当前位置:育文网>教学文档>教案> 五年级数学下册教案

五年级数学下册教案

时间:2023-03-31 18:58:02 教案 我要投稿

五年级数学下册教案(通用15篇)

  作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是保证教学取得成功、提高教学质量的基本条件。我们该怎么去写教案呢?下面是小编帮大家整理的五年级数学下册教案,欢迎阅读与收藏。

五年级数学下册教案(通用15篇)

五年级数学下册教案1

  一、复习导入

  1、根据分数与除法的关系填空。

  被除数÷除数说说:分数与除法的关系。

  2、提问:80÷20的商是多少?

  被除数、除数都扩大5倍,商是多少?被除数和除数都缩小10倍呢?

  回忆商不变性质(被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。)

  (商不变的性质是学习分数基本性质的基础,所以这里的复习很有必要。)

  二、新课

  1、动手做数学。

  (1)把4张相同的纸条分别平均分成2、4、6、8份,表示出1/2、2/4、3/6、4/8。

  (涂上阴影)

  (2)提问:比较它们的长度、有什么发现?能根据分数的意义加以说明吗?

  (3)结论:几个分数虽然分母、分子都不相同,但大小是相等的。

  2、设疑:为什么分子、分母都不同的'几个分数可以相等,它们之间有什么规律呢?

  (1)观察并研究分子、分母是按什么规律变化的?

  1/2 =2/4 = 3/6 = 4/8学生观察的顺序可以自选。

  (2)学生发现并归纳得出的规律(揭示:分数的基本性质):

  分数的分子和分母同时乘以或者除以相同的数分数的大小不变。

  (3)理解意义。

  提问:刚才我们根据分数的意义来说明分数的基本性质的。能不能根据分数与除法的关系和商不变的规律来说明呢?

  先回忆商不变规律,然后想分数与除法的关系。突出关键点:零除外。(因为分数的分子和分母同时乘上0,则分数成为0/0,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母不能同时除以0,因此要“0除外”。)

  将分数的基本性质补充完整。

  3、应用性质、解决问题。

  (1)指出:应用分数的基本性质可以把一个分数化成分母不同而大小相等的分数。

  (2)把3/4和15/24化成分母是8而大小不变的分数。

  要求:独立思考解答、交流方法

  (3)师生一起总结方法:

  看分母(分子)乘或除以几、分子(分母)也同时乘或除以几。

  (4)独立完成练一练。

  重点是:学生要能自觉根据分数的基本性质观察分母或分子是怎样变化的,相应地分子或分母就怎样变化。

  变化的依据是分数的基本性质

  (5)口答练习十八第2题并说明判断的依据。

  4、全课总结:你能将这节课的内容及重点归纳概括一下吗?

  5、作业:完成练习十四

  理解并掌握分数的基本性质,同桌互相说分数并指定分母或分子让另一个同学化。

  三、难点点拨

  在运用分数的基本性质时,会出现以下几种错误:

  ①忽略了“同时”。举例说明= =是错误的,只是分子乘2,分母不变,正确答案应是= = 。

  ②忽略了“乘上或者除以”。举例说明,= =是错误的,因为分子和分母同时加上或者同时减去相同的数,分数的大小变了。在分数的基本性质中只限于“乘上或者除以”。

  在理解分数的基本性质时要注意三点:必须强调“同时”;必须强调“乘上或除以相同的数”;必须强调“0除外”。

  ③忽略了“相同的数”。举例说明,= =是错误的,因为分子和分母应同时除以相同的

五年级数学下册教案2

  “比大小”是在初步理解分数的意义,会认、读、写简单分数的基础上,让学生经历比较简单分数大小的过程。基于数学教学是数学活动的教学的理念及教材的编写意图,我将课堂教学分为以下三个环节。

  1、复习整理。进一步巩固已有的学习成果,强调分数意义,为下一步学习打下基础。

  2、探索规律――给学生提供自主学习的机会。通过分、折、画等操作活动,培养学生独立思考、合作交流的能力,在活动过程中体会比较方法,并在多个实例中尝试概括比大小的规律。

  3、运用规律解决问题――通过设计由浅入深、由易到难的练习和游戏情境,使学生牢固掌握所学的知识,培养学生的创新精神和创新思维;有意识地联系生活,使学生发现生活中的数学问题并交流解决。

  整节课以一个情境贯穿始终,学生在整堂课中反应积极,有强烈的.求知,以图形直观验证猜想的方法,发展到抽象思维。为学生提供大量动手操作、独立思考与合作交流的机会和空间,突出体现教师的组织、引导、合作者角色和学生的主体地位。针对学生情况,我适度地拓展知识的广度,在教材要求掌握“分子是1,分母不同”的基础上,将教学内容扩展为“分子相同,分母不同”的分数进行比较,学生掌握的效果很好,为以后的知识系统性打下基础。

  在今后的教学过程中,除了师生之间的反馈交流外,还要注重生生之间的评价交流,多创造这样的机会,让学生在互相评价的过程中学会倾听别人的意见,在碰撞中加深知识的理解和扩展。注意教学的艺术性,倾听学生的发言,并能用“点睛之笔”来引导学生简洁、准确、完整的表述自己的观点。在组织学生进行合作交流时,一定保证相应的环节,要在个体充分思考的基础上进行。另外在应用探索规律解决问题的过程中,对数学知识的扩展适度,突出梯度。

  在多次的课程活动中,在领导和老师们无私的帮助下,感觉自己有了很多的收获,但仍然有太多需要加强和改进的方面,我会在以后的教学中,更加努力,从有秀教师身上汲取更多的营养。

五年级数学下册教案3

  学习内容:

  人教版小学数学五年级下册教材第12—13页。

  学习目标:

  1.我能理解因数与倍数的含义。

  2.我会有序地思考,掌握了找一个数的因数的方法。

  3.我知道一个数的因数的个数是有限的。

  学习重点:

  理解因数和倍数的含义,掌握求一个数的因数的方法。

  学习难点:

  能熟练地找一个数的因数。

  教学过程:

  一、导入新课

  二、检查独学

  1.互动分享收获。

  2.质疑探讨。

  三、合作探究

  1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?

