当前位置:育文网>教学文档>教案> 圆的面积教案

圆的面积教案

时间:2024-07-02 03:18:06 教案 我要投稿

圆的面积教案通用15篇

  作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?下面是小编收集整理的圆的面积教案,仅供参考,欢迎大家阅读。

圆的面积教案通用15篇

圆的面积教案1

  教学目标

  1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

  2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

  3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

  教学重难点

  1、教学重点

  会利用圆和其他已学的相关知识解决实际问题。

  2、教学难点

  圆与其他图形计算公式的混合使用。

  教学工具

  PPT卡片

  教学过程

  1、复习巩固上节知识,导入新课

  2、新知探究

  2、1圆环面积

  一、问题引入

  同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

  回答(略)。

  今天我们就来做一做与光盘相关的数学问题。

  二、圆环面积求解

  例2、光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

  步骤:

  师:求圆环面积需要先求什么?

  生:内圆和外圆的面积

  师:同学们可以自己做一做,分组交流一下自己的'解法。

  师:给出计算过程与结果:

  三、知识应用

  做一做第2题:

  一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

  师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

  2、2圆与正方形

  一、问题引入

  师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

  师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

  二、知识点

  例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

  步骤:

  师:题目中都告诉了我们什么?

  生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

  师:分别要求的是什么?

  生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

  师:应该怎么计算呢?

  归纳总结

  如果两个圆的半径都是r,结果又是怎样的呢?

  当r=1时,与前面的结果完全一致。

  四、知识应用

  70页做一做:

  下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

  师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

  解:铜镜的半径是300px

  5、3随堂练习

  若还有足够时间,课堂练习练习十五第5/6/7题。

  (可以邀请同学板书解题过程)

  6 小结

  1、今天我们共同研究了什么?

  今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

  2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

  7板书

  例2解答步骤

圆的面积教案2

  教学内容:

  教科书第67-68页。

  教学目标:

  1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;并能运用公式解答一些简单的实际问题。

  2、通过操作,小组合作等教学活动,培养学生的动手实践能力,分析、观察和概括能力,发展学生的空间概念。

  德育目标:

  渗透极限思想,进行辩证唯物主义观念的启蒙教育。

  教学重点:

  正确计算圆的面积

  教学难点:

  圆面积公式的推导

  学具准备:

  水彩笔、剪刀、附页1

  教具准备:

  多媒体课件

  教学过程:

  一、 导入新课

  请看一幅图,从图中你发现了什么信息?

  只要知道了圆的面积,就可以解决这个问题,这节课我们就一起来学习圆的面积。

  二、新授

  1、什么是圆的面积?

  (1)涂出一个圆的面积

  (2)用自己的话说什么是圆的面积?

  2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

  3、能不能用剪、拼的方法把圆转换成我们学过的图形?

  4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

  5、学生汇报后,课件演示。

  6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

  7、转化后的长方形的长和宽与原来的圆有什么关系?

  小组合作学习,讨论以下两个问题:

  1) 转化后长方形的长相当于什么?宽相当于什么?

  2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

  8、汇报讨论结果,师板书

  圆的面积=长方形的面积

  =长×宽

  =πr×r

  =πr2

  9、运用新知识,解决问题。

  1)r=5cm,求圆的面积

  2)课始主体图中的问题

  3)书P703.

  三、总结:

  小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。

  板书设计:

  圆的面积

  剪、拼==》转化

  圆的面积=长方形的面积

  =长×宽

  =πr×r

  =πr2

  S圆=πr2

  教后反思:

  本课的教学首先让学生在实践中操作感知,理解圆的面积的具体含义。接着让学生回忆旧知,引导学生应用旧知类比迁移。这样,既实现了有意识地学法指导,又帮助学生找到了解决问题的策略。然后给学生提供了自主剪拼的.时间,也是有意识地给学生提供了解决问题的方法和途径。然而尽管给了比较充足的时间,学生能够完成剪拼后转化成学过的其它图形的还是少数。因此运用了多媒体课件演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进而加深对圆面积公式推导过程的理解。引导学生通过实验,采用转化的方法,小组合作学习,利用等积变形把圆面积转化为近似的长方形,讨论推导圆面积计算公式。最后安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。

圆的面积教案3

  教学内容:圆的面积第67—68页圆面积公式的推导。例1及做一做的第1题。练习十六的第1、2、5题。

  教学目标:

  ⒈使学生理解圆面积的含义,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  ⒉培养学生动手操作、抽象概括的能力,运用所学知识解决简单实际问题。

  ⒊渗透转化的数学思想。

  教学重点:圆面积的含义。圆面积的推导过程。

  教学难点:圆面积的推导过程。

  教学过程:

  一、复习。

  1、已知r,周长的一半怎样求?

