当前位置:育文网>教学文档>教案> 小学数学教案

小学数学教案

时间:2023-03-29 18:37:22 教案 我要投稿

人教版小学数学教案

  作为一无名无私奉献的教育工作者,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?以下是小编为大家收集的人教版小学数学教案,希望能够帮助到大家。

人教版小学数学教案

人教版小学数学教案1

  教学目标:

  (一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。

  (二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。

  (三)培养学生养成良好的学习习惯,提高学生的计算能力。

  教学重点:

  掌握整数、小数四则混合运算的.运算顺序。

  教学难点:

  提高学生计算正确率以及约等号的正确使用。

  教学过程:

  一、复习准备

  1.口算

  12+0.12= 7.2-0.2= 3.5÷0.35=

  2.95+0.05= 5-0.6= 2.8÷0.14=

  8÷12.5= 1.2+2.8-3.99= 4×1.72=

  3.74+6.26= 4.5×6= 0.25×4÷0.2=

  2÷4= 20×0.2= 20.75-9.5=

  3.5×8×0.125=

  2.提问

  (1)我们学过哪几种运算?

  (2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)

  (3)整数四则混合运算的顺序是什么?

  二、学习新课

  1.学习例1:3.7-2.5+4.6= 3.6×6÷0.9=

  (1)思考:以上两题中分别含有什么运算?运算顺序怎样?

  (2)学生试算后订正。

  3.7-2.5+4.6

  =1.2+4.6

  =5.8

  3.6×6+0.9

  =21.6÷0.9

  =24

  (3)小结运算顺序

  ①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。

  ②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)

  ③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)

  2.学习例2:35.6-5×1.73= 6.75+2.52÷1.2=

  (1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?

  (2)学生计算后订正。

  (3)小结。

  以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?

  讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。

  (4)练习:先说出运算顺序,再算出得数。

  ①P37“做一做”;②3.6÷1.2+0.5×5。

  思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)

  ②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)

  教师介绍:小括号“( )”是公元17世纪由荷兰人吉拉特首先使用。中括号“[ ]”是公元17世纪首次出现在英国的互里士的著作中。

  小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)

  3.试做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=

  (1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)

  (2)学生试做

  3.6÷(1.2+0.5)×5

  =3.6÷1.7×5

  3.6÷[(1.2+0.5)×5]

  =3.6÷[1.7×5]

  =3.6÷8.5

  计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解

  在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。

  要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)

  学生继续计算后,订正

  3.6÷(1.2+0.5)×5

  =3.6÷1.7×5

  ≈2.12×5

  =10.6

  3.6÷[(1.2+0.5)×5]

  =3.6÷[1.7×5]

  =3.6÷8.5

  ≈0.42

  提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)

  4.小结

  (1)什么情况用等于号?什么时候用约等于号?(当除不尽或者商的小数位数较多时,用“四舍五入法”保留两位小数,在保留两位小数取近似值的这一步,要写约等于号;当取准确值时,用等号。)

  (2)要改变算式的运算顺序,可以怎么办?(可以使用小括号、中括号。)

  (3)有括号的算式,运算顺序怎样?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)

  三、巩固反馈

  1.P38:做一做。

  2.P40:1①②,2①②。

  (1)说出运算顺序;

  (2)计算并且验算;

  (3)订正并小结验算方法。

  验算方法:①原式验算;②互逆验算;③交换验算。

  3.判断下面各题,哪些是对的,哪些是错的,并说明原因。

  (1)0.8-0.8×0.7=0( );

  (2)1.6+1.4×2=6( );

  (3)50-3.9+6.1=40( );

  (4)20÷2.5×4=32( );

  (5)9.6+0.4-9.6+0.4=0( );

  (6)4.8×2÷4.8×2=1( )。

  4.P40:4。先计算填空,再列出综合算式。

  5.课后作业:P40:1③④,2③④

人教版小学数学教案2

  教学目标

  1.理解平均数的含义,初步学会简单的求平均数的方法,理解平均数的统计意义。进一步积累分析和处理数据的方法,发展统计观念。

  2.在具体的问题情境中,感受求平均数是一些实际问题的需要,体会平均数的意义,学习求简单数据的平均数。

  3.感悟数学知识的现实性,体会平均数在现实生活中的实际意义及广泛应用。

  学情分析

  通过对任教的三年级(2)班学生进行课前调研,了解到全班59.1%的学生面对“比总数不公平”的情境,能够想到“先求出平均每人投中的个数再比较”的建议,但没有学生能够清晰地回答“为什么求出平均每人投中的个数再比较就公平了?”。退一步说,就算学生真正理解了其中的意义,那么“平均每人投中的个数”是否就能直接与“每人投中个数的平均数”画上等号?细微的文字表述差异的背后,又表征着学生怎样微妙的思维差异呢?

  事实上,“求出平均每人投中的个数”,对于一个三年级学生而言,其心理活动的表征往往是“先求总和,再除以人数”。而这一心理运算对学生而言,其直观背景十分模糊。至于其最终运算后得出的结果又是如何成为这组数据的代表的,其意义的“联结点”对学生而言更是很难直接建立。由此可见,仅仅从“比较的维度”揭示平均数的意义,潜藏着学生难以跨越、且教师也很难察觉的认知障碍与思维断点。

  于是,教师将备课的`思维焦点再次落到“数据的代表”上来。能不能从“数据的代表”的角度,重新为平均数寻找一条诞生的新途径?于是,便有了本节课的尝试。

  重点难点

  教学重点理解平均数的含义,掌握平均数的求法。

  教学难点理解平均数的统计意义。

  教学过程

  活动1【活动】一、建立意义

  (一)体验平均数的代表性

  1.谈话:

  (1)上个星期,于老师和体育来老师比赛投篮,1分钟看谁投得多。

  (2)想不想知道比赛结果?我给同学们提供一些数据,请你判断一下,我们俩谁投篮的水平更高一些。(课件分别依次出示来老师和于老师三次1分钟投篮的成绩)

  2.提问:

  (1)我们俩谁投篮的水平更高一些?为什么?

  预设:分别计算出两位老师三次投篮的总数,进行比较,得出结论。

  小结:在以前的学习过程中,要想比较谁的水平高我们经常先把总数算出来,看总数谁多。

  (2)观察观察数据,还有别的办法很快地比较出我们俩谁的水平高吗?

  预设:直接将两位老师每次投篮的个数进行比较,得出结论。

  提问:为什么直接比5和3?

  小结:如果每一次投篮的数量一样,那在这种情况下我们选一次的成绩作为我投篮水平的代表就可以了。

  提问:选择哪个数量来代表来老师的投篮水平呀?那于老师呢?方便不方便?

  【设计意图:创设“1分钟投篮比赛”的情境,精心设计数据,引发学生对平均数的“代表性”的理解。】

  (二)强化对平均数意义的理解

  1.谈话:不过,我可不服气,就找了一个理由:你是体育老师,我是数学老师,我要求再多投一次,结果来老师还真同意了,我就又投了一次。

  2.提问:

  (1)你们说于老师再投一次的话,会不会对我目前投篮的成绩有影响?