  (1)我的想法:________________________________

  (2)小组代表交流、汇报。

  (3)自读课本第12页下面的一段话。

  2.自学课本第13页例1。思考:

  (1)18的因数有________、________、________、________、________、________,共 有________个。

  (2)18的最小因数是________,最大因数是________。它的.因数的个数是________的。

  (3)也可以这样表示: 18的因数

  3.组内交流并讨论:怎样找最快,而且不容易遗漏?

  我的想法:________________________________

  4.小组代表汇报,总结。

  5.试试身手(第13页“做一做”)。

五年级数学下册教案4

  第一课时 用“倒过来推想”的策略解决问题(一)

  教学目标:

  1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

  教学过程:

  一、学习例1

  1.呈现问题。

  (1)出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

  提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

  (2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

  (3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

  2.解决问题。

  (1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

  (2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

  (3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)学生画图后,组织展示、交流,并相机呈现教材提供的第二组示意图。

  引导学生认识到“再倒回去”后,甲杯在200毫升的基础上,增加了40毫升;乙杯在200毫升的基础上,减少了40毫升。

  (5)小结:看来“再倒回去”是个好办法,用这个办法我们很容易就能想到原来两个杯子里各有多少毫升果汁。

  3.填表回顾,加深对“倒过来推想”的体验。

  (I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的。

  (2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

  学生讨论后,揭示课题并板书:解决问题的策略。

  二、学习例2

  1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

  2.在学生讨论后,指出:可以按题意摘录条件进行整理。出示下图:

  原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

  提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

  3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

  学生尝试画出倒推的示意图后,出示下图:

  原有?张←一一 去掉收集的24张←一一 跟小军要回30张←一一 还剩52张

  要求根据上图写出倒推后每一步的结果,再让学生综合“倒过来推想”的过程列式解答。

  4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

  5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  三、应用巩固

  出示“练一练”,学生各自读题。

  提问:你打算运用什么样的策略解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种说法表示这样的.意思吗?

  学生解题后,组织交流,重点让学生说说推想的过程。

  四、课堂作业

  做练习十六的第1、2题。

  五、全课小结

  第二课时 用“倒过来推想”的策略解决问题(二)

  教学目标:

  1、使学生进一步熟练运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、进一步培养学生“逆推”的思维意识和推理能力。

  教学过程:

  一、复习导入

  上一节课你们学会了什么本领?“倒过来想”解决问题的关健在哪里?

  二、练习

  1、练习十六第3题:

  (1)读题理解题意:你从题中知道什么?

  (2)整理信息:你能把这些信息整理出来吗?{大门——(向北走2格)熊猫馆——(向西北走1格)百鸟园——(向东走4格)猴山)——(向南走2格)蛇馆}

  (3)寻找策略:你准备用什么方法解决这个问题?

  (4)学生独立完成

  (5)展示交流

  2、练习十六第4题:

  (1)读题后独立思考,全班交流。

  (2)小组交流:从你家到学校要经过哪些地方?那么从学校回到呢?

  3、练习十六第5题:

  (1)确定方法:你认为应该从左往右考虑呢?还是从右往左考虑?

  (2)学生独立完成。

  (3)交流:在填空时,你觉得应该注意些什么问题?

  4、练习十六第6题:

  (1)观察图片理清题意。

  (2)题目中告诉我们哪些信息?

  (3)学生独立完成?

  (4)交流:你用的什么方法解决这个问题?应该注意些什么?

  5、练习十六第7题:

  (1)看图理解题意:

  (2)你从第3幅图开始倒过来说一说题意吗?编一道应用题。

  (3)学生独立完成。

  (4)交流订正。

  6、练习十六第8题

  (1)学生独立完成。

  (2)小组交流方法。

  7、练习十六第9题。

  (1)看表理解:说说收支情况。

  (2)学生估计第一问,说一说,你是怎样想的。

  (3)独立完成第二问,交流,你是用什么方法解决这个问题的。有没有别的方法?

  8、练习十六第10题。

  (1)游戏:拿出牌来,根据题意玩一玩、想一想。

  (2)同桌玩,你还能根据第10题想出别的玩法吗?

  9、思考题:

  读一读,整理题意,再想一想。

  三、总结:

  “倒过来想”也是解决数学问题的一决策略,其实也是解决生活问题的一种策略,遇到问题时,如果你也能倒过来想想或站在他人立场上想想,也许就有了解决问题的方法了。

五年级数学下册教案5

  导学内容:

  教材第8~11页,例7及相应的试一试,练一练,练习二第4~7题

  导学目标:

  使学生掌握列方程解决简单的实际问题。

  导学重点:

  使学生掌握列方程解决简单的实际问题。

  导学难点:

  使学生掌握列方程解决简单的实际问题。

  预习学案:

  1、说一说等式的性质

  2、解方程

  12x=96x÷40=14x÷2.5=5

  导学案:

  教学例7

  1、出示教学挂图,指导学生仔细观察题目,明确题意。

  2、题目中已知什么,要求什么?这些量之间有什么关系?板书:小军的成绩-小刚的成绩=0.06米

  3、小军的成绩我们知道吗?不知道可以用什么来表示?

  4、接下来,请你用列方程的方法来解决这道问题。(生独立解决,师巡视)指名上黑板。

  5、集体核对,(指算式)这道算式表示什么意思?

  6、计算完结果后,你是怎样检验的?

  教学例7

  1、出示教学挂图,指导学生仔细观察题目,明确题意。

  2、题目中已知什么,要求什么?这些量之间有什么关系?板书:小军的成绩-小刚的成绩=0.06米

  3、小军的成绩我们知道吗?不知道可以用什么来表示?