  2、用手中的三角板拼三角形,长方形、正方形、平行四边形等,并说出这

  些图形的面积计算公式。

  s=abs=a2s=ahs=ahs=(a+b)h

  二、新课。

  1、什么是圆的面积?(出示纸片圆让生摸一摸)

  圆所占平面大小叫做圆的面积。

  2、推导圆的面积公式。

  (1)演示:将等分成16份的圆展开,问可拼成一个什么样的图形?

  若分的分数越多,这个图形越接近长方形。

  (1)找:找出拼出的图形与圆的周长和半径有什么关系?

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长宽

  所以:圆的`面积=圆的周长的一半圆的半径

  S=r

  S圆=r=r2

  3、你还能用其他方法推算出圆的面积公式吗?

  (1)将圆16等份,取其中一份,看作是一个近似的三角形,三角形的面积是这个圆面积的。这个三角形底是圆周长的,三角形的高是圆的半径。

  因为:三角形面积=底高

  圆面积=

  =rr

  =r2

  (2)将圆16等分,取其中两份,可以拼成一个近似的平行四边形。平行四边形面积是圆面积的,平行四边形的底是,三角形的高即一个半径,

  因为:平行四边形面积=底高

  圆面积=r

  =r8

  =r2

  还可以取3份、4份等,同学们可以一一推算。

  三、运用知识解决实际问题。

  1、例1一个圆的直径是20m,它的面积是多少平方米?

  已知:d=20厘米求:s=?

  r=d2202=10(m)

  s=Лr2

  3。14102

  =3。14100

  =314(平方厘米)

  2、根据下面所给的条件,求圆的面积。

  r=5cmd=0。8dm

  3、解答下列各题。

  (1)一个圆形茶几桌面的直径是1m,它的面积是多少平方厘米?

  (2)公园草地上一个自动旋转喷灌装置的射程是10m。它能喷灌的面积是多少?

  四、作业。

  课本P70第1、5题。

圆的面积教案4

  教学目标

  1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

  2.能正确地计算圆柱的表面积。

  3会解决简单的实际问题。

  4.初步培养学生抽象的逻辑思维能力。

  教学重点

  理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

  教学难点

  能充分运用圆柱表面积的相关知识灵活的解决实际问题。

  教学过程

  一复习旧知。

  1计算下面圆柱的侧面积。

  (1)底面周长2.5米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  2求出下面长方体、正方体的表面积。

  (1)长方体的长为4厘米,宽为7厘米,高为9厘米。

  (2)正方体的棱长为6分米。

  3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

  学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

  学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

  二新课导入。

  1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

  2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

  (1)学生分组讨论。

  (2)学生汇报讨论结果。

  3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的`表面积)

  4教师进行圆柱模型表面展开演示。

  (1)学生说说展开的侧面是什么图形。

  学生:圆柱展开的侧面是一个长方形。

  (2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

  学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

  (3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

  (3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

  5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

  学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

  教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

  三新课教学。

  1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

  2学生尝试练习,教师巡回检查、指导。

  3反馈评价:

  (1)侧面积:2×2×3.14=56.52(平方分米)

  (2)底面积:3.14×2×2=12.56(平方分米)

  (3)表面积:56.52+12.56=81.64(平方分米)

  答:它的表面积是81.64平方分米。

  4学生质疑。

  5教师强调答题过程的清楚完整和计算的正确。

  6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

  四反馈练习:试一试。

  1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  2学生交流练习结果(注意计算结果的要求)。

  3教师评议。

  教师:在实际运用中四舍五入法和进一法有什么不同?

