当前位置:育文网>教学文档>教案> 加法运算律教案

加法运算律教案

时间:2024-06-09 17:19:20 教案 我要投稿
  • 相关推荐

加法运算律教案

  作为一名教师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。那么教案应该怎么写才合适呢?以下是小编整理的加法运算律教案,仅供参考,欢迎大家阅读。

加法运算律教案

加法运算律教案1

  教学目标:

  1、知道整数加法的交换律,结合律对于小数加法同样适用的,能运用加法的交换律、结合律进行小数加减法的简算。

  2、培养学生的计算能力,提高计算的技巧,发展学生的推理能力。

  3、培养学生做事认真,讲求方法,注重实效。

  教学重点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。

  教学难点:整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便。

  教学过程:

  一、引入

  口算(小组竞赛)

  前两组口算,体会凑整的好处;

  后两组口算,体会加法运算律给计算带来的方便。

  二、探究

  1、出示例3

  这四种文具,小华各买了一件,他一共用了多少元?

  谈话:你会计算这道题吗?请你独立列式计算。

  学生独立计算,注意选择学生采用的不同的方法,并展示。

  比较:

  1)观察这两种算法,你有什么发现?

  2)你认为哪种算法简便?

  提问用第二种方法的学生:你是怎么想到用这个方法的?

  谈话:这种方法的使用,使你想到了整数加法的哪些运算律?

  小结:整数加法的运算定律,对于小数加法也同样适用。应用加法运算定律可以使一些小数加法的运算简便。这就是我们今天研究的内容。

  2、提问:我们以前学习过哪些加法的运算定律?这里的字母a、b、c可以表示怎样的数?

  指出:因为整数加法运算定律对于小数加法同样适用,所以这些字母公式里字母所表示的数的范围既包括整数,也包括小数。

  三、练习

  1、完成“练一练”的第1题。

  集体交流,注意说一说使用的运算律。

  补充一题,问,这题为什么不可以用简便方法?

  提问:我们在使用运算律进行简便运算的时候,要注意些什么?

  一审:审清题目(特别是运算符号)。

  二看:观察数字特征,选择比较简便的算法。

  三算:认真计算。

  四查:查运算顺序;查数字;查每一步的`计算。

  2、完成第2题。

  提问:求接力赛的总成绩,就是求什么?

  学生独立解决。

  小结:看来加法运算律用到小数加法里,果然很简便。

  3、完成练习九的第2题

  谈话:下面进行个比赛,请一二两组同学计算第一题,三四两组的同学计算第二题。

  这两题做完,让你联想到了什么?

  你知道整数减法的性质是什么吗?

  你掌握了这个性质后,这一组题,你会选择做哪题?

  小结:整数减法的运算性质,对小数减法也同样适用。

  4、判断下列算式,能简便运算的,在()里打√,不能简便运算的打×。

  2.7+6.6+3.4()

  5.08-0.8-4.2()

  7.5-3.87+2.13()

  6.02+4.5+0.98()

  6.17+28+3.2()

  6.59+9.32-2.59()

  小结:简便运算的时候,是不是光看数字就可以了?

  5、填数,使计算简便:

  32.54+2.75+()

  四、课堂作业:

  这节课你有哪些收获?

  五、总结

  完成练习九的3~5题

  教学反思:

  本节课是学生在已有的整数加法运算率的计算的基础上学习的。本节课的重点是顺利将加法(及减法的性质)的运算律迁移到小数加(减)法的运算中来,使得计算简便,难点是知识延伸中,学生的再建构。对于加法的结合律和加法交换律,学生已有基础,因此我本节课放手让学生自己去探索,从探索中寻求答案,让学生在探索的过程中既能学到知识,又能在探索中学会技能,避免了学习的单一性。

  在教学本课时,我根据学生的年龄特点和迁移的认知规律,创设贴近儿童生活的问题情境,为学生提供丰富的表象。采用的教学方法主要是:

  1、竞赛。本课属于计算课,本身让人觉得枯燥无味、学生缺乏兴趣。因此在口算题目的处理中改为小组竞赛,希望以此为切入点,调动学生学习积极性,同时培养学生合作、竞争意识。