  4、接下来,请你用列方程的`方法来解决这道问题。(生独立解决,师巡视)指名上黑板。

  5、集体核对,(指算式)这道算式表示什么意思?

  6、计算完结果后,你是怎样检验的?

  课堂检测:

  根据应用题的题意,在空格处列出方程

  1.有两个工程队,第一队有46人,第二队有28人,从第一队调x人到第二队使两队人数相等

  列方程得:___________________________________

  2.一项工程,甲队单独做10天可以完成,乙队单独做15天可以完成,两队合作x天可以完成

  列方程得:________________________________________

  3.某汽车厂今年生产汽车16000辆,去年生产x辆,今年比去年生产的汽车增加1倍还多1000辆

  列方程得:________________________________________

  板书设计:

  小军的成绩-小刚的成绩=0.06米

五年级数学下册教案6

  教学目标:

  1.通过直观的操作活动,理解异分母分数加减法的算理。

  2.能正确计算异分母分数的加减法。

  3.通过渗透转化的数学思想和探究解决计算问题的方法,培养学生从多角度思考问题的能力以及严谨认真的学习习惯。

  教学重点:

  异分母分数加减法的计算,结果不是最简分数的要进行约分。

  教学难点:

  把分母不同的分数通过通分化成分母相同的分数。

  教学过程:

  一、复习导入

  计算1/4+1/5 2/15+1/5

  上节课,我们学习了异分母分数相加减,那么异分母分数相加减,同学们要注意什么呢?

  今天,我们进一步探讨异分母分数的相加减。

  二、试一试

  1.比较两种计算方法,笑笑的方法是找公倍数,最后进行约分,淘气的方法是找最小公倍数。比较后发现,找最小公倍数,计算起来比较简单,计算的.正确率会高一点。其次,计算结果能约分的要约分成最简分数。

  2.算一算,并与同伴交流你的做法。

  生独立完成,反馈。第一题结果要进行约分。

  3.森林医生。

  先观察,说一说三道题目错在哪里?再进行独立计算,改正。

  4.应用题。

  读题找到数学信息,并提出问题。

  5.解方程。

  根据数量关系:加数+加数=和,被减数减数=差 这两个数量关系,找到X在题目中所表示的量,再进行解方程计算。

  6.拓展题,第8题。

  重点交流学生估计的方法,再计算验证。

  三、课堂小结

  这节课你学到了什么知识?你知道埃及人怎样表示分数的吗?自己读一读你知道吗?

  四、布置作业

五年级数学下册教案7

  第2课时

  观察物体(2)

  教学内容:

  教材第2页例2。教材第3~4页练习一第3、6、7题 第 2 课时 课型 新授

  教学目标:

  1.能正确辨认从不同方向(正面、左面、上面)观察到的立体图形。

  2.能根据从正面、側面、上面观察到的平面图形还原立体图形,进一步体会从三个方向观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的.正方体的数量范围。

  3.让学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观念。

  教学重点:

  能根据从正面、側面、上面观察到的平面图形还原立体图形,

  教学难点:

  引导学生进行空间图形的平面和立体想象来找出被遮挡住的小立方块。

  教具运用:

  课件,小正方体积木

  教学过程:

  一、复习导入

  给出一个实物图从正面看到的平面图形,让同学画不同的摆放方法,引导学习复习上节课所学内容。

  二、新课讲授

  1.屏幕出示教材第2页例2。

  2.师:这是一个用3个小正方体搭出的立体图形,从正面、左面、上面观察所画下的形状 。同学们,你能不能用小正方体搭出这个立体图形?

  3.学生小组合作操作。

  4.各组展示本组搭好的作品。

  5.师:请说一说你搭过程中的想法和做法。生:略。

  6.师:可以先根据正面图形搭出符合正面的立体图形,再根据上面观察到的图形搭出符合上面的立体图形,最后根据左面图形确定最后的立体图形。根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。

  三、课堂作业

  1.完成教材第2页做一做。

  2. 完成教材第3~4页练习一第3、6、7题。

  四、课堂小结

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  五、课后作业

  完成练习册中本课时练习。体图形,再摆出符合上面的立体图形,最后确定立体图形。根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。

五年级数学下册教案8

  教学目标:

  1.使学生进一步掌握圆的周长计算公式,能应用公式求圆的直径或半径,正确解决求圆的直径或半径的简单实际问题。

  2.使学生通过圆的周长公式的实际应用,进一步掌握圆的半径、直径和周长间的关系,感受利用公式列方程解决简单实际问题的过程,提高分析和解决问题的能力。

  3.使学生感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  探索已知圆的周长,求这个圆的直径或半径的`方法

  教学难点:

  运用圆的周长公式解决实际问题

  教学过程:

  一、复习引入

  1.什么是圆的周长?圆的周长计算公式是什么?

  2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

  指名回答,明确计算方法。

  3.知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。

  二、自主先学

  出示例6和导学单

  1.题中的已知条件和所求问题是什么?。

  2.如何准确地测算出这个花坛的直径?

  3.还有别的方法吗?

  三、小组讨论

  四、交流展示

  方法一:列方程解答。 解:设花坛的直径是x米。

  3. 14x=251.2

  x=251. 23. 14

  x=80

  答:花坛的直径是80米。

  方法二:算术方法解答。 251. 23. 14 =80(米)

  答:花坛的直径是80米。

  五、质疑拓展

  问:两种方法有什么相同点和不同点?你喜欢什么方法?为什么?

  小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。

  问:已知圆的周长,如何求圆的半径或直径?