  学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

  五拓展练习

  1教师发给学生教具,学生分组进行数据测量。

  2学生自行计算所需的材料。

  3计算结果汇报。

  教师:同学们的答案为什么会有不同?哪里出现偏差了?

  学生甲:可能是数据的测量不准确。

  学生乙:可能是计算出现错误。

  教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

  六巩固练习。

  1计算下面图形的表面积(单位:厘米)(略)

  2计算下面各圆柱的表面积。

  (1)底面周长是21.52厘米,高2.5分米。

  (2)底面半径0.6米,高2米。

  (3)底面直径10分米,高80厘米。

  3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

  4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

圆的面积教案5

  教学目标

  (1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  (2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。

  (3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。

  教学重难点

  教学重点:组合图形的认识及面积计算。

  教学难点:对组合图形的分析。

  教学工具

  多媒体课件,各种基本图形纸片

  教学过程

  一、创设情境,谈话引入

  同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)

  师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)

  师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究

  1、教师出示例3的两幅图并出示自学提示出示自学提示:

  (1)上面两幅图有什么不同之处?

  (2)右图中的正方形的'对角线和圆得直径有什么关系?

  (3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?

  2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动

  生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。

  生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积

  ( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )

  师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:

  左图;(2r)-3.14r =0.86r

  右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致

  答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。

  四、总结引导,知识生成这节课你有什么收获?

  师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业

  七、作业布置P73第10、11、

  课后小结

  这节课你有什么收获?

  课后习题

  1、出示教材P70做一做

  2、完成教材P72第9题

  板书

  含有圆的组合图形的面积

  左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )

  S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )

  4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )

圆的面积教案6

教学目标

  1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;

  2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;

  3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.

  教学重点:扇形面积公式的导出及应用.

  教学难点:对图形的分析.

  教学活动设计:

  (一)复习(圆面积)

  已知⊙O半径为R,⊙O的面积S是多少?

  S=πR2

  我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.

  扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.

  提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.

  (二)迁移方法、探究新问题、归纳结论

  1、迁移方法

  教师引导学生迁移推导弧长公式的方法步骤:

  (1)圆周长C=2πR

  2)1°圆心角所对弧长=;

  (3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

  (4)n°圆心角所对弧长=.

  归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则(弧长公式)

  2、探究新问题

  教师组织学生对比研究:

  (1)圆面积S=πR2

  2)圆心角为1°的扇形的面积=;

  (3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;

  (4)圆心角为n°的扇形的面积=.

  归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则

  S扇形= (扇形面积公式)

  (三)理解公式

  教师引导学生理解:

  (1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;

  (2)公式可以理解记忆(即按照上面推导过程记忆);

  提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)

  S扇形=lR

  想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)

  与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.

  (四)应用

  练习:1、已知扇形的`圆心角为120°,半径为2,则这个扇形的面积,S扇=____.

  2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.

  3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.

  4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.

  5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=____.

  ( ,2,120°, , )

  例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.

  学生独立完成,对基础较差的学生教师指导

  (1)怎样求圆环的面积?

  (2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?

  解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.

  S=.

  ∵ ,∴S=.

  说明:要注意整体代入.

  对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.

  课堂练习:教材P181练习中2、4题.

  (五)总结

  知识:扇形及扇形面积公式S扇形=S扇形=lR

  方法能力:迁移能力,对比方法;计算能力的培养.

  (六)作业 教材P181练习1、3;P187中10.

圆的面积教案7

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的`面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

圆的面积教案8

  教学内容:课本例3,第115页练习二十七的第1~5题。

  教学目的通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  点:圆面积计算公式。

  难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

  教学过程():

  一、复习。

  1.口算:

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  拼成的图形近似于什么图形?

  原来圆的面积与这个长方形的面积是否相等?

  长方形的长相当于圆的哪部分的长?

  长方形的宽是圆的哪部分?