  2、自主探究学习的方法。教学时,我创设了小华买文具的生活情景,让学生帮助他解决问题,使学生感受到被信任、能做事情的快乐,不仅实现了角色转换,唤起学生的主角意识,而且让学生享受到助人的乐趣。计算时让学生自行探究,从比较中得到简便算法,这样使学生体会到数学来源于生活,又应用于生活。

  3、设计适合学生发展的题目,在本节课中,我另外编排了一些调动学生智力发展的问题,让学生有一个质的提升。

  在教学中也出现了很多不足,比如,板书受学生影响,没有列出更合理的,导致板书不能对学生起到引导和潜移默化的作用。几处重要小结也没有做到水到渠成,显得不自然。

加法运算律教案2

  教学目标

  1.引导学生探索和理解加法交换律、结合律,能运用运算定律进行一些简便计算。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  加法运算的交换律、结合律的学习。及其在连加计算中的应用。

  教学难点:

  加法运算的交换律、结合律计算中的应用。

  教学过程

  第一课时

  一、引入新课

  大家都会骑自行车吗?骑自行车不只会帮助我们节省在路上的时间,还是一项非常时尚的运动,既可以锻炼身体,还可以欣赏沿路的风景。现在我们就一起跟着李叔叔一起去骑车旅行吧。相信在这个过程中,我们会学到不少新知识。

  二、新课学习

  1.加法交换律

  李叔叔的车上装有里程表。我们来看看他第一天的'骑了多远吧!

  学生自己完成,教师巡视,找出复合交换律的两位同学进行汇报,或者由学生板演。教师引导学生比较两种算法有什么不同之处。得出

  40+56=56+40。

  这样的算式是不是很有趣啊?你能再举出这样的例子吗?

  由学生汇报交流,教师板演出几个典型的,提问:仔细观察这些算式,你发现了什么?

  加法交换律是非常巧妙的,可以为我们的计算提供方便。想一想,你能用什么方法来表达一下加法交换律吗?怎么样才能让我们更容易记住这个规律呢?请大家动脑想一想,动手写一写、画一画。

  学生汇报,鼓励学生提出的各种不同的表示方法。引导学生了解文字、字母、符号三种表示方法。强调字母表示法是常用的表示方法,要求学生掌握。

  a+b=b+a

  三、巩固练习

  练一练

  (1)59+()=()+36(2)18+25=()+()

  (3)59+()=()+36(4)59+()=()+36

  四、课堂总结

  加法交换律就是说两个加数交换位置,和不变。大家已经会应用了,真不错。说一说你今天有什么收获。

  第二课时

  一、引入新课

  李叔叔第三天的旅程已经结束了,你有什么问题想问问李叔叔吗?

  让学生自己回答。

  李叔叔详细的记录了他的行程,我们来一起看看他的记录手册,肯定能回答大家刚才提出的问题。

  二、新课学习

  加法结合律

  李叔叔想知道这三天一共骑了多少千米,大家能帮他解决这个问题吗?谁来说一说用什么法计算?怎么列式?

  88+104+96

  看来用这样的一个连加的算式就能解决李叔叔的这个问题。你能用自己的方法来完成这道加法题吗?

  让学生自己完成,然后汇报。教师巡视后,找出复合结合律的几个学生汇报,或者投影展示。观察这几位同学的做法,你有什么发现?

  (88+104)+96=88+(104+96)

  你还能举出这样的例子吗?写一写。

  观察这些算式,你发现了什么规律?

  加法结合律也可以为我们的计算提供方便。想一想,你能用什么方法来表达一下加法结合律吗?怎么样才能让我们更容易记住这个规律呢?请大家动脑想一想,动手写一写、画一画。

  学生汇报,鼓励学生提出的各种不同的表示方法。引导学生了解文字、字母、符号三种表示方法。强调字母表示法是常用的表示方法,要求学生掌握。

  三、巩固练习

  练一练

  (1)256+99+44=(□+□)+□

  (2)125+32+168=□+(□+□)

  四、课堂总结

  今天我们学习了加法结合律。

  第三课时

  一、引入新课

  复习引入

  我们来复习一下加法的运算律,你还记得哪个?