  (2)想不想知道于老师最后一次投篮的结果?(课件出示于老师第四次1分钟投篮的成绩)

  (3)我这次1分钟投了几个?我太高兴了,我为什么高兴呀?你们认为来老师会同意我的观点吗?

  (4)你认为在这种情况下应该怎么比?

  (5)我平均每次投中了几个?

  a.谈话:有很多同学有自己的想法了,请你试着在图上圈一圈、画一画,或者在图下面写一写、算一算把你的想法表示出来。

  b.谁愿意跟大家交流一下自己的想法?

  方法一:移多补少

  预设:从第四次投的7个中拿出3个分别给前3次各1个,就得到平均每次投中4个。

  谈话:你这个办法可真好!这样一移实际就是把几次不相等的数匀乎匀乎,看起来每次都一样了。数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程有个名字就叫“移多补少”。(板书:移多补少)

  【设计意图:首先利用直观形象的象形统计图呈现“移多补少”求得平均数的过程,而不是先通过计算求平均数,强化平均数“匀乎匀乎”的产生过程,帮助学生进一步直观理解平均数能反映一组数据的整体水平。】

  方法二:先合后分

  提问:还有同学用计算的方法算出了于老师平均每次投中的个数。谁愿意给大家介绍一下?

  预设:3+3+3+7=14(个)16÷4=4(个)于老师平均每次投中了4个。

  谈话:实际上就是把于老师四次投中的个数先全部合在一起再平均分成4份。(板书:先合后分)

  小结:无论是移多补少,还是先合后分,目的就是要把原来几个不同的数变得一样多了,数学上我们把同样多的这个数就叫做原来这几个数的平均数。(板书:平均数)3、3、3、7的平均数是4。

  提问:再来看看,来老师水平高还是我水平高,这种情况下我干嘛要用到平均数来比较我们俩谁的水平高呀?

  【设计意图:帮助学生理解投篮次数不同的情况下,比较总数不公平。这时就需要用平均数作为几次投篮个数的代表来反映投篮的整体水平进行比较。加强学生对平均数在统计学上的意义和作用的理解。】

  活动2【讲授】二、深化理解

  提问:

  1.那你们觉得于老师要是再投一次的话,这个平均数会不会发生变化?为什么?

  2.我们举个例子来看看吧,如果我第五次就投了1个,你们觉得于老师投篮的整体水平是上升了还是下降了?为什么?(课件出示于老师第五次1分钟投篮的成绩)

  3.你可没算,为什么你一下子就告诉我下降了呢?你是怎么判断出来的?

  4.那我要想让我的投篮水平再上涨一点儿,你们觉得我得投几个?算算我投篮的水平上涨了没有?( 根据学生回答课件出示于老师第五次1分钟投篮的成绩)

  5.要想让我投篮的整体水平上升点,你觉得我这次得投几个才行?(根据学生回答课件出示于老师第五次1分钟投篮的成绩)

  【设计意图:初步认识了统计学的意义后,进一步设计活动让学生借助于具体问题、具体数据初步理解平均数的敏感性,丰富学生对平均数的理解。】

  活动3【练习】三、拓展提升

  (一)进一步丰富学生对平均数的理解

  1.估计平均数(课件出示)

  提问:

  (1)不能算,直接看,有这样5个数据,估计一下平均数可能会是几呢?

  (2)为什么一下就能想到平均数是5呢?平均数可不可能是2,为什么?

  (3)真的是5吗?你怎么知道是5?用计算的方法会算吗?怎么算?

  【设计意图:在估计的过程中,学生发现平均数总是介于最小数与最大数之间,强化学生对平均数意义的理解。】

  2.判断直条所在位置(课件出示)

  提问:

  (1)仔细观察、认真思考,第五个数据如果我也要画一个直条,它会在这条红线上面?还是在红线下面?请同学们用投票器进行选择。

  (2)来选一个代表,谁愿意告诉大家为什么在红线的下面?

  【设计意图:变化思路,由已知平均数逆求部分数,加深学生对平均数意义的理解。】

  (二)利用平均数解决问题(课件出示)

  1.平均身高

  提问:

  (1)篮球队队员的平均身高是160厘米。李强是学校篮球队的队员,可是他的身高才155厘米。你觉得可能吗?

  (2)那平均身高是160厘米是每个人都是160厘米吗?

  (3)既然李强的身高是155厘米,根据这个信息猜想一下,可能有的同学身高是多少厘米呢?有可能超过160厘米吗?为什么?

  【设计意图:学生借助平均数的意义进行推理判断,深化对平均数的理解。】

  2.平均水深(课件出示)

  (1)提问:

  a.从图中你了解到了哪些数学信息?(冬冬身高130厘米 池塘平均水深115厘米)

  b.冬冬心想,这也太浅了,我的身高130厘米,下水游泳一定没危险。你们觉得,冬冬的想法对吗?

  c.冬冬的身高不是已经超过平均水深了吗?

  (2)谈话:想看看这个池塘水底下真实的情形吗?(利用课件,呈现池塘水底的剖面图)

  (3)小结:虽然平均水深能够很好地反映这条小河水深的总体情况,但并不能反映出小河某一处的深度。看来,平均数也不是万能的,如果使用得不恰当,也会给我们带来麻烦,甚至发生危险,今后我们还会研究中位数、众数……在具体应用的过程中还要联系实际去思考,平均数只有用在恰当的地方才能发挥它的作用。

  【设计意图:处理这一题目时,教师适时呈现小河的截面图,并标注出5个距离,将复杂的问题简单化,达到学生仍能借助平均数的意义理解东东下水的危险性。在此过程中学生也会感悟到平均数在反映一组数据总体情况时存在的局限性,适时提出今后还要学习其它反映一组数据总体水平的统计量,做好统计知识由中年级到高年级的衔接。】

人教版小学数学教案3

  教学内容:

  课本22页例3和做一做及练习四1、2题。

  教学目标:

  1、通过活动使学生学会以不同的地点为观测点判断方向。

  2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。

  3、通过学习,进一步提高学生的空间观念。

  重点难点:

  使学生进一步认识到位置关系的相对性。

  教学用具:

  挂图

  教学过程:

  一、创设情境 生成问题

  1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。

  2、分别指两名学生,让大家根据方向说一说他们的位置关系。

  (设计意图:组织学生先弄清东西南北四个方向,再根据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。)

  3、师:今天我们就来继续研究两个物体位置的相对关系。

  (设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。)

  二、探索交流 解决问题

  1、出示教材第22页例3主题图。

  (1)让生观察地图

  师:北京和上海两地相距大约 1000千米,说一说,上海在北京的什么方向上?

  ①组织学生用直尺,量角器测量出上海在北京的什么方向上。

  师根据学生汇报板书: ②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?