  长方形的面积=长×宽

  圆的'面积 = ×

  = ×

  = ×

  =

  用S表示圆的面积,那么圆的面积可以写成:

  3.圆面积公式的应用。

  出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  2.练习二十七的第1~4题。

  强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

  四、作业。

  练习二十七第5、6题。

圆的面积教案9

  【教学内容】

  北师大版小学数学第十一册第一单元P16--18圆的面积

  【教学目标】

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。

  【教学重点】

  能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  【教具准备】

  投影仪,CAI课件,等分好的圆形纸片。

  【学具准备】

  等分好的圆形纸片。

  【教学设计】

  【教学过程】

  【教学过程说明】

  一、创设情境。提出问题

  (投影出示P16中草坪喷水插图)

  师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察并讨论,然后指名回答。

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;

  生3:我补充一点,这个圆形的中心就是喷头所在的地方。

  师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?

  (让同学们充分发挥自己感官,估计草坪面积大小)

  2、用数方格的方法求圆面积大小

  ①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  生1、我是根据圆里面的正方形来估计的,外面

  方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;

  生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

  生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2

  而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的面积即是41/2r2=2r2,那么圆形面积大约为3r2,

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1、由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、

  梯形面积分别是由哪些图形的面积来的吗?

  (学生回答,教师订正。

  那么圆形的面积可由什么图形面积得来呢。

  2、探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什

  么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。

  师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?

  生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。

  (学生在说的同时教师注意板书)

  师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?

  生:等分为32份的更接近长方形。

  师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?

  生:等分的份数越多,就越接近长方形。

  师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  生1:因为拼成的平行四边形的底也就是圆形周长的.一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。

  生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。

  师:用字母怎么表示圆面积公式呢?

  生:S=RR

  生:还可以写作S=R2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、应用圆面积公式

  师:现在请大家用圆面积公式计算喷水头转动一周可

  以浇灌多大面积的农田。

  (学生独立解答,知名回答)

  四、应用圆面积公式解决实际问题

  1、P18,NO1

  学生独立解答,集体订正的时候要求学生说出每一步

  计算过程和依据。

  2、P18,NO2

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜

  结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。

  五、小结

  师:谁能用自己的话说说圆面积的推导过程。

圆的面积教案10

  教材分析

  本节课的内容是在学生初步认识了圆,学习了圆的周长以及学过几种常见直线几何面积的基础上进行学习的。学生从学习平面图形的面积到学习曲线图形的面积,这是一次质的飞跃。学生学习掌握了圆的面积的计算方法,不仅能解决简单的实际问题,也为后面学习圆柱、圆锥的知识打下基础。

  学情分析

  学生已经有了一些平面图形面积计算的经验,知道运用转化的思想可以研究新的图形的面积。在教学中要鼓励学生大胆想象、勇于实践,充分利用直观教学具,结合多媒体课件,在观察、操作中将圆转化成已经学过的平面图形,从中发现圆的面积与半径、直径有关,从而推导出圆的`面积计算公式。由于刚刚学习了圆的周长,学生容易把圆的面积和圆的周长混淆,所以教学中要让学生注意区分周长和面积,正确进行计算,解决实际问题。

  教学目标

  知识与技能:

  1.理解圆的面积的概念。

  2.理解圆的面积公式的推导过程,掌握圆的面积的计算方法,能正确解决实际问题。

  过程与方法:

  经历圆的面积的推导过程,通过动手操作,培养学生运用转化思想解决问题的能力。

  情感态度价值观:

  感悟数学知识的内在联系,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:

  掌握圆的面积的计算公式,能够正确地计算圆的面积,解决生活中的实际问题。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆片、课件。

圆的面积教案11

  学材分析

  教学重点:

  面积计算公式的正确运用。

  教学难点:

  面积公式的推导过程。

  学情分析

  学生对圆面积公式的推导过程理解有一定的难度。

  学习目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.会用圆面积的计算公式,正确计算圆的面积。

  导学策略

  导练法、迁移法、例证法

  教学准备

  圆的.面积模型、圆规、投影仪、投影片

  教师活动

  学生活动

  一.引入

  1.什么叫做圆面积?

  2.出示大小略有不同的两个圆,让学生比较哪个圆的面积大?大多少?(学生口答后把两圆重叠,比较大小。)相差多少呢?