  加法交换律:两个加数交换位置,和不变。用字母表示是:a+b=b+a。

  加法结合律:先把两个数相加,或者先把后两个数相加,和不变。用字母表示是:(a+b)+c=a+(b+c)

  二、新课学习

  接下来我们来看看李叔叔后四天的行程计划吧。

  请你想一想,怎么解决这个问题,然后写下来。教师巡视,个别辅导。

  然后让学生汇报不同的计算方法。

  然后师生共同完成。探讨:你运用了那些运算定律来完成这个计算?

  三、巩固练习

  练一练:

  (1)425+14+186

  (2)75+168+25

  (3)245+180+20+155

  (4)67+25+33+75

  四、课堂总结

  学习了加法交换律和加法结合律的时候,会使我们的计算变得简便。

加法运算律教案3

  设计理念:

  根据高年级学生心理特点,我用学生熟悉的情景作为学习的素材,激发学生的学习兴趣。学时依据学生的思维特点,尊重学生的个性差异。探究新知过程充分发挥了学生的主体作用,让学生经历了一个完整的探究过程。在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识,逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。

  教学目标:

  1、在解决实际问题的过程中,认识到整数加法的运算律对小数加法同样适用,能正确应用加法运算律进行一些小数加法的简便计算。

  2、在探索与交流的活动中,体会解决问题策略的多样性,增强优化意识;逐步形成积极的自我评价和自我反思的意识,体验数学学习的成就感。

  教学重难点:

  能正确应用加法运算律进行一些小数加法的简便计算。

  教学准备:

  多媒体课件。

  教学过程:

  一、 口算导入,复习铺垫。

  1、口算练习九第1题,指名口答。

  2、算一算,比一比。

  (6.4+1.3)+8.7= (2.8+5.5)+4.5=

  6.4+(1.3+8.7)= 2.8+(5.5+4.5)=

  设计意图:通过口算小数加减法习题,复习巩固小数加减法的计算法则。通过“算一算,比一比”两组习题,让学生初步体验到应用加法的运算律进行小数加法的简便之外,从而为学习新知做铺垫孕伏。同时培养学生对数学的兴趣。调动学生学习数学的积极性、自觉性和主动性。

  二、创设情境,探究新知。

  1、同学们的表现真不错,回答的这么准确,看来个个都是计算小能手。那下面老师想拜托大家一件事情,你们愿意接受吗?

  请大家看,小华在文具店买了一些文具,那他一共用了多少元钱呢?你能帮他算一算吗?

  根据学生的回答,教师板书

  8.9+3.6+6.4+1.1=

  2、引导学生探索算法。

  请同学先独立完成。(老师巡视,注意选择所采用不同方法的学生)谁愿意到黑板上来做。算完的同学可以和你的同桌同学交流一下你的算法。

  我们来看一下黑板上几位同学的板演。有两种不同的.算法,结果都等于20元,计算的正确吗?看来两种方法都是可以的。

  3、比较。

  刚才同学们用不同的方法帮助小华算出了一共用的钱数,小华让我代他向大家表示感谢。看来咱们班的同学们个个都是好样的。那下面请大家仔细观察一下这两种算法,你有没有什么想法想要和大家分享的?

  (其中一种方法更简便)

  我们为什么可以这样算,这样算的依据到底是什么?说得再简单点就是你在计算的时候用的是什么运算律?(加法交换律和结合律)

  你同意他的观点吗?

  通过刚刚的例子我们可以发现,整数加法运算律,对小数加法也同样适用。这也就是我们今天要学习的加法运算律的推广。

  我们以前学过哪些加法的运算律?你能字母将它们表示出来吗?

  这里的字母a、b、c可以表示怎样的数?

  指出整数加法的运算律对小数同样适用,所以这些字母所表示的数的范围既包括整数,也包括小数。

  设计意图:本环节创设买文具的情境,把教学内容放到一个学生非常熟悉的情境中,学生通过尝试计算、知识迁移,自觉地将整数加法运算律迁移到小数加法运算当中,从比较中得出简便算法。这样既让学生题会到解决问题策略的多样性,增强了优化意识,体会到新旧知识之间的内在联系,培养了迁移能力,又让学生体会到数学来源于生活,有应用于生活。

  三、巩固练习。

  1、完成“练一练”第1、2题。

  先让学生说说怎样算简便。

  2、完成练习九第2题。

  (1)学生独立完成。

  (2)提问:比较每组算式的计算过程和结果,你有什么发现?