  组织学生观察上图,在小组中讨论,然后交流说一说。

  出示提示

  1.确定以谁为观测点,并建立方向标。

  2.用语言描述北京和上海的具体位置。

  讨论后每组选出一名同学在班内汇报。

  生汇报。

  可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的`方向上。

  师对照图示指一指,肯定两种说法都是正确的。

  师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。

  观测点不同,物体的相对位置就会发生变化。这就是今天这节课学习的内容。

人教版小学数学教案4

  教学内容:

  教材第8页例4、例5,“练一练”和练习二第1、2题。

  教学目标:

  1、经历初步认识“倍”的过程,联系实际问题初步理解“倍”的含义,建立“倍”的概念,理解“几个几”和“倍”的联系。

  2、在认识“倍”的教学活动中发展数学思考,提高解决问题的能力,培养学习数学的积极情感和良好的学习习惯。

  教学重点:

  建立“倍”的概念

  教学准备:

  圆片数个,例5花图、线段图等。

  教学过程:

  一、动手操作,导入新课

  1、根据老师的要求摆圆片。

  (1)第一行摆3个圆片,第二行比第一行多摆4个,第二行摆几个圆片?

  (2)第一行摆3个圆片,第二行要摆2个3,第二行摆几个圆片?

  (3)第一行摆3个圆片,第二行摆的圆片个数是第一行的2倍,第二行摆几个圆片?

  二、自主探索,学习新知

  1、老师演示:第一行圆片摆了3个,第二行摆跟它同样多的3个,这时第二行的个数就是第一行圆片的1倍。请你也来摆一摆:第二行的个数是第一行的1倍。

  2、学生动手操作,老师巡视指导,要求学生边摆边想:1倍该怎么摆?

  3、题目要求我们第二行的个数是第一行的2倍,请你想一想接下去该怎么摆?(学生动手操作后)谁来说一说第二行圆片摆了()个()。

  4、完整地说一说:第一行圆片有3个,第二行圆片的个数是第一行的2倍,第二行摆了2个3。

  5、如果老师要求你们第二行圆片的个数是第一行的4倍,又该怎样摆呢?如果是6倍呢?1倍呢?(学生根据老师的要求摆圆片,并完整地复述:第一行圆片有3个,第二行圆片的个数是第一行的()倍,第二行摆了()个()。

  6、巩固练习:

  (1)第二行圆片的个数是第一行的4倍,

  第二行摆()个(),第二行一共有()个圆片。

  (学生先独立摆一摆,再说一说。)

  (2)第二行圆片的个数是第一行的2倍。

  第二行摆()个(),第二行一共有()个圆片。

  (学生独立操作,并能完整地说一说。)

  (3)第二行圆片的个数是第一行的()倍。

  第二行摆了()个()。

  (4)第二行圆片的个数是第一行的()倍。

  第二行摆了()个()。

  三、教学例4、例5

  1、教学例5

  (1)直接出示例5。

  (2)谁来说一说:菊花的朵数是月季花的()倍。你是怎样想的?引导学生完整地说一说:月季花有2朵,菊花有3个2朵,菊花的朵数是月季花的3倍,菊花一共有6朵。

  (3)学生独立完成练一练第1、2、3题。

  2、教学例4

  (1)出示例4。

  (2)花带子的长是灰带子的几倍,你是怎样想的?

  (3)谈话:如果我们把灰带子的长看作1份,花带子的长就是这样的4份,(老师边讲边将花带子与灰带子进行比较)花带子的长是灰带子的4倍。

  (4)在花带子的后面再添上一段,现在花带子的长有这样的几份,那么花带子的长是灰带子的几倍呢?再添上2段呢?

  (5)在灰带子的后面加上一段。

  我们把现在灰带子的'长看作1份,那么花带子的'长就有这样的几份?现在花带子的长是灰带子的几倍?你是怎样想的?

  (6)我们把现在灰带子的长看作是1份,那么花带子的长就有这样的几份?花带子的长是灰带子的几倍?你又是怎样想的?

  四、应用拓展

  1、白皮球

  花皮球

  花皮球的个数是白皮球的()倍。

  2、学生独立思考说一说是怎样想的?

  3、谈话:老师要求花皮球的个数是白皮球的2倍,你有什么办法?(可以拿去花皮球的2段,也可以给白皮球加上一段)

  4、请你也来设计一道类似的题目,同桌一个人出题,另一人根据同桌的意思画一画,摆一摆,再说一说。

  五、总结

  这节课,你有哪些收获?你学到了什么新的本领?跟同桌交流一下你的想法。

人教版小学数学教案5

  教学内容:

  九年制义务教育课本数学一年级第一学期(试验本)P15

  教学目标:

  认知目标

  1. 对星空中的一些星座(由7颗星组成的)的星星计数。

  2. 按给出的数在方格纸上画星图。

  3. 联系生活实际,学生初步了解常见的星座知识。

  能力目标

  1. 发展观察能力、空间想象能力。

  2. 在画点图中培养学生的创造性思维能力。

  情感目标

  在情境创设中激发学生的学习兴趣和探索宇宙奥秘的欲望。

  重点难点:

  按给出的数在纸上画出星图。

  教学准备:

  1. 教师方面的准备:多媒体课件、方格纸、小圆片

  2. 学生方面的准备:课前有关星座的知识探究、水彩笔

  教学过程:

  一、情境引入

  1. 播放歌曲《一闪一闪亮晶晶》

  师:夜晚悄悄地来临了,美丽的月亮散发着淡淡的光芒,可爱的小星星在对你调皮地闪动着大眼睛,这些星星用直线连接起来,就形成很多的星座。请学生分组交流介绍收集到的有关星座的知识。

  2. 个别回答:你知道有哪些星座吗?星座对于我们人类有什么作用呢?

  3. 出示课题:美丽的星座

  二、新授实施

  1. 教师边操作多媒体课件,边介绍:天鹅座、狮子座、猎户座,北斗七星座。

  仔细观察:它们有什么共同的地方?

  小结:同样是7颗星星,可是由于排列的位置不一样,所以就形成了不同的星座。

  2. 请你用7个小圆片模仿摆出以上的.四个星座,教师巡视辅导。

  3. 你还能用7个小圆片摆出其他的形状,并取个合适的名字吗?

  学生操作,教师巡视,组织评比:谁的星座最可爱、最美丽?

  4. 小结:奥妙无穷的宇宙世界等着小朋友长大以后去探索、去求知。

  三、练习尝试

  1.我们可以把这些星星看作是一个小圆点,然后我们可以在方格纸上画出星座。你们想不想也来动手画画看呢?(教师选择其中的一个星座带领小朋友尝试画)

  师:先画4个圆点,将点与点用线联系起来,这样就能形成一幅星座图。

  生:选择喜欢的颜色画4个圆点来画出星座。

  2. 想一想,画一画:用4个圆点、5个圆点创作出其他的星座,小组内交流评比。

  3. 教师指导写数:7的写法

  四、探究巩固

  1. 比一比,赛一赛:我是小小天文家。让学生展开想象自己来发明星座,并展示学生作品,给予一定的奖励。

  2. 总结:今天学习了什么本领?你还想了解什么知识呢?