  3.引出课题。

  二.推导

  1.问:小正方形面积怎样计算?(半径半径)圆面积与小正方形面积的3倍谁大谁小?圆面积与小正方形面积的4倍呢?2倍呢?

  2.师生共同操作:拿出一张正方形纸,按要求对折4次(注意第4次折的折法,是按角对分地折),然后拿尺量出一等腰三角形剪一刀,展开,得到一个近似于圆的纸片。

  3.教师操作:拿一张正方形纸,对折5次,剪一刀展开。与前一次剪的作比较,使学生知道,随着折的次数不断增加,剪下的图形也就越接近圆。

  4.分析推导。师生共同拿出剪好的图形分析:这个图形等分成若干块,每一块都是什么形状?(等腰三角形)这个图形的面积怎么求?随着折的次数不断增加,剪下的图形的面积也就越接近什么图形的面积?

  板书:图形面积=等腰三角形面积n=底高2n=Cr2n

  =2rn

  圆的面积=r2

  边板书边提问:等腰三角形的底是多少?(C)等腰三角形的高相当于圆的什么?(半径r)

  5.在上面推导的基础上,让学生分4人小组动手把准备的圆分成相等的16个小扇形,再拼成其他图形,推导出圆面积公式。教师巡视,取学生拼成的各式各样的图形,贴在黑板上,选其中两个进行分析。

  三.巩固

  试一试。

  四.总结

  五.作业

  学生口答

  师生共同操作

  师生共同操作

  教学反思

  已经是第2次教毕业班了记得第1次教的时候,还是幼儿园的院长一早每天都要过去一下,课前准备就不够充分,上课就照本宣科。而现在教这个知识的时候,不仅教具演示而且学生实际操作,所以教学效果就好多了,可以说连中下生都能灵活应用这个知识。

圆的面积教案12

  教学目标

  1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

  2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

  3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

  教学重点

  圆面积的计算公式推导和运用。

  课前准备

  一个大圆、剪刀、小正方形。

  课时安排:1课时

  授课人

  授课时间

  教学过程

  一、复习引入,导入新课。

  教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。

  学生说出自己的见解。

  教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎

  样表示?

  学生做出回答。

  教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?

  二、探索尝试,解释交流。

  教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。

  大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?

  全班汇报交流:谁想先来展示一下?(学生回答)

  教师引导交流:你能让平行四边形的底再直一点吗?

  学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。

  学生领悟:多分几份,平行四边形的底就会直一些。

  教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?

  教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的.份数越来越多呢?

  教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。

  教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?

  师:这样就把求圆转化成了求长方形。

  教师引导交流:你认为转化成的长方形与圆有什么关系?

  生:他们的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  教师引导交流:你能根据它们的关系,推出圆的面积公式吗?

  长方形的面积=长×宽

  圆的面积=c÷2×r=πr×r=πr2

  教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:

  s=πr2

  教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。

  三、巩固练习

  1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。

  建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。

  2、自主练习第1题。

  3、 自主练习第2题。

  给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。

  4、 自主练习第3题。

  总结:通过这节课的学习,你有什么收获?

  课后札记:

圆的面积教案13

  第一课时

  教学内容

  圆的面积

  教材第67、第68页的内容。

  教学要求

  1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

  2.培养学生运用转化的思想解决问题的能力。

  重点难点

  重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

  难点:理解圆的面积公式的推导过程。

  教具学具

  实物投影,各种图形的纸片。

  教学过程

  一导入

  1.我们学过哪些平面图形的面积公式?

  2.长方形、平行四边形和三角形的面积公式分别是什么?

  3.平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

  二教学实施

  1.明确圆的面积的概念。

  (1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

  学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

  (2)圆的大小是由什么决定的?

  (3)展示由“曲”变“直”的渐变图。

  引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

  2.学生动手操作,推导圆的面积公式。

  为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

  (1)指导学生动手摆学具,并思考几个问题:

  你摆的是什么图形?

  你摆的图形的面积与圆的面积有什么关系?

  所摆图形的各部分相当于圆的什么?

  你如何推导出圆的面积?

  (2)学生动手摆学具,然后发言。

  拼成长方形:

  老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

  出示教材第67页上面的`图加以说明。

  拼成的近似长方形的长和宽与圆的各部分有什么关系?