  (3)谈话:整数减法的一些规律在小数减法里同样适用,运用这些规律也能使一些计算简便。

  3、拓展练习。

  (1)下面的算式中,哪些算式可以用简便方法计算的,请选出来。

  2.7+6.6+3.4 7.5—3.87+2.13 6.17+28+3.2

  5.08—0.8—4.2 6.02+4.5+0.98 6.59+9.32—2.59

  (2)填上一个数,使计算简便。

  32.54+2.75+( ) 7.58-2.66-( )

  4、课堂作业。

  完成练习九第3-5题。

加法运算律教案4

  一、教学目标

  1.知识与技能

  (1)使学生掌握有理数加法法则,并能运用法则进行计算;

  (2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

  2.数学思考

  通过观察,比较,归纳得出有理数加法法则。

  3.情感与态度

  认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

  二、教学重点

  会用有理数加法法则进行运算。

  三、教学难点异号两数相加的法则。

  四、教学过程

  (一)、创设问题情境,探索新知

  小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。

  把学生的分类抽象成数学问题,有以下几种思路。

  (二)、讲授新课

  1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,想走的方向为负方向。

  (1)若两次都是向右走,很明显,一共向右走了5米。记作:(+2)+(+3)=+5

  (2)若两次都是向左走,很明显,一共向左走了5米。记作:(-2)+(-3)=-5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。记作:(+2)+(-3)=-1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。记作:(-2)+(+3)= +1

  2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的'正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。(1)(-4)+(-1)(2)(+5)+(-3)(3)(-4)+(+7)(4)(-6)+3

  3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700+(-1800),+(-)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?只有找出规律。师生讨论、归纳出有理数的加法法则:

  ①同号两数相加,取相同的符号,并把绝对值相加;

  ②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;除此之外,有理数相加,还有其他情况

  (1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。记作:(-3)+(+3)=0

  (2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。记作:(+3)+(-3)=0

  (3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。记作:(+3)+0=+3或(-3)+0=0归纳为:

  ③互为相反数的两个数相加得0;

  ④一个数同0相加,仍得这个数。

  (三)、运用举例教科书例1,例2

  (四)、巩固训练

  (-5)+(-7)

  (-10)+6

  +12+(-4)

  +6+(-9)67+(-73)

  (-56)+37

  (-84)+20

  (-30)+(-20)(五)、课堂小结

  1、这节课你学到了什么?

  2、对于这节课你有什么困惑?

  (六)布置作业教科书练习1题,2题

  五、教学反思

  “有理数的加法”是人教版七年级数学上册第一章有理数的内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课时教材是通过球赛中净胜球的实例来明确有理数加法的意义,引入有理数加法的法则。不过我们学校学生都来自农村,学生基础比较差,根据实践,很多学生根本弄不清净胜球数是怎么回事,非但没有帮助其明确有理数加法的意义,还给部分学生造成了阻碍。因此在设计情境时放弃了净胜球数,而改用了学生较熟悉的情境,并且与数轴联系起来,切实帮助学生理解。有理数加法的教学,可以有多种不同的设计方案。如温度变化,盈利亏损等。过去处理这节内容是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则。这种设计的教学重点偏重于让学生通过练习,熟悉法则的应用,近期效果较好。本设计则是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,所以学生掌握法则的熟练程度稍微差些,但我想磨刀不误砍柴工,如果注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识,学生不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。而且在后续的教学中学生将千万次应用有理数加法法则进行计算,相信能够让学生熟悉掌握法则的。

加法运算律教案5

  完成本节课《有理数加法》的课堂教学后,回首反思,金沙并存,现将我对本节课的反思情况概述如下:

  亮点有四:

  1、课题的引入。这一环节,我采取提问的方式,由学生小学阶段所学过的自然数的加法开始,提问学生:当初中阶段引入负数以后,如果你是教材的编写者,你会安排哪几种形式的加法?这样学生很快会想到“正+正、正+负、负+正、负+负、0+正、0+负”几种形式,而后自然地提出:“同号相加、异号相加、0加任何数”这三种类型,进一步提升了学生的分类思想;

  2、尝试探究的设置。这一环节,我才用借助数轴导学案自主尝试的形式,点在数轴上的移动学生已经学过,设计问题时涉及到向左、向右移动问题学生自然会联系到数轴,这样根据题意列出式子,借助数轴很快的就能得出运算结果。既充分发挥了学生的主动性、提高了学生的参与度,同时又让学生认识到数学知识的内在联系,知识迁移和划归借鉴也是学习数学的一种很好的方法。