人教版小学数学教案6

  教学目标:

  1、使学生认识乘加、乘减两步计算应用题的结构特点,理解并掌握解题思路。

  2、培养学生分析问题和解决实际问题的能力,提高思维能力。

  3、使学生在解决实际问题的过程中体验数学与日常生活的密切联系,初步感受数学的应用价值,增强应用数学的意识。

  4、通过鼓励性的情感评价,激发学生的学习兴趣。

  教学重点:

  引导学生联系生活经验初步学会分析数量关系,并形成解决问题的基本思路。

  教学难点:

  懂得要解决最后问题必须先找出隐藏的中间条件。

  教学准备:

  多媒体课件。

  教学过程:

  一、复习引入

  今天老师带大家去桃园参观,你们想去吗?(课件演示)

  今年的桃子大丰收啊!这里有4筐桃子,每筐有6个,一共有多少个桃子?

  谁会算一算?(学生口答,说一说怎样想的?)

  如果第一棵树上有80个桃子,第二棵树上有60个桃子,两棵树上一共有多少个?

  谁会列式解答?学生口答并说一说怎样想的?

  二、探索新知

  (1)你们真了不起,遇到的两个问题都解决了。我们一起去看看猴妈妈和猴宝宝在桃园遇到了什么问题想请你们帮忙。

  媒体演示例题

  (2)从图上你知道了哪些信息?

  学生回答,教师板书:大猴:3筐,每筐12个。

  小猴:6个

  你能根据两只猴子的`采桃情况提出问题吗?

  把学生提出的问题板书出来,再引导学生先解决两只猴一共采了多少个?

  (3)怎样求出两只猴一共采了多少个?

  你会列式解答吗?

  学生独立思考,列出算式

  根据学生的汇报板书:123=36(个)

  36+6=42(个)

  你先算的什么?你是怎样想到先算大猴采了多少个的?

  教师归纳:有的同学这样想:要求两只猴一共采了多少个?就要把大猴采的个数和小猴采的个数合起来,可题目上没有直接告诉我们大猴采了多少个,所以必须要先求出大猴采了多少个,然后把大猴采的个数加上小猴采的个数。这是从问题想起。还有同学是从条件想起,根据大猴采3筐,每筐12个,就能先算出大猴采了多少个,再把大猴采的个数和小猴采的个数合并起来,就是两只猴一共采的个数。这两种想法都很好。

  我们在解决问题后要写出完整的答语。教师板书答语。

  回顾:刚才我们解决这个问题时用了几步计算?(板书课题:用两步计算解决实际问题)。为什么这道题要用两步呢?

  (4)教学试一试

  刚才有同学还提了一个问题,你会解答吗?

  先在本子上独立解答再同桌互相说说先算什么?

  指明汇报,板书算式。提问:要求大猴比小猴多采多少个?要先算什么?

  比较:在解决例题和试一试这两个问题时有什么相同的地方和不同的地方?

  学生讨论教师归纳:相同的是两题都用两步计算,而且第一步都是要先算出大猴采了多少个?这一步都是用乘法算的。不同的是,第1题求两只猴一个采了多少个?所以第二步用加法计算,而第2题求大猴比小猴多采多少个?所以第二步用减法计算。

  三、拓展练习

  (1)参观了桃园后我们再去森林公园看看,进公园先买票。我们来算算一共要多少元?(媒体出示条件和问题)

  谁说说这题告诉了我们哪些条件?要求什么问题?

  要求一共有多少元先要算出什么?

  学生列式解答。指名汇报,说一说152表示什么意思?提醒做完后别忘了写答语。

  (2)我们进公园去。这里有2个小朋友在浇树呢!这里又有什么问题需要我们解决呢?你会做吗?在自己的本子上做一做。

  学生独立解答后说一说先算什么再算什么?

  (3)我们继续参观森林公园,看,眼前又出现了什么?根据这些条件你会提哪些问题?

  根据学生的回答,出示问题,再让学生分别解答。

  解决这两个问题分别是怎样想的?都要先算什么?

  四、全课总结

  在参观的过程中同学们解决了好多问题,真是了不起啊!这节课你有什么收获呢?解决两步计算的实际问题关键是什么呢?

人教版小学数学教案7

  教学目标

  1、通过教学,使学生初步理解同分母分数加法的算理。

  2、掌握同分母分数加法的计算法则并能正确熟练地计算。

  学情分析

  学生在掌握整数加法的基础上,探索同分母分数加法的过程,理解同分母分数的计算法则。

  重点难点

  1、分数加法的意义。

  2、能正确进行同分母分数加法的计算。

  教学过程

  活动1【导入】创设情境

  1、(录音内容)我是妮妮,今天想请哥哥、姐姐帮我一个忙。我妈妈烙了一张饼,爸爸把它平均分成八份,爸爸吃了八分之三张饼,妈妈吃了八分之一张饼,我想知道爸爸、妈妈一共吃了多少张饼呢?谁要是能帮我,就奖给大家一个赞,我先谢谢哥哥、姐姐了。

  2、师:同学们,能帮助小妹妹吗?那怎么列式(板书式子),今天就让我们共同学习同分母分数加法。

  活动2【讲授】学习目标

  1、理解、掌握同分母分数加法的计算法则。

  2、能正确进行同分母分数加法的计算。

  活动3【活动】提示预习内容,学生自主学习

  1、自主探究、小组讨论:

  (一)师:俗话说:“三个臭皮匠,顶个诸葛亮”,四个人的智慧,一定是很大的,下面就让我们小组合作来探究同分母分数加法。

  (二)学生先自主学习,再小组讨论

  (三)学生讨论,师个别指导

  (讨论中鼓励学生大胆提出个人见解,提示可以借助辅助工具来解题。)

  2、汇报交流

  生1:同学们,下面由我来代表我们组跟大家分享我们组的做法,大家请看,我是把这张长方形纸当成妈妈烙的饼,我也把它平均分成8份,爸爸吃了3份,我把它折回去,妈妈吃了1份,我也把它折回去,还剩4份,吃了也就是4份,占整张饼的八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生:老师,我想对赵红俐的讲解做下点评,你的想法真奇特,能想到加法的逆运算减法来解决问题,你真棒,希望在以后的学习中你能继续发挥你的聪明才智。

  生2:大家请看,我们组是用折纸法,我把这张圆看作是妈妈烙的饼,我把它对折三次,平均分成8块,这3块是爸爸吃的,也就是八分之三,这1块是妈妈吃的也就是八分之一,一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生3:我来为大家讲解说意义的方法,大家请看,我是把这张饼看作单位“1”,把它平均分成8块,爸爸吃了3块,相当于吃了这张饼的八分之三,妈妈吃了1块,相当于吃了这张饼的八分之一,两个人共吃了4块,也就是这张饼的八分之四。结果能约分的要约成最简分数,也就是二分之一。

  生4:我们组是用画线段的方法来解答的,我是把一条8厘米长的线段看成是妈妈烙的饼,把它平均分成8份,这3份是爸爸吃的,用来表示八分之三,这1份是妈妈吃的,用来表示八分之一,一共吃了4份,也就是八分之四,请大家注意结果能约分的要约成最简分数,也就是二分之一。

  生5:我们组是用画图法来解决的,我是把一张正方形纸看作是妈妈烙的那张饼,把它平均分成8块,爸爸吃的.3块,我是用蓝色表示的,妈妈吃的1块,我是用红色表示的,爸爸、妈妈一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生6:我们组是用切割法来解决的,请八位同学来帮我完成,请大家手拉手紧密的围成一个圆,我把这个圆平均切成8块,这3块是爸爸吃的,这1块是妈妈吃的,一共是4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生:我想对陶梦如的做法做一下点评,你的想法很新颖,但在日常的应用中不实用,我建议你可以用小棒来代替人。

  生:我觉得小棒易丢,也不实用,可以用手指来代替小棒,因为手指不会离开我们的身体。

  生:我觉得手指算小数可以,假如就没法算了,我觉得还是画图比较好。

  生7:大家请看表示3个,表示1个,它们两的分数单位都是,所以分母不变,只把分子相加,结果能约分的要约成最简分数,也就是二分之一。

  生:刚才大家用这么多方法来探究同分母分数加法,那到底该怎样计算同分母分数呢?