  学生回答,教师板书

  ①列方程解答。②d=C r=C 2

  六、检测反馈

  1.完成练一练。

  (1)学生独立完成。

  (2)集体交流。

  提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

  2.完成练习十上第6题

  各自填表,说说半径、直径和周长的关系

  3.完成练习十四第8题。

  (1)借助圆柱形教具演示,帮助学生理解什么是 树干横截面

  (2)学生独立思考并计算。

  (3)集体交流。

  4.完成练习十四第9题。

  (1)理解拱门的高度的含义。

  (2)学生独立计算。

  (3)集体订正。

  5.完成练习十四第10题。

  (1)学生独立思考。

  (2)集体交流,明确:先求出花圃的周长,再求出种的棵数。

  6.作业:练习十四第8、10题。

  七、课堂小结

  通过这节课的学习,你有什么收获?

五年级数学下册教案9

  第一课时

  教学内容:教科书第88~89页,例1、例2、练一练,练习十六第1~2题。

  教学目标:1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推向”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学过程:

  一、教学新课

  1、教学例1。

  (1)出示例1。如果把甲杯中的40毫升果汁倒入乙杯,这两杯果汁的数量分别会发生怎样的变化?进行操作演示。回顾操作过程,出示完整示意图。

  (2)解决实际问题。把甲杯中的40毫升果汁倒入乙杯后,两个杯子的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?知道了现在每个杯子中的果汁数量,可以怎样求原来两个杯子中的果汁数量?可以用怎样的方法来解决?小组讨论。

  (3)汇报方法。如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)。看来“再倒回去”是个好办法,用这个方法我们很容易就能想到原来两个杯子里各有多少毫升果汁。回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程把课本上的表格填写完整吗?边填边说每个数据各是怎样推算出来的。在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么优点?板书课题:解决问题的策略。

  2、教学例2。

  (1)理解题意,提出问题。用什么方法可以将题目的意思更清楚的表达出来?

  (2)解决问题。

  指出:可以按题意摘录条件进行。出示示意图。你能根据示意图说说题目的大意吗?你准备用什么策略来解决?你能仿照示意图的样四,表示出“倒过来推想”的过程吗?尝试画倒推的示意图。展示作业。根据示意图写出倒推后每一步的结果。你能列式解答吗?说说自己的想法。怎样才能知道我们推算出的结果是否正确呢?怎样验算?

  (3)归纳。

  解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的.问题有什么特点?

  3、完成练一练。

  理解题意。尝试将题目中的条件,展示学生作业。你是怎样想的?你打算用什么样的策略角度解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种手法表示这样的意思吗?回列式解答吗?说说推想的过程。

  二、巩固练习

  1、完成练习十六第1题。

  你能通过列表的方法题目中的信息吗?你会列式解答吗?说说你是怎么想的?

  2、完成第2题。

  你能画图题目中各个条件的示意图吗?学生根据示意图列式解答。交流汇报,说说是怎样想的?

  三、课堂

  这节课你学会了什么?你有哪些收获和体会?

  第二课时

  教学内容:教科书第90~91页,练习十六第3~8题。

  教学目标:1、通过练习,使学生进一步掌握用“倒过来推想”的策略解决问题的思路,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、引入上节课

  我们学习了什么内容?在解决问题时,可以应

  用什么策略?板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第3题。

  你能把题中的条件进行吗?可以运用什么策略解决呢?你能在图中标出其他几个景点和大门的位置吗?展示作业,说说自己的思路。

  2、完成第4题。学生独立完成。汇报交流方法,你是怎样解决的?应该怎样倒过来想呢?

  3、完成第5题。学生独立完成。汇报交流方法,说说你是怎么想的?怎样检验所填的数据是否正确?

  4、完成第6题。读题,理解题意。下午6时的气温是18℃,根据比中午下降了7℃,你能推算出中午12时的气温吗?你是怎样推算上午8时是多少℃的?

  5、完成第7题。理解每幅图中显示的相等关系:5个桃子的重量=2个梨子的重量3个梨子的重量=1个菠萝的重量1个菠萝重600克小组中交流思路。说说是怎样想的?

  6、完成第8题。你能根据题中的条件进行吗?根据的条件列式解答。应该怎样倒过来推想呢?

  三、课堂

  通过今天的练习,你有什么收获?在生活中,在解决很多实际问题时,都可以运用“倒过来推想”的策略解决。

  第三课时

  教学内容:教科书第92页,练习十六第9、10题、思考题。

  教学目标:1、使学生进一步掌握“倒过来推想”的策略解决实际问题,感受所学解决问题策略的实际应用价值。

  2、使学生在解决问题的过程中,进一步发展分析、综合简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得成功体验。

  教学过程:

  一、揭示课题板书课题:用“逆推法”的策略解决问题。

  二、综合练习

  1、完成练习十六第9题。

  理解对帐单每一栏的含义。4月份的结单余额和上月比,是多了还是少了?你是怎么知道的?怎样可以算出张阿姨信用卡3月份的结单余额是多少元?小组讨论方法。汇报交流想法。

  2、完成练习十六第10题。

  要知道这四张牌原来是怎么放的,可以运用什么样的策略?(逆推法)根据第四幅图,你能知道第三幅图中的牌是什么顺序吗?(10、9、7、8)原来的牌是什么顺序呢?(7、9、10、8)分组活动:拿出四张牌,任意交换两次位置,再翻开看结果,猜猜原来四张牌是怎样放的。小组活动。

  3、完成思考题。

  理解题意及关键词的意思。“遇店加1倍”,遇到店将加成壶中酒的2倍。你能根据题意画出示意图吗?原有?斗→加1倍→喝1斗→加1倍→喝1斗→加1倍→喝1斗(喝完)逆推为:0→1斗→0.5斗→1.5斗→0.75斗→1.75斗→1.75斗→0.875斗

  三、课堂

  你觉得“逆推法”对于解决生活中的实际问题有什么作用?