  从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

  3.利用公式计算圆的面积。

  出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

  指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

  板书:20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  老师强调指出:列出算式后,要先算平方,再与π相乘。

  三课堂作业新设计

  1.直接写出得数。

  22= 32= 42= 52= 62= 72=

  82= 92= 102= 0.22=0.72= 0.92=

  2.求下面各圆的面积。

  3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

  4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?

  四思维训练

  计算阴影部分的面积。(单位:分米)参考答案

  课堂作业新设计

  1.491625364964811000.040.490.81

  2.12.56平方分米28.26平方分米1256平方厘米28.26平方米

  3.28.26平方分米

  4.1.1304平方米

  思维训练

  3.44平方分米

  板书设计

  圆的面积

  长方形的面积=长×宽

  ↓ ↓↓

  圆的面积=πr×r=πr2

  20÷2=10(m)

  3.14×102

  =3.14×100

  =314(m2)

  314×8=2512(元)

  答:铺满草坪需要2512元。

  备课参考教材与学情分析

  本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  课堂设计说明

  1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

  2.教学时,强调知识迁移的过程。

  平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

  3.组织学生观察猜想。

  先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

圆的面积教案14

  教学内容:

  圆的面积。

  教学目标:

  1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

  3. 渗透转化的数学思想和极限思想。

  教学重点:

  正确计算圆的面积。

  教学难点:

  圆面积公式的推导。

  学情分析:

  本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

  学法指导:

  教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

  教具准备:

  多媒体课件,圆片。

  学具准备:

  把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

  教学设计:

  一、复习旧知,导入新课

  1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)

  2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

  3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

  提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

  这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

  二、动手操作,探索新知

  1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的'图形来推导出它们的面积计算公式。)

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?

  2. 推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr × r S=πr2 师小结公式

  S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  3. 利用公式计算。

  (1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

  (2)出示例3,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  (3)完成第95页做一做的第1题。

  (4)看书质疑。

  三、运用新知,解决问题

  1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

  2. 测量一个圆形实物的直径,计算它的周长及面积。

  3. 课件演示

  用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、布置作业

  1. 第97页的第3题和第4题。

  2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物、直径(厘米)、半径(厘米)、面积(平方厘米)

  板书设计:

  圆的面积

  长方形的面积= 长× 宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

圆的面积教案15

  教学内容:

  国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题

  教学目标:

  1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。

  2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。

  教学重点:

  探索圆面积的计算

  教学难点:

  理解面积的意义,推导圆的.面积计算公式

  教学过程

  一、导入新课。

  (一)关于圆你已经知道了什么?你还想知道什么?

  (二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)

  (三)你觉得圆的面积可能和什么有关?

  (四)出示下图

  (五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2

  和3r2的)关系。

  (六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?

  小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。

  二、探索圆积的计算公式

  (一)让学生试着将圆剪拼成长方形。

  (二)阅读课本P104页

  (三)让学生再操作

  (四)课件演示

  (五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

  (六)引导观察讨论:这个拼成的长方形和圆有什么关系?

  (七)汇报讨论结果。

  这个用圆分割成的小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。

  因为长方形面积=长×宽

  所以圆的面积=πr×r=πr2

  用S表示圆的面积,那么圆的面积计算公式就是:

  S=πr2

  (八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)

  (九)教学例9

  1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?

  2、让学生尝试解答。

  3、集体评议

  4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)

  三、知识运用

  (一)求出下列各个图形的面积。(P105页的练一练)

  (二)根据下面所给的条件,求圆的面积。

  1)半径2分米2)直径10厘米3)周长12.56

  (生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)

  四、本课小结。

  通过本课的学习你有什么收获?有什么体会?

【圆的面积教案】相关文章:

圆的面积教案11-17

《圆的面积》教案09-01

《圆的面积》教案03-06

人教版圆的面积教案02-19

圆的面积教案优秀07-27

【热】圆的面积教案03-31

圆的面积教案【精品】12-13

圆的面积教案精选15篇03-12

圆的面积教案15篇02-19

圆的面积教案(精选15篇)02-24