  生:同分母分数相加,分母不变,只把分子相加,计算的结果,能约分的要约成最简分数。

  师:同桌互记计算法则。

  活动4【练习】能力提升

  师:在阿拉伯流传这样一句话:“无论你有多少知识,假如不用便是一无所知”,谁能结合本节课的内容,出几道题考考大家?

人教版小学数学教案8

  教学内容:课本第14页 练习二

  教学目标:

  通过练习使学生完整地掌握四则混合运算的顺序,并能进行正确熟练的运算,进一步提高学生的运算能力。

  教学重点:熟练运算

  教学用具:幻灯

  教学过程:

  一、说说下面各题的运算顺序,再计算。

  116-50÷25+8×2 116-(50÷25+8)×2

  [116-950÷25+80]×2 (116-50)÷[(25+8)×2]

  要求:

  1、让学生划出运算顺序,同桌批改。

  2、选择其中的两题进行计算。

  3、反馈讲评

  小结:运算顺序不同,计算的结果就完全不同,因此在进行计算时一定要注意运算顺序。

  二、根据要求添括号 改变式题的'运算顺序。

  30+120÷15-5×2

  说出题目的运算顺序。

  要求改变运算顺序:

  1、-——÷——×——+

  2、-——×——÷——+

  3、÷——+——×——-

  4、-——÷——+——×

  5、+——÷——-——×

  在反馈讲评时,着让学生说说添括号时的思考过程。

  三、在○里填上适当的数,然后列成综合算式

  27+12 40×6

  ÷13 282-

  50- 168÷

  +26

  讲评:你在列综合算式时有什么好方法?

  四、应用题

  1、文具三生产一种彩笔,60盒可以装720支,照这样计算,500盒可以装多少支?

  60盒——720支 你能用两种方法计算?

  500盒——? 支

  讲评时 着重让学生理解每一步计算结果所表示的意义。

  改问题:3000支彩笔要装多少盒?

  五、提高性练习

  计算24点

  课堂作业

人教版小学数学教案9

  ●学习目标

  1、初步理解除数是整数的小数除法的含义,根据已有的生活经验和知识基础,探究除数是整数的小数除法的计算方法。

  2、初步理解和掌握除数是整数的小数除法的`计算方法,会计算除数是整数的小数除法问题

  3、能初步利用等量划分(包含除)与平均分(等分除)来解决日常生活中的一些简单问题。

  4、进一步理解“倍”的含义,知道两个量的关系有时可用“小数倍”表示。

  ●重点难点

  学习重点:除数是整数的小数除法的计算方法。

  学习难点:小数除以整数中“商与被除数小数点对齐”;除到被除数末尾有剩余,在剩余部分后面添0,再继续除。

  ●教材知识讲解

  例1、买3千克黄瓜要5.28元,每千克黄瓜售多少元?

  分析与解答:

  根据我们的生活,知道5.28元不到6元,因此黄瓜每千克的售价不到2元。又:黄

  瓜的单价=黄瓜总价÷数量,因此列出除法算式:5.28÷3

  5.28÷3怎样计算呢?

  方法1:5.28元=528分528÷3=176(分)176分=1.76元

  方法2:5.28元里有528个0.01元,528÷3=176(个)

  就是说每千克是176个0.01元,是1.76元

  两种方法算得的结果一样,接近我们的估测,而且两种方法都采用了整数除法计算,

  我们尝试用竖式计算:

  点拨:如果除到被除数末尾有剩余,在剩余部分后面补0继续除。

  例3、有3.5千克葡萄干,平均分给7人,每人可分多少千克?

  分析与解答:

  3.5÷7,显然,每人分到的不足1千克,整数部分不够分,怎么办?

  我们把3.5千克转化成3500克计算,3500÷7=500(克),500克=0.5千克。

  用竖式计算:

  ●方法与技巧

  1、除数是整数的小数除法,按整数除法的方法计算,商的小数点要和被除数的小数点对齐;

  如果除到被除数末尾有剩余,在剩余部分后面补0继续除。

  2、被除数的整数部分比除数小时,在个位上直接商0,点上小数点,再按整数除法的方法

  继续算。

  3、求大的量是小的量的几倍时,不仅可以用整数倍,还可用“小数倍”表示。

  3、应用

  (1)甲、乙两地相距180千米,一辆汽车从甲地开往乙地每小时行48千米,几小时后可以到达?

  (2)甲种巧克力每千克售65.8元,乙种巧克力每千克售47元。甲种巧克力的单价是

  乙种巧克力单价的几倍?

  自我检测参考答案

  1、1.2,0.003,1.525,0.25

  2、 8.1,5.4,0.029,0.065,0.45,0.035

  3、(1)180÷48=3.75(小时)

  (2)65.8÷47=1.4

人教版小学数学教案10

  教学内容:

  教科书第64、65页的内容。

  教学目标:

  1、理解并掌握等式的性质。根据等式的性质进行等式变换。

  2、体会“猜想-验证”的探究过程。

  3、感受等式的对称美。

  教学重难点:

  等式性质的归纳总结

  教学过程:

  一、故事导入

  讲故事:王财主家有一黄一灰两头懒驴。这天,他把每种货物都平均分装在袋子里,让俩驴驮运。因为俩驴谁都不肯多驮一点,所以它俩只能驮得一样重。黄驴说:“我挑一袋大米。”灰驴就说:“我挑两袋土豆。”一袋大米的质量正好等于两袋土豆的质量。

  为了方便,在课堂上用红球代替大米,一个a克;用绿球代替土豆,一个b克;用橡皮代替花生,一块m克;用胶带代替黄豆,一个n克。

  得出等式a=2b。

  第二轮它俩可能会加挑什么货物呢?

  二、探究新知

  1、探索“等式两边加上同一个数”、“等式两边乘同一个数”。

  猜想:第二轮它俩可能会加挑什么物品呢?

  (都加挑一块橡皮)

  此时它俩所挑物品的质量相比第一轮发生了什么变化?

  (都增加m克)

  分别变成了多么克?

  (黄驴变为a+m克,灰驴变为2b+m克。)

  验证:俩驴所挑物品质量真的还一样重吗?在天平上摆摆看。

  (天平平衡)

  结论:都加挑一块橡皮,俩驴所挑物品质量仍然一样重。

  ......

  观察这些等式,都是由等式a=2b变换得来的,你能对这5个等式变换进行分类吗?