  3、有理数加法法则的得出。这一环节,我先将学生尝试探究中的几个式子以及结果全部罗列出来,让学生观察形式特征,猜想结果与形式之间的关系,大胆提出想法,然后举例用数轴加以验证,整个环节中,我只负责帮学生把想说的话板书出来,这极大地提升了学生数学学习兴趣,又让学生感受到了数学当中好多法则规律,都是经过观察、猜想、验证、归纳而得出的,同时又提升了学生数学学习的自信心,也得到了学习数学的'一个一般方法。

  四是,在对本节课的小结处理,小结由学生自己总结,在学生总结后加以强调,为确保运算结果的正确性,运算中应先确定符号,再计算结果。这样就把围绕初中学生的一个大难题“符号问题”加以弱化,已给学生指出了一个简单检验的方法。

  金无足赤,课亦不可能绝对完美,换句话说根本就没有完美的课。闪过亮点之后,需要改进的有四,如:

  1、考虑上课时限问题,没有深入展开,致使有部分学生思维以及理解没有跟上,从课后的练习反映出有几个学生运算中还是存在问题。

  2、口算展示的时候,没有进行象开火车的形式让更多的学生都出来展示,而是让几个人代劳了。

  3、个人上课有些仪态上有些随性,这样会让学生觉得不严谨,可能会滋生学生不良的行为习惯。

  4、板书上有些凌乱,缺乏合理规划。

  记得有位导演在问到哪部作品拍得最好时,他说道:“下一部”。任何事物都是“玉”与“瑕”共存的,只有经过了,再回首,才会发现“瑕“于何处,我们要做的不是掩“瑕”,而是要借“瑕”去“瑕”,避免同样的“瑕”再次出现,只有这样,才能取得进步和提升。“艺海无涯,术无止境”只有不断的总结反思才能有更大的提升!

加法运算律教案6

  教学目标

  1、知识与技能:

  (1)有理数加法的运算律。

  (2)有理数加法在实际中的应用。

  2、过程与方法:

  (1)经历探索有理数加法运算律的过程,理解有理数的加法运算律。

  (2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力

  3、情感态度与价值观:

  (1)学生通过交流、归纳、总结有理数加法的运算律,体会新旧知识的联系。

  (2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。

  重点有理数加法的'运算律。

  难点运用加法运算律简化运算

  教学过程

  一、创设情景我们以前学过加法交换律、结合律,在有理数的加法中它们还适用吗?计算 30+(-20),(-20)+30。

  两次所得的和相同吗?换几个加数再试试。

  计算:-7+2 (-10)+(-5)

  二、探究新知

  1、填空

  (1)4+(-8)=____, (-8)+4=_____所以4+(-8)____ (-8)+4

  (2)(-9)+(-6)=____,(-6)+(-9)=___所以(-9)+(-6)____(-6)+(-9)于是可得a+b=_______

  2、

  (1)[2+(-3)]+(-8)=_______ 2+[(-3)+(-8)]=_______

  (2) (-5)+[7+(-2)]=______ [(-5)+7]+(-2)=____________于是可得(a+b)+c=________

加法运算律教案7

  教学目标

  知识与技能:

  掌握有理数加法法则,并能运用法则进行有理数加法的运算。

  过程与方法:

  1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;

  2.动手、发现、分类、比较等方法的`学习,培养归纳能力。

  情感态度与价值观:

  1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;

  2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;

  3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。

  教学重点

  有理数加法法则及运用

  教学难点

  异号两数相加法则

  教具准备

  powerpoint课件

  课时安排

  1课时

  教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。

  小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。

  以B组为例,进入十六强的是阿根廷和韩国。

  国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?

  学生看图表,思考问题。

  学生列出计算净胜球数的算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知

  师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。

【加法运算律教案】相关文章:

《加法运算律》教学反思02-13

《运算律》教案05-29

《运算律》教案02-25

运算律教案06-30

《运算律》教案15篇03-05

《运算律》教案(15篇)03-05

《加法交换律与结合律》教案03-01

加法交换律结合律教案02-13

《运算律》说课稿12-27