五年级数学下册教案10

  课题:

  列方程解应用题复习(行程问题)

  学情分析:

  相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

  教学目标(课时目标):

  1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

  2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

  3、逐步掌握画线段图分析题目的方法。

  教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

  教学难点:认识相遇的过程中理解运用等量关系的解决问题。

  教学准备:PPT、练习本

  教学过程:

  教学活动教学说明

  一、复习引入

  1、揭题

  2、常见的相遇问题类型(手势演示)

  (1)同时出发,相向而行

  (2)一车先行,另一车再行,相向而行

  (3)同时出发,途中一车暂停,相向而行

  二、基础练习

  1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

  (1)画线段图分析题意

  (2)找出等量关系

  (3)列式

  2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

  小结:(1)相加=总路程

  (2)相差=路程差

  3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

  小结:(3)到中点相等

  4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

  小结:(4)总路程相等

  三、巩固提升

  5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

  6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

  7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

  8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

  四、思维训练

  9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

  五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

  “相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

  通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

  板书设计:列方程解应用题(行程)

  相遇问题(1)相加=总路程

  (2)相差=路程差

  (3)到中点相等

  (4)总路程相等

  教学反思:

  行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的.一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

  1、合理组织安排教材,激发学生主动参与教学

  首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

  追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

  2、运用线段图进行教学,培养学生的分析、观察能力

  学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

  3、为学生提供充分的思考、分析的空间

  在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

  4、分层递进,满足不同层次需求

  在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

  总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级数学下册教案11

  一、学情分析

  我班有学生人,学生的学习态度、班级的学习风气是比较好的。我一直对行为习惯的培养很重视,因而这批同学的学习态度端正,作业书写工整、美观。但也有部分同学由于父母长辈过分宠爱,平时对自己要求不严,学习习惯较差,作业马虎,字迹潦草,由于学习态度不端正,导致学习成绩不理想。因此,在本学期的数学教学过程中,要充分挖掘学生的潜力,发挥学生的主体作用,教师的主导作用,要特别加强学生学习习惯和责任心的培养,学会思考方法,养成善于思考的好习惯,把培养学生的创新意识和实践能力渗透在教学的全过程。

  二、教材分析和教学目标

  (一)数与代数

  第一单元“分数加减法”理解异分母分数加减法的算理,并能正确计算;能理解分数加减混合运算的顺序,并能正确计算;能把分数化成有限小数,也能把有限小数化成分数;能结合实际情境,解决简单分数加减法的实际问题。

  第三单元“分数乘法”结合具体情境,在操作活动中,探索并理解分数乘、除法的意义;探索并掌握分数乘、除法的计算方法,并能正确计算;能解决简单的分数乘、除法的实际问题,体会数学与生活的密切联系。第五单元“分数除法”了解倒数的意义,会求一个数的倒数。能够正确进行分数混合运算;理解整数的运算律在分数运算中同样适用;结合实际情境,能用多种方法解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用。

  第七单元“用方程解决问题”在列方程的过程中,会分析简单实际问题中的'数量关系,提高用方程解决简单实际问题的能力。由于有两个未知数,需要选择设一个未知数为x,再根据两个未知数之间的关系,用字母表示另一个未知数。同时经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  (二)空间与图形

  第二、四单元“长方体(一)(二)”通过观察、操作等活动,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;了解体积(包括容积)的含义;认识体积(包括容积)单位,探索并掌握长方体、正方体表面积、体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;引领学生在观察、操作等活动中,发展动手操作能力和空间观念。

  第六单元“确定位置”能在具体的情境中,用方向和距离来表示物体位置;在具体的情境中,自建参数系确定位置。

  (三)统计与概率

  第八单元“数据的表示和分析”学生在这一单元认识学习复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点;能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂

  简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义。

  (四)数学好玩

  本单元设置了“象征性”长跑、有趣的折叠、包装的学问三个内容,主要目的鼓励学生从数据中获取尽可能多的有效信息,激发学生学习数学的兴趣,体会数学思想,锻炼思维能力,积累思考经验,开阔眼界。

  三、教学措施

  1、转变教学方法。在数学教学中,教师必须将“重视结论”的教学转变为“重视过程”的教学,注重再现知识产生、形成的过程,引导学生去探索、去发现。

  2、在课堂上开展小组合作学习,让学生在一起摆摆、拼拼、说说,让学生畅所欲言,互相交流,减少学生的心理压力,充分发挥学生的主题性,培养学生的创新意识和实践能力。

  3、在教学中注意采用开放式教学,培养学生根据具体情境选择适当方法解决实际问题的意识。如通过一题多解、一题多变、一题多问、一题多编等途径,拓宽学生的知识面,沟通知识之间的内在联系,培养学生的应变能

  4、练习的安排,要由浅入深,体现层次性。对不同的学生,要有不同的要求和练习,对优生、学困生都要体现有所指导。

  5、增强数学实践活动,让学生认识数学知识与实际生活的关系,使学生感到生活中时时处处有数学,用数学的实际意义来诱发和培养学生热爱数学的情感。

  6、后进生转化措施:培养后进生的自信心。只有树立起后进生的自信心,我们的转化工作才找到了起点。要用科学的方法教育后进生。对后进生多宽容,少责备。要做到“三心”:诚心、爱心、耐心。重视与家庭的联系。

五年级数学下册教案12

  教学目标:

  1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题.

  2,学会找出生活问题中相等的数量关系,正确列出方程.

  3,培养学生根据具体情况,灵活选择算法的意识与能力.

  4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感.

  教学重点:

  用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题.

  教学难点:

  分析问题中的等量关系,并会列出方程解答.

  教学准备:

  多媒体课件.

  教学过程:

  一,知识回顾:

  1,解下列方程.

  X+2x=147y-34=71

  2,根据下面叙述说说相等关系,并写出方程.

  ①公鸡x只,母鸡30只,是公鸡只数的2倍.

  ②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只.

  3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密.小军发现……小华发现……小刚提出……

  (足球上黑色的皮都是五边形,白色的皮都是六边形的黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)

  让学生独立做,集体订正时,(板书线段图).

  二,合作探究:

  1,教学例1(媒体出示教材情景图).