  (前三个都是在等式两边加上同一个数;后两个都是在等式两边乘同一个数。)

  这就是等式变换的2条规律:等式两边加上同一个数,左右两边仍然相等;等式两边乘同一个数,左右两边仍然相等。

  小组内的其它猜测,先用式子表示,然后合规律的说出所运用的规律,不合规律的在天平上摆摆看。

  2、探索“等式两边减去同一个数”。

  思考并说理:等式两边减去同一个数,左右两边还相等吗?

  (相等。天平左边一个红球和一块橡皮,右边两个绿球和一块橡皮,天平是平衡的。当两边都拿走一块橡皮,天平还是平衡的。)

  相应的由哪个等式变换为哪个等式?

  (由a+m=2b+m变换为a=2b。)

  怎么变的?

  (两边都-m)

  ......

  观察并思考:这些等式的变换,有什么共同点?

  (都是在等式两边送去同一个数)

  这就是等式变换的第3条规律,你能用一句话来总结吗?

  学生总结:等式两边减去同一个数,左右两边仍然相等。

  总结等式性质1:等式两边加上或减去同一个数,左右两边仍然相等。

  提示课题:这就是今天的学习内容“等式的性质”。

  3、探索“等式两边除以同一个不为0的数”。

  思考并说理:等式两边除以同一个数,左右两边还相等吗?

  (相等。天平左边2个红球,右边4个绿球,天平是平衡的,当两边的数量变为二分之一时,天平还是平衡的.。)

  相应地有哪个等式变换为哪个等式?

  (由2a=4b变换为a=2b)

  怎么变的?

  (两边都除以2)

  ......

  观察并思考:这些等式的变换,有什么共同点?

  (都是在等式的两边除以同一个数)

  这就是等式变换的第4条规律,你能用一句话来总结吗?

  学生总结:等式两边除以同一个不为0的数,左右两边仍然相等。

  为什么强调不为0?

  (因为0不能作除数)

  总结等式性质2:等式两边乘同一个数,或者除以同一个不为0的数,左右两边仍然相等。

  三、巩固练习

  1、第66页第5题

  2、对等式6x=8变换

  3、平衡天平上的变化。

  4、方程的变换。

  四、课堂反思

  1、等式的性质回顾

  2、本节课的感想。

  教学反思:

  本节课以故事导入,生动有趣,但讲故事又不仅仅只是导入新课的作用。学生围绕故事中的问题”第二轮它俩可能会加挑什么物品呢“展开猜测交流,从而引出对等式变换的猜测,学生把生活经验和学习内容紧密地联系起来,学习也变得更加容易。在教学”等式两边加同一个数“和”等式两边乘同一个数时“采用了”猜想——验证“这一获知模式。也让学生初步了解了这一模式。在教学”等式两边减去同一个数“和”等式两边除以同一个数“时,给了学生充分的思考、交流空间,让他们充分运用自己的学习经验,动脑、动手,得出结论,并说出自己的判断依据。培养了学生的动手、动脑能力和说理能力。

人教版小学数学教案11

  一、教材分析

  1、内容:九年义务教育六年制小学五年级人教版《数学》下册第五单元《图形的运动(三)》P83页《旋转三要素》。本课计划1个课时。

  2、教材的编写意图:在二年级学生已经初步认识了图形的旋转和平移,以后上初中也将进一步学习图形的旋转和平移,因此,本课起着承上启下的衔接作用。

  教学目标:

  (一)知识与技能

  使学生掌握旋转的方向,明确旋转的含义和旋转的三要素,会用自己的语言简单地描述线段的旋转。

  (二)过程与方法

  通过操作、观察、讨论等活动,提高学生的空间想象能力和综合运用知识的能力。

  (三)情感态度和价值观

  在观察、讨论中,发展空间观念,进一步培养学生对数学问题的敏锐眼光。

  教学重难点:

  教学重点:明确旋转的含义和旋转的三要素。

  教学难点:体会旋转的含义,理解旋转的三要素。

  二、教法

  新课程标准要求:教师是学习的组织者、引导者、合作者,根据教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅的教学手段。教学中,教师精心创设问题情景,诱导学生思考、操作,教师适时地演示,并运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  三、学法

  根据学法指导自主性和差异性原则,让学生在“观察——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

  教学准备:幻灯片、课件。

  教学过程:

  一、情境导入

  课件播放花样滑冰选手金妍儿的旋转舞蹈视频。

  教师:你看到了什么?

  学生:她在不停地旋转。

  教师:今天我们就来认识旋转。

  (板书课题:旋转)

  【设计意图】 这样的设计,极大的吸引了学生的注意力,激发了学生的好奇心和求知欲,同时很自然的就将学生带入新课中。

  二、、探究新知

  1、复习简单的旋转现象。

  A、在二年级的时候我们已经初步认识了生活中的旋转现象,你还记得旋转的含义是什么吗?

  学生思考,教师指名回答。

  B、大家能举几个例子吗?

  教师指名回答。

  C、老师身上有样东西在运动时也在旋转,你能找出来吗?

  学生认真找。找后指名回答。

  2、讲解例1,明确确旋转三要素。

  出示时钟。

  师:同学们已经初步认识了生活中的旋转现象,那我们这节课就借住时钟进一步认认识旋转。

  (1)认识旋转要素——旋转方向

  教师:同学们都应该观察时钟的指针的旋转动运,那你们知道它是按什么方向运动的吗?

  学生小组交流,可得出:指针是按顺时针方向方向旋转的。

  教师:不在人为的干涉下,指针会逆时针运动吗?(不会)

  教师:时钟中的时针只会顺时针运动,这就是指针的.旋转方向。

  (板书:旋转方向)

  教师组织学开展“听口令做动作”的活动;让学生先平伸右臂,用动作表示顺时针旋转和逆时针旋转,再平伸左臂做一次,亲身体验顺时针运动、逆时针旋转。

  (2)认识旋转要素——旋转中心

  教师指着时钟的中心。

  教师:同学们知道这是什么吗?这个位于时钟的中心,时钟和分钟都沿着它转,这就是时钟的旋转中心。

  (板书:旋转中心)

  (3)认识旋转要素——旋转角度

  课件动态出示甲时钟指针从“12”到“1”,乙时钟指针从“12”到“3”。

  引导思考:

  A、注意观察,甲、乙两个时钟的指针分别是怎么旋转的?

  指名说一说指针的旋转过程。

  B、两个钟面上都是指针在旋转,在旋转过程中有什么不同的地方吗?

  教师:学习了上面的内容,同学们能描述指针从“12”到“1”的旋转吗?

  学生思考得出:当指针从“12”到“1”时,指针顺时针绕着中心转过了30°。

  教师:你怎么知道旋转了30°呢?

  组织学生在小组中讨论交流,使学生明确:指针绕点O旋转一周共360°,一共12个大格,从“12”到“1”是1个大格,即旋转了:360°÷ 12 = 30°。

  教师小结:在描述物体的旋转时,要注意旋转三要素:旋转方向、旋转中心、旋转角度。

  (板书:旋转方向、旋转中心、旋转角度)

  【设计意图】从简单的实例入手,在看似简单的变化中请学生比较不同之处,形象地感知、体会旋转的三要素。

  三、巩固练习

  1、完成课本例题。

  2、完成教材第83页“做一做”。

  (1)先出示左边的图,再出示右边的图。

  教师:左侧有车通过,左侧车杆怎么变化呢?

