向复式条形统计图应该怎样绘制?
师生交流后明确:这个统计图中横轴表示人数,纵轴表示的是年份,所以画出的条形是横向的。
(3)分析横向复式条形统计图。
从这个统计图中你获得了哪些信息?让学生分别说一说,然后进行小组交流。
(4)比较纵向与横向复式条形统计图。
师:我们已经认识了两种复式条形统计图,即:纵向复式条形统计图和横向复式条形统计图,请同学们对比这两种统计图,思考:丙种复式条形统计图有什么区别与联系?
师生交流后小结:这两种复式条形统计图只是形式上的不同,当数据种类不多,但是每类数据又比较大时,用横向条形统计图表示更方便。
4、即时练习。
指导学生完成教材第97页“做一做”。
学生根据统计表,完成统计图。并回答统计图后的问题。
(三)巩固发散
市场甲、乙两种品牌的果汁饮料一、二、三月销售情况如下表。请你动手绘制统计图并回答下列问题。
2、如果你是超市的经理,下个月应该怎么进货?
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:本节课学习并掌握了两种形式的复式条形统计图的绘制方法。
(五)板书设计复式条形统计图
六、教学后记
略
第3课时
营养午餐
一、教学内容
营养午餐
二、教学目标
1、了解营养与健康的常识,培养运用简单的排列组合、统计知识解决问题的能力。
2、能根据营养专家的建议运用正确的数学思想方法分析调配科学、合理的午餐菜式。
3、明确科学、合理的饮食的重要性,养成良好的饮食习惯。
三、教学重难点
重点:培养学生分析整理数据、运用数据解决问题的能力。难点:科学分析结果,合理安排搭配方案。
四、教学准备多媒体课件
五、教学过程
(一)导入新授
你们平时喜欢吃哪些菜?这些菜搭配是否合理?今天我们就一起来研究这个问题。板书课题:营养午餐。
(二)探索发现
1、自主配餐。
(1)出示教材第101页情境图。让学生根据要求自主选择一份菜谱。
(2)全班交流,展示学生的搭配方案。
2、科学评判。
(1)介绍科学的配餐要求:我们点的菜是否符合营养学标准呢?“不应低于”、“不超过”是什么意思?用数学符号应该怎样表示?
(2)了解每份菜中热量、脂肪和蛋白质的含量情况。出示每份菜的热量、脂肪和蛋白质含量表。
3、小结。
我们在进行午餐营养判断时既要看热量又要看脂肪,只有两种指标都不超量时才能算是营养的午餐。
(三)巩固发散
1、学习合理搭配。
如果让你动手搭配菜谱,你会了吗?每人只搭配一组就行。要求:在这十种菜中任选三种搭配一起,营养一定要合理。分组讨论,集体汇报。各组派代表汇报本小组的搭配方案。
2、小结。
师生共同分析总结营养搭配的要求:荤素搭配,营养均衡。
3、统计全班同学喜欢的菜谱。
(1)男女生各选一个代表收集数据,教师记录。
(2)学生根据统计表完成复式条形统计图。
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
(五)板书设计营养午餐
热量不低于2926千焦脂肪不超过50g荤素搭配,营养均衡。
六、教学后记
略
《平均数》 教案15
素质教育目标:
1。知识目标:使学生理解平均数的含义,初步学会简单的求平均数的方法。
2。能力目标:理解平均数在统计上的意义。
3。情感目标:体会数学与生活的密切联系,培养学生的实践能力。
重点难点
重点:理解平均数的含义。
难点:初步学会简单的求平均数的方法。
教具准备:多媒体课件
教学过程
一、创设情境,提出问题
上周的作业,有三位同学做得最好,今天老师带来些铅笔想奖励给他们。大家看统计图,哪三位做得最好,分别获得了几支铅笔?(叶雨7支、叶茹5支、李新3支)(课件展示)
师:你们觉得这样分公平吗?怎样才能公平?