  "足球上黑色的皮都是五边形,白色的皮都是六边形的白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"

  (1)审题,寻找解决问题的有用信息.

  提问:"例题与复习题有什么相同的地方""有什么不同的地方"

  教师说明:例1就是我们以前见过的"已知比一个数的几倍少几是多少,求这个数"的问题.今天我们学习用方程解答这类问题.

  教师板书:稍复杂的方程

  (2)分析,找出数量之间的相等关系(教师板书线段图讲解)

  看图思考:白色皮和黑色皮有什么关系

  学生小组讨论,汇报结果.

  可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数

  黑色皮的块数×2-白色皮的块数=4

  黑色皮的块数×2=白色皮的块数+4

  (3)同桌讨论怎样列出方程.

  (4)交流汇报并让学生根据题意说出所列方程所表示的等量关系.允许学生列出不同的方程.

  板书学生的方程并选择2x-4=20讨论它的解法.

  学生小组讨论解法.

  汇报交流板书:

  解:设共有x块黑色皮.

  2x-4=20

  2x-4+4=20+4

  2x=24

  2x÷2=24÷2

  x=12

  检验:(引导先生口头检验)

  答:共有12块黑色皮

  (5)学生选择其余的方程解答.

  2,变式练习.

  (1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答.

  (2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易.

  3,引导学生总结列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示.

  ②分析,找出数量之间的相等关系,列方程.

  ③解方程.

  ④检验,写出答案.

  三,巩固应用

  1,只列式不计算.(课件出示)

  ①图书室有文艺书180本,比科技书的2倍多20本,科技书x本.

  ②养鸡厂养母鸡400只,比公鸡的'2倍少40只,公鸡x只.

  ③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只.

  ④一个等腰三角形的周长是86厘米,底是38厘米.它的腰是x厘米.

  2,学生独立完成,集体汇报交流

  ①北京故宫的面积是72万平方米,比广场面积的2倍少16万平方米.广场的面积是多少万平方米

  ②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米.大洋州的面积是多少万平方千米

  ③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km

  ④共有1428个网球,每5个装一筒,装完后还剩3个.一共装了多少筒

  3,拓展提高.

  ①甲乙两数的和是90,甲数是乙数的2倍.甲乙两数各是多少

  ②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少

  四,全课总结

  今天这节课你学到了什么知识

  板书设计:

  先把2x看作一个整体

五年级数学下册教案13

  教学内容:

  教科书73-74页例1、例2及相关习题。

  教学目标:

  1、知识与能力 使学生理解和掌握用字母表示数的方法,知道用字母可以表示数,知道含有字母的式子。使学生理解和掌握用字母表示数量关系的方法。

  2、过程与方法 让学生感受用字母表示数的优越性,培养学生的符号感。

  3、情感态度与价值观 让学生在学习过程中获得成功体验,体会数学的简洁美。重难点

  教学重点:

  用字母表示数

  教学难点:

  使学生理解和掌握用字母表示数量关系的方法。

  教学准备:

  课件

  教学过程:

  一、激趣导入

  请学生浏览主题图,然后齐唱字母歌。

  师:我们都知道,上英语课要用到字母。在我们的生活中,哪些地方还用到了字母?并说说它表示的意义。

  师:在生活中要用到字母,在数学中也不例外,今天我们就来学习用字母表示数。(板书课题)

  二、合作探究

  1、师:请同学们回忆我们前面学过了哪些运算定律?用字母表示运算定律,完成书第73页的表格。

  (学生完成后,集体订正)实际上,用字母表示数在我们的生活中还有着广泛的作用。

  2、(多媒体课件出示青蛙图)

  师:1只青蛙是几条腿呢?

  生:4条腿。

  师:想想2只、3只、4只、5只青蛙分别有多少条腿?

  生:2只青蛙有24条腿,3只青蛙有34条腿

  (多媒体出示一大群青蛙)

  师:这些青蛙有多少条腿呢?

  生:这么多青蛙,多得数都数不清。

  师:这些青蛙的`数量是确定的吗?

  生:不能确定,用字母x来表示,这些青蛙有x4条腿。

  师:这里的x可以表示哪些数呢?

  生:可以表示1,也可以表示2,也可以表示100,也可以表示1 000。

  师:这就是用字母表示数的好处,它表示了青蛙只数与青蛙腿的关系,不管是多少只青蛙,只要把它的只数代到这个式子里,就可以求出这些青蛙有多少条腿了。在这样的含有字母的式子里也有一些特殊的写法,我们看看书上是怎样说的。

  3、探究字母和数相乘、字母和字母相乘的简便记法。学生看书73页后交流。

五年级数学下册教案14

  教学内容:

  教材14—15页例6、例7及相应的“试一试”“练一练”,练习三第1—3题。

  教学目标:

  1.学生通过自己探究,理解并掌握梯形面积公式,能应用公式进行正确计算。

  2.学生通过操作和观察,发展空间观念;培养学生的分析、综合、抽象、概括和运用转化的思考方法解决实际问题的能力。

  3.学生在探索发现的过程中,获得积极的情感体验,感受数学的魅力。

  教学重点:

  探索发现梯形的面积公式。

  教学难点:

  在探究中理解梯形的上、下底与平行四边形的底之间的关系。

  教学准备:

  多媒体课件、剪下书上第117页的梯形。

  探究方案:

  一、自主准备

  你能想办法求出下面梯形的面积吗?(每个小方格表示1平方厘米)

  你打算怎样做,与同学交流。(可以在图上画一画)

  假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

  二、自主探究(剪下课本第117页的6个梯形)

  1.拼一拼:剪下的梯形中,哪两个梯形能拼成平行四边形,动手拼一拼。

  2.能拼成平行四边形的,求出平行四边形和梯形的面积,再填写下表。

  3.想一想

  (1)拼成平行四边形的两个梯形有什么关系?

  (2)拼成的平行四边形的底与梯形的上底、下底有什么关系?