  预设:左侧有车通过,车杆绕点O顺时针旋转90°。

  教师:汽车已经通过,车杆又回归原位,车杆又是怎么变化的呢?

  (2)请一个学生来当车闸,演示右侧有车通过,请大家说一说车杆是怎么变化的。

  (3)引导学生仔细观察左、右侧通车时旋转方向、旋转中心、旋转角度的相同和不同。

  指名回答,集体订正

  3、课件动态出示时钟,完成练习。

  4、指导学生完成教材第85页第1题、第2题、第3题。

  5、欣赏生活中的旋转现象图片及旋转大楼。

  【设计意图】有了前面初步感知旋转的三要素,在这一环节中,充分给学生空间,让学生在讨论中,自己不断完善对指针旋转的描述,加深对旋转的理解。

  四、课后小结

  通过本节课的学习,你有什么收获?

  【设计意图】让学生归纳小结本节课所学知识,进一步培养学生的概括能力。

人教版小学数学教案12

  教学内容:

  教科书第23~27页内容。

  教学目标:

  1、使学生简单了解计算工具的发展,包括结绳计事等远古计数方法、算筹的简单知识、传统计算工具——算盘,及其计算方法、生活中常用的计算器、和现代计算机的发展史。

  2、展示人类伟大的创造过程和聪明才智,体会到人们为了方便在计算工具方面的探索和努力。使学生经历认识和使用计算工具的过程

  3、培养学生学习数学的兴趣。通过认识算盘,体会我国古代劳动人民的智慧与努力,激发爱国感情。

  教学重点:

  利用计算器来进行计算。

  教学难点:

  正确使用存储运算键。

  教学准备:

  算盘、多媒体课件、算筹、计算器。

  教学过程:

  一、直接导入

  同学们都知道,数学总是离不开计算。今天我们就来一起认识计算工具。板书课题:计算工具的认识。

  二、新授

  (一)、出示学习目标

  学生齐读学习目标,明确本节课的学习任务。

  (二)、自主探究

  你都知道哪些计算的工具?谁愿意给大家介绍介绍?

  生可能会答:计算器、算盘……

  教师根据学生汇报的情况有重点的请学生介绍如绳结、算筹等使用的方法,从而进一步使学生体会计算工具发展的过程。

  1、远古计数:

  看来同学们的知识都非常丰富,但有关计算工具的知识还远不止这些,计算工具从古到今,随着人类社会的不断进步,经过了漫长的发展过程。远古时代,人类在捕鱼、狩猎和采集果实的劳动中,产生了计数的需要。人们就用什么来计数?(板书:远古计数)

  生回忆:手指、石子、结绳或在木棒上刻痕来计数。

  2、算筹:

  (1)远古的用实物记数、刻道记数、结绳记数的方法只能计数,而不能清楚的.表示出计数级是什么事情,人们开始想一些新的办法来计数。这就出现了这样一种计数方法——算筹。(出示课件)

  (板书:算筹)

  介绍算筹:我国古代人用算筹表示数和计算。算筹是用木棍或竹子制成。在屏幕上展示。算筹是如何用来计数的。与远古计数方法相比它的优点就是有数位,哪一位表示几就用小棍来表示。一个竖棍就是1,二个就是2,五个就用一个横棍来表示……空格表示零。

  课件出示:算筹表示多位数。

  (2)你知道这些用算筹表示的数分别是多少吗?

  课件出示题目。

  3、算盘:

  (1)后来我国劳动人民创造了算盘作为计算工具。七八百年前,算盘已经在我国广泛使用。出示老式算盘实物。

  展示算盘:上面有两颗珠子,每颗代表5,下面每颗珠子表示1。一档共表示多少?表示15。因为我国古代是15进制。现在是满十进一。所以算盘后来游船到日本、朝鲜等国。进行了改进。

  (2)出示新式算盘。上面是1颗珠子。一档表示多少?一档表示10。它的特点是结构简单,使用方便,特别实用。他计算数目较大和数目较多的加减法,更为简便。

  (3)课件出示由老式算盘衍生出的形态各异的算盘。

  4、计算器:

  现在,算盘因为笨重、不方便携带,逐渐被更轻便的计算工具所取代。

  我们现在最常用的计算工具是哪一个?

  你在哪里见过计算器?

  同学们可以互相看一看,你们的计算器各部相同?因为根据各种不同的需要,所以有科学专用的计算器,有最简洁的计算器……但他们的功能都大致相同。

  5、电子计算机:

  (1).随着时间的发展,科技又向前推进,人们又发明了什么?

  出示课件:台式电脑,笔记本电脑,平板电脑。

  师:随着科技的发展,人类计算工具会更加先进。就等着在座的各位,你们这一代人去实现。

  (2)现在人们人手一部的手机,也具备了微电脑的功能。

  6.简单认识计算器比较重要的按键的名称和作用。、

  (三)、计算器的应用

  1、学生自学教材26页的例题

  2、学生在小组内交流方法。

  3、小组汇报,全班交流并说说你找到了什么规律?

  (四)、巩固练习

  1、早在14世纪,中国就发明了()。

  2、老式算盘上方有()颗珠子,每颗珠子表示(),下方有()颗珠子,每颗珠子表示()。

  3、新式算盘上方每颗珠子表示(),下方每颗珠子表示()。

  4、我见过的计算机工具有()、()和()。

  5、教材第26页的做一做

  三、本课小结:

  这节课你有什么想说的吗?今天这节课我们一起认识了计算工具,你还想了解哪些有关的知识?

  作业设计:练习册

  板书设计:

  计算工具的认识

  1.远古计数:用实物记数、刻道记数、结绳记数

  2.筹算

  3.算盘

  4.计算器:

  5.计算机

人教版小学数学教案13

  一、教材内容:

  人教版小学数学五年级下册44页

  二、学情分析

  五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。

  三、教学目标

  1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

  2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。

  3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。

  教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

  教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。

  四、 教学准备

  魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡

  五、教学过程

  一、复习引入

  (一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?

  学生:有8个顶点、12条长度相等的棱、6个大小相等的面。

  教师随机板书正方体的特征。

  【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】

  (二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?

  生:图①2×2×2=8(块)

  图②3×3×3=27(块)

  图③4×4×4=64(块)

  师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?

  生:不是,有的会被涂上颜色,有的不会被涂上颜色。

  师:涂色的面数有几种情况?

  学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。

  教师随机板书:3面 两面 一面 没有涂色

  师:今天我们就一起来探究正方体表面涂色的问题——探究图形

  教师板书课题。

  二、探究新知

  (一)探究三面涂色的问题

  师:三面涂色的小正方体分别有多少块呢?

  生观察回答:图①有8块、图②有8块、图③有8块。

  师:怎么都是8块?分别在哪里?

  生:都在大正方体的8个顶点上。

  师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?

  生:也是8块。

  师:这跟什么有关系?

  生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。

  教师随机板书:顶点

  (二)探究两面涂色的问题

  师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。

  小组合作提示:

  1、四人合作,利用学具探究两面涂色的小正方体有多少块?