学生讨论,指名汇报。
(把叶雨的7支拿2支给李新,这样每人都是5支。课件展示)
很好。谁能给这种方法取个名字?(“移多补少法”。板书)
(先把三个人的铅笔全合起来有15支,再平均分给这3个人,这样每个人都是5支。)
这种方法也很好!我们也给它取个名字。(“先合再分”板书)。
刚才我们用不同的方法,都能使这三个人铅笔的支数从不等变成相等,都是5。
教师指出:这里的“5”就是“7、5、3”这三个数的平均数。板书课题:平均数
通过刚才的学习,同学们能简单的说一说什么是平均数吗?(学生思考或者讨论,教师在听取汇报后总结。)
几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。
师:说到平均数,同学们能联想到我们以前学的哪个数学概念。(平均分)是呀,平均数是5,那么他们每人的铅笔支数应该都是5,是这样吗?(质疑,区分平均数和平均分)
师:难道,老师真的不公正吗?他们的铅笔到底要不要重新平均分配呢?告诉你们,不能。这样做是因为叶雨书写最干净,而且明显进步,而李新最近书写有些下降了。同学们觉得老师做得公平吗?刚才的平均数只是一个反映今天奖品发放总体情况的数,不是真的把奖品平均分了。
同学们在生活中还听到过哪些平均数?说一说。(见课件)
看来平均数的用处还真大,同学们要好好学习哟!
二、寻找方法,解决问题。
同学们,上个月我们班每个同学都通过自己的努力,获得了很多小红星。我们来看一下第一小组和第二小组的统计结果。
第一小组上月获小红星个数统计表
单位:个
叶茹李新吴玉刘超
14111013
第二小组上月获小红星个数统计表
单位:个
叶雨付涛张新江南夏丽
15128119
其中,叶雨的个数最多,我宣布第二小组为优胜组,你们同意吗?
生1:不同意,她一个人怎能代表全组,就算叶雨最多,可是张新才8个。
师:那你们说怎么比呢?
生2:可以把每个组的个数加起来,看哪个组的个数最多,哪个组就好。
生3:可第一小组比第二小组少了一个人呀!怎么能比?
同学们认为怎样比最合适呢?(平均数)
对,把几个大小不等的数,通过移多补少或者先合再分的方法,使它们成为几个相等的数,也就是把两个小组的平均数分别求出来再比较。(大家领悟到比较平均数最公平,从而认识平均数在统计中的用处。)
下面,我们就各显神通,先求出第一小组的平均数吧!
小组讨论、汇报。
(将叶茹多的两个分给吴玉,刘超多的一个分给李新,这样,她们每个人都得到了12个,也就是第一小组的'平均数是12个。)
不错,方法很简洁,他用的什么方法?有不同的方法吗?
(先求出四个人的总个数,再求出平均每人的个数。)
他用的方法就是——先合再分法。
看来,大家都非常聪明,第二小组的平均个数会求吗?
你们觉得这时我们求平均数用哪种方法比较合适?为什么?
学生在练习本上计算,指名板演,集体订正。
为什么这里求得的总数除以的是5而不是4?
(先合再分法)
小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少法比较简单;人数多,差距大,用先合再分的方法比较简单。
我们看,第一小组的平均数是12,可是14、11、13、10这几个数里,没有一个是12的,它们有的比12大,有的比12小;第二小组的平均数是11,可是15、12、8、11、9这几个数里面也只有一个11,并不是每一个数都是11,它们有的比11大,有的比11小。所以说平均数反映的是一组数据的总体情况。
【《平均数》 教案】相关文章:
《平均数》 教案05-30
《平均数》教案07-19
平均数教案04-13
平均数教案15篇02-06
《平均数》教案15篇08-13
平均数数学教案05-27
《求平均数》教案14篇03-05
《求平均数》教案(14篇)03-06
《平均数》说课稿01-16