  平行四边形的高与梯形的高有什么关系?

  每个梯形的面积与平行四边形的面积有什么关系?

  (3)根据平行四边形的面积公式,推想梯形的面积计算公式

  三、自主应用

  试一试:一块梯形麦田,上底36米,下底54米,高40米。这块麦田的.面积是多少平方米?

  四、自主质疑

  说一说

  (1)梯形的面积公式是怎么推导的?你有什么疑问?

  (2)你认为本节课应学会什么?

  教学过程:

  一、明确目标

  提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

  二、探究交流

  1.出示例6,交流梯形的面积。

  (1)组织汇报:面积是多少。

  (2)组内交流,你是用什么方法知道的。

  (3)组织全班交流。

  2.出示例6,交流梯形面积的探究情况。

  (1)小组交流:对照例6的表格说一说自己是怎么拼的,怎么填的?讨论并交流例6下面的问题。

  (2)全班交流:指名上台展示拼法,并对照拼图说一说:拼成的平行四边形的底与梯形的上、下底有什么关系?梯形的高与拼成的平行四边形的高有什么关系?梯形的面积与拼成的平行四边形的面积有什么关系?

  (3)总结归纳:两个完全一样的梯形拼成一个平行四边形,拼成的平行四边形的底就是梯形的上底与下底的和,拼成平行四边形的高就是梯形的高,每个梯形的面积则是拼成平行四边形面积的一半,因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2

  学生在书上完成梯形面积的字母公式。

  3.交流“试一试”。

  (1)出示“试一试”的梯形图,你是怎么求这块梯形的面积的?先和自己的同桌说一说自己的想法及计算的结果。

  (2)全班交流:梯形的面积计算过程中,为什么要除以2?

  4.完成“练一练”。

  出示“练一练”,学生独立完成。

  全班交流:每个梯形的面积是多少?你是怎么想的?

  明确:根据梯形和拼成的平行四边形的面积关系,如果已知拼成的平行四边形面积,怎样求梯形的面积?如果已知每个梯形的面积,怎样求平行四边形的面积?

  三、巩固拓展

  1.完成练习三第1题。

  (1)学生自己找出面积相等的梯形。

  (2)同桌交流:你是怎么找出面积相等的梯形的?

  (3)全班交流:由于这四个梯形的高都相等,只要比较它们上、下底的和是否相等。除左边第3个之外,其余梯形的面积都相等,因为它们上、下底的和都是8厘米,高都是4厘米。

  2.完成练习三第2题。

  学生独立计算后再集体交流结果。

  3.完成练习三第3题。

  (1)出示零件的示意图,全班讨论交流:怎么理解“横截面”?指出图中零件中的横截面在哪里?

  (2)小组交流:这个零件的横截面是什么形?它的上底、下底、高各是多少?怎样求这个横截面的面积?

  (3)学生独立计算后再集体交流结果。

  (4)学生订正。

  四、总结延伸、组织阅读。

  1.你有什么收获?还有什么疑问?

  2.阅读教材第15页最后的内容,并动手画一画。

  板书设计:

  梯形面积的计算

  两个完全一样的梯形可以拼成一个平行四边形。

  平行四边形的底=梯形的上底+下底

  平行四边形的高=梯形的高

  梯形的面积=平行四边形面积的一半

  梯形的面积= (上底+下底)×高÷2 s=(a+b)×h÷2

五年级数学下册教案15

  教学目标

  1.知识与技能

  (1)理解掌握质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数;

  (2)能正确判断一个数是质数还是合数。

  (3)能判断两个自然上的和是奇数还是偶数。

  2.过程与方法

  引导学生通过动手操作、观察比较、猜想验证、理解感悟质数、合数的含义;

  3.情感态度与价值观

  培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认识发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

  教学重点

  理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

  教学难点

  能运用一定的方法,从不同的角度判断、感悟质数合数。

  教学方法

  启发式教学、自主探索、合作交流、讨论法、讲解法。

  课前准备

  多媒体课件

  课时安排

  1课时

  教学过程

  (一)激趣导入。

  一、创设情境,引入新课(课件第2张)

  1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。

  2.抢答:请同学们以最快的速度说出下面的数有几个因数。

  师出示数,学生抢答因数的个数。

  3.思考:

  (1)一个数的最小因数是几?最大因数是几?(课件第3张)

  (2)一个数的因数是有限的还是无限的?

  (3)怎样找一个数的因数?

  生1:一个数是最小因数是1,最大因数是它本身。

  生2:一个数因数的个数是有限的。

  生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。

  设计意图

  用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。

  4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。

  (板书课题)

  (二)探究新知

  1.找出1-20各数的因数,看看它们的因数的个数有什么规律。

  (1)学生小组内交流,写出1--20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)

  1的因数有:1 11的因数有:1,11

  2的因数有:1,2 12的因数有:1,2,3,4,6,12

  3的因数有:1,3 13的因数有:1,13

  4的因数有:1,2,4 14的因数有:1,2,7,14

  5的因数有:1,5 15的因数有:1,3,5,15

  6的因数有:1,2,3,6 16的因数有:1,2,4,8,16

  7的因数有:1,7 17的因数有:1,17

  8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18

  9的因数有:1,3,9 19的因数有:1,19

  10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20

  (2)师:观察它们因数的个数,你发现了什么?

  小组讨论:根据因数的个数,你觉得可以怎样分类?

  (3)(课件第6张)

  生1:有的数只有两个因数,如5的因数是1和5。1只有一个因数1。

  生2:有的数的因数不止两个……我们来分分类吧!

  2.学习质数与合数(出示课件第7张)

  师:一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。如2、3、5、7都是质数。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。

  1既不是质数,也不是合数。

  3.做质数表。(课件第8张)

  (1)找出100以内的质数,做一个质数表。

  (2)学生讨论:怎样找100以内的质数?说说你的方法。

  (课件第10张)

  生1:可以把每个数都验证一下,看哪些数是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。3的倍数也可以……

  划到几的倍数就可以了?