  2、试着将发现的结果用列式的方法表示在小组探究卡的表格中

  小组探究

  小组汇报

  生:一面有4块,6面一共有12块。

  师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?

  生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.

  师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?

  生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.

  师:那棱长是5块、6块的呢?怎样列式计算?

  生:(5-2)×12=36块 (6-2)×12=48块

  师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?

  生:(n-2)×12

  师板书:在棱上 (n-2)×12

  (三)探究一面涂色的问题

  师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。

  小组合作探究

  小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)

  生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。

  师:你是怎么知道一面有1块、4块一面涂色的呢?

  生:数的

  师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?

  生:有局限性

  师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?

  生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。

  生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的.棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。

  师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?

  生:(5-2)×(5-2)×6=54块

  (6-2)×(6-2)×6=96块

  师:用字母怎么表示?

  生:(n-2)×(n-2)×6=(n-2)2×6

  (四)探究没有涂色的问题

  师:没有涂色的小正方体有多少块呢?怎么计算?

  生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。

  师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?

  生:在里面

  师:有什么办法知道呢?

  生:拆开看一看

  师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数

  师:现在你知道有多少块没有涂色了吗?

  生:②号图形有一块没有涂色

  ③号图形有8块没有涂色的

  师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。

  组织学生观看动画过程。

  生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。

  生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。

  师:真棒!你能试试棱长是5、6块的吗?

  生:(5-2)×(5-2)×(5-2)=27块

  (6-2)×(6-2)×(6-2)=64块

  师:用字母怎么表示?

  生:(n-2)×(n-2)×(n-2)=(n-2)3

  三、知识应用

  出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?

  学生计算汇报

  四、课堂小结

  通过这节课的探究,你能说说你用什么方法学会了本节课的知识?

  五、版书设计

  探索图形

  顶点上 棱上 面上 中心

  正方体的特征:8个顶点 12条棱 6个面

  三面 两面 一面 没有涂色

  8 (n-2)×12 (n-2)2×6 (n-2)3

人教版小学数学教案14

  教学目标:

  知识与技能:

  1、理解小数加减法相同数位对齐的道理。

  2、掌握先把小数点对齐,再从低位算起的计算方法,能正确计算小数加减法。

  3、提高推理和归纳的能力。

  学情分析:

  学生已经有了整数加减法的学习基础,而小数加减法与整数加减法在算理上是相通的。因此在教学中应该紧紧抓住学生的这一认知特点,引导学生利用已掌握的整数加减法的旧知识迁移类推,总结归纳小数加减法的计算方法。通过课前调研,大部分同学不难掌握笔算小数加减法时小数点对齐,从低位算起的基本方法,但对于为什么这么算的道理,即相同计数单位的数才能直接相加减的道理还不是很清楚,因此本节课的重点是让学生在自主探究,交流合作的过程中明晰算理,进而掌握基本的.笔算方法。

  重点难点:

  掌握小数加、减法的笔算方法,理解算理。

  教学过程:

  一、第一阶段

  创设情境,引入课题

  1、创设情境

  出示四本图书的图片及价格信息。

  问:你能就这些信息,提出一个能一步解决的问题并列式解答吗?

  教师随学生回答板书:

  4.17+3.92

  3.92+4.6

  2.13+4.17

  4.6-4.17

  ……

  2、引入课题

  问:请认真观察,这些式子有什么特点。

  这节课我们就一起来学习小数的加减法(板书:小数的加减法)

  学生根据信息提出问题并列式。

  ①购买《百科全书》和《睡前故事》一共要花多少钱?

  ②购买《睡前故事》和《丁丁上学记》一共要花多少钱?

  ③购买《游戏力》和《百科全书》一共要花多少钱?

  ④《丁丁上学记》比《百科全书》贵多少钱?

  ……

  学生观察发现:是关于小数的加、减法。

  白板课件

  二、第二阶段

  教学新课,探究新知

  1、整、小对比,初步体会。

  探究小数加法2.13+4.6的计算方法。

  引导学生回忆整数加减法的笔算方法,对比思考:小数加、减法的计算方法与整数加减法一样吗?

  2、对比分析,总结方法。

  探究小数加法3.92+4.6的计算方法。

  教师引导学生明确:

  在笔算小数加、减法时应该将小数点对齐,才能保证相同数位对齐。(板书:小数点对齐,相同数位对齐)

  (1)利用反馈器做学情调查

  问:为什么要将小数点对齐,也就将相同数位对齐?

  利用反馈器反应此刻的想法:知道的选1,不知道或还不太清楚的选2。

  教师通过反馈情况和询问发现存在的问题。并作出有针对性的活动建议。

  (2)出示活动建议,开展小组探究活动。

  教师巡视指导。

  (3)展示交流,明晰算理:相同数位对齐是因为相同数位上的数的计数单位相同,而只有计数单位相同的数才能直接相加减。

  (4)在明晰算理的基础上,总结算法。

  问:在笔算小数加、减法时应该怎么做呢?

  3、迁移类推,学习笔算小数的减法。

  要求:列竖式计算

  4.6-4.17 并验算。

  教师根据学生的答题情况,进行指导。

  说明:为了计算方便,要将被减数补齐数位后,再计算。

  教师注意培养学生良好的计算习惯。

  4、总结归纳算法及要注意的问题。

  学生利用互动反馈器选择正确的解法。并说明解法①的错误原因:满十没有向前进一。

  学生回忆整数加减法的笔算方法:个位对齐,也就是相同数位对齐,从低位算起。

  思考:小数加减法与整数减法的笔算方法是否相同。

  学生利用互动反馈器选择正确的解法。不同意见双方说明各自的理由。

  学生利用互动反馈器反应自己对小数加减法算理的认知情况。

  学生以小组为单位,合作交流,探究算理。

  学生以小组为单位,汇报自己的探究结果,并在班内进行讨论。对不同的做法进行自评和互评。

  学生总结方法:小数点对齐从低位算起。

  学生列竖式计算。

  2.13+4.17

  一名学生板演。

  学生列竖式计算。

  4.6-4.17

  并演算,一名学生板演。

  学生总结方法和注意事项:

  小数点对齐,从低位算起。结果要化简;为了计算方便要补齐数位;要善于演算……

  第三阶段

  练习巩固,拓展提高

  1、我会计算:(比比谁最厉害)

  12.44+24.36= 7.8-3.74=

  2、一串小银片的单价是4.85元,一个毛线球的单价是0.68元,买一串小银片和一个毛线球一共要花多少钱?买一串小银片比一个毛线球多多少钱?

  第四阶段

  课堂小结

  师:通过这节课的学习你有什么收获?

  学生畅谈收获(知识上的或学习方法上的收获)

  ……

人教版小学数学教案15

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的'4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

【小学数学教案】相关文章:

小学数学教案02-07

小学数学教案04-07

小学数学教案07-19

小学的数学教案03-24

小学趣味数学教案03-24

小学趣味数学教案02-24

小学数学教案模板01-04

《括号》小学数学教案02-15

小学数学教案【精】02-25

【热】小学数学教案02-24