  生3:划到7的倍数就可以了.

  (3)(课件第11张演示)剩下的数都是质数。

  (4)师出示100以内的质数表(课件第12张)

  4.牛刀小试。(课件第13张)

  (1)将下面的各数分别填入指定的圈内。

  2 27 37 11 58 61 73 83 95

  (2)两个质数,和是10,积是21,这两个质数是多少?

  生:21=3×7,3和7都是质数,而且3+7=10,所以这两个质数就是3和7。

  两个质数,和是7,积是10,这两个质数是多少?

  10=2×5,2和5都是质数,而且2+5=7,所以这两个质数就是2和5。

  5.探索两数之和的奇偶性。(课件第15张)

  师:奇数与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?

  (1)师:从题目中你知道了什么?

  生1:题目让我们对奇数、偶数的和做一些探索。

  生2:我把问题表示成这样……

  (2)小组讨论:你怎样判断任意两个整数的`和是奇数还是偶数?

  (3)汇报交流:

  生1:我随便找几个奇数、偶数,加起来看一看。(课件第17张)

  奇数:5,7,9,11,…

  偶数:8,12,20,24,…

  5+7=12

  7+9=16

  ……

  奇数+奇数=偶数

  5+8=13

  7+12=19

  ……

  奇数+偶数=奇数

  8+12=20

  12+20=32

  ……

  偶数+偶数=偶数

  (课件第18张)生2:奇数除以2余1

  偶数除以2余0

  奇数加偶数的和除以2还余1,所以,奇数+偶数=奇数。

  奇数加奇数的和除以2余0,所以,奇数+奇数=偶数。

  偶数加偶数的和除以2还余0,所以,偶数+偶数=偶数。

  (4)师:同桌讨论:这个结论正确吗?你还有其他的方法吗?试一试。

  同桌找一些大数,验证一下所得的结论是否正确。

  (5)(课件第20张)汇报交流:

  534+319=853

  所以:偶数+奇数=奇数

  681+249=930

  所以:奇数+奇数=偶数

  564+232=796

  所以:偶数+偶数=偶数

  设计意图

  用归纳的方法得出结论,培养学生的能力。

  6.火眼金睛辨对错。(课件第21张)

  (1)所有的奇数都是质数。(×)

  (2)所有的偶数都是合数。(×)

  (3)在1,2,3,4,5中,除了质数以外都是合数。(×)

  (4)两个质数的和是偶数。(×)

  (5)两个奇数的和是偶数。(√)

  7.小结:刚才的学习你学会了什么?(课件第22张)

  (1)质数与合数的概念。

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  (2)1既不是质数,也不是合数。

  (3)自然数可以分为质数、合数和1。

  (4)偶数+奇数=奇数

  奇数+奇数=偶数

  偶数+偶数=偶数

  (三)课堂练习

  谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?

  1.写出下面各数的因数。(课件第23张)

  (1)在50以内的自然数中,最大的质数是(47),最小的合数是(4)。

  (2)既是质数又是奇数的最小一位数是(3)。

  (3)如果两个质数的和是24,可以是(5)+( 19),(7)+(17)或(11)+(23)。

  (4)在自然数中,最小的奇数是(1),最小的偶数是(0),最小的质数是(2),最小的合数是(4)。

  2.不计算,判断下面算式的结果是奇数还是偶数。(课件第24张)

  1+2+3+4+…+40

  生:1-40的自然数中,奇数和偶数各有20个,因为奇数+奇数=偶数,20个奇数相加和是偶数,偶数+偶数=偶数,20个偶数相加和是偶数,所以最后结果一定是偶数。

  (四)拓展提高

  算一算:3个不同质数的和是最小合数的平方,这3个质数的积是多少?

  最小的合数是4,4?=16。

  哪3个质数的和是16呢?

  2+3+11=16

  2×3×11=66

  答:这3个质数的积是66。

  (五)课堂总结

  师:通过学习,你有什么收获?

  生交流:

  1.一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  2.一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  3.1既不是质数也不是合数。

  4.奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数

  (六)板书设计

  质数和合数

  一个数,只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,除了1和它本身还有别的因数,这样的数叫做合数。

  1既不是质数也不是合数。

  教学反思

  在教学质数和合数这一课时,我运用了自主、合作、探究的教学方法,使学生在参与中产生求知欲望,调动学习积极性。首先用猜谜语的形式引入课题,在学生复习因数和倍数的知识的基础上,让学生独立写出1-20这20个数的因数,再根据因数多少进行分类,然后以小组为单位交流,学生通过交流,知道可以分为几种情况,从而引出质数、合数的概念。?在教学中教师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。

  课堂上学生是“主角”,教师只是一个“配角”,最大限度地把时间和空间都留给学生,使每个学生都参仔细观察,认真思考,充分激发学生思维的主动性和积极性。在课堂中,要求学生观察1--20的因数的个数,自己按照一定的标准进行分类,分完后先小组内交流。说说你是按什么来分的?分成了哪几类?由于采用分的标准也必定不同,然后在让学生说标准的过程中,感悟到质数和合数的各自特征,一点点的提炼归纳出质数和合数的意义。培养学生的分类、观察、分析、归纳和交流的数学能力,建立正确的分类思想。整个过程都是学生在动手操作、交流讨论、归纳概括,而教师只是在关键之处适当点拔,引导学生质疑、释疑、归纳、

【五年级数学下册教案】相关文章:

数学五年级下册教案02-27

数学五年级下册优秀教案03-13

五年级数学下册教案07-23

五年级下册数学教案02-08

五年级下册数学教案02-26

五年级数学下册人教版的教案10-12

数学书五年级下册人教版教案10-12

五年级数学下册人教版教案10-12

五年级下册人教版数学教案10-12

人教版五年级数学下册教案11-26