当前位置:育文网>教学文档>教案> 《方程》教案

《方程》教案

时间:2024-10-13 06:11:17 教案 我要投稿

《方程》教案(精选15篇)

  作为一位杰出的教职工,时常需要编写教案,借助教案可以有效提升自己的教学能力。如何把教案做到重点突出呢?下面是小编精心整理的《方程》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《方程》教案(精选15篇)

《方程》教案1

  教学目标:

  知识目标:1、掌握抛物线的定义和标准方程。

  2、能根据抛物线的标准方程,写出它的焦点坐标和准线方程。

  能力目标:能根据简单的已知条件求抛物线的标准方程。

  情感目标:能根据老师的引导积极探索问题的规律。

  教学重点:分清抛物线四种标准方程、焦点坐标和准线方程。

  教学难点:利用抛物线的定义探索解决一些新问题。

  教学方法及手段:启发引导

  教学过程:

  一、课程引入

  1、平面内与两个定点的距离相等的点的轨迹是什么?

  2、与两条相交直线的距离相等的点的轨迹是什么?

  问:与一个定点和一条定直线的距离相等的点的轨迹是什么?(学生探索)

  教师flash课件演示(解释原理)

  二、新课解析

  1、定义:(板书课题)

  平面内与一个定点F和一条定直线L的距离相等的点的轨迹是抛物线。点F叫做抛物线的焦点。直线L叫抛物线的准线

  生活中的抛物线有哪些?太阳灶,抛射物体的运行轨道,二次函数的图象等。

  但在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.

  2、推导抛物线的标准方程:(先复习求轨迹方程的方法和步骤;如何建系)

  如图所示,建立直角坐标系系,设|KF|=(>0),那么焦点F的坐标为,准线的方程为,

  设抛物线上的点M(x,y),则有

  化简方程得

  3、抛物线标准方程:

  方程叫做抛物线的标准方程

  它表示的抛物线的'焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是说明:抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况。这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下

  图形

  方程

  焦点

  准线

  相同点:(1)抛物线都过原点;

  (2)对称轴为坐标轴;

  (3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称p是焦点到准线的距离

  不同点:标准方程中一次项的变量决定焦点在哪条轴上,系数的”+”,”-”决定焦点在正半轴还是负半轴

  三、例题精讲

  例1:

  (1)已知抛物线标准方程是,求它的焦点坐标和准线方程;

  (2)已知抛物线的方程是y = -6×2,求它的焦点坐标和准线方程;

  (3)已知抛物线的焦点坐标是F(0,-2),求它的标准方程。

  例2:求经过点A(-3,2)的抛物线的标准方程。

  思考题:(选做)

  M是抛物线y2 = 2px(P>0)上一点,若点M 的横坐标为X0,则点M到焦点的距离是?

  四、课堂练习

  1、根据下列条件,写出抛物线的标准方程:

  (1)焦点是F(3,0);

  (2)准线方程是x = -

  (3)焦点到准线的距离是2。

  2、求下列抛物线的焦点坐标和准线方程:

  (1)y2 = 20x (2)x2=y (3)x2+8y =0

  (选做)

  3、点M与点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程

  五、课堂小结

  1、抛物线定义

  2、抛物线四种形式的标准方程和图像;焦点准线的判定

  3、求标准方程的方法(1)定义法;(2)待定系数法

  六、作业布置

  学案反面《课后作业》

  七、教学设计说明

  (1)建立坐标系是坐标法的思想基础,但不同的建立方式使所得的方程繁简不同,布置学生自己写出推导过程并与课文对照可以培养学生动手能力、自学能力,提高教学效果 ,进一步明确抛物线上的点的几何意义

  (2)猜想是数学问题解决中的一类重要方法,请同学们根据推导出的(1)的标准方程猜想其它几个结论,非常有利于培养学生归纳推理或类比推理的能力,帮助他们形成良好的直觉思维—数学思维的一种基本形式另外让学生推导和猜想出抛物线标准方程所有的四种形式,也比老师直接写出这些方程给学生带来的理解和记忆的效果更好

  (3)对四种抛物线的图形、标准方程、焦点坐标以及准线方程进行完整的归纳小结,让学生通过对比分析全面深刻地理解和掌握它们

《方程》教案2

  教学目标:

  知识与技能目标:

  经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

  过程与方法目标:

  经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。

  情感态度与价值观目标:

  培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。

  教学重点:

  理解一元二次方程的概念及其形式。

  教学难点:

  一元二次方程概念的探索

  教学过程

  一、情境引入

  今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)

  二、探索新知

  列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)

  请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)

  观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。

  请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。

  2、以上方程与一元一次方程有什么相同与不同之处?

  3、你能说说什么样的方程是一元二次方程吗?

  4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?

  5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?

  6、你认为一元二次方程的概念中重点要强调的是什么?为什么?

  请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?

  请你抢答问题7。

  7、判断下列方程是不是一元二次方程,若不是请说明理由。

  同桌两人能举出几个一元二次方程的例子吗?

  探索二

  先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。

  找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。

  1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

  问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。

  三、巩固练习

  请看问题2,

  2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?

  四、课堂:

  先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。

  五、自我检测:

  看看我们的收获是不是真的

  硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改

  1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?

  根据题意,列出方程为------------------------------------。

  2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:

  方程

  一般形式

  二次项系数

  常数项

  3x2=5x-1

  (x+2)(x-1)=6

  3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0

  (1)k为何值时,是一元二次方程?k--------------是一元二次方程。

  (2)k为何值时,是一元一次方程?k-------------是一元一次方程。

  六、小组

  请小组长本小组今天大家的表现。

  七、作业

  课本42页1(2),2(1)(2)(3)

  能力挑战:

  已知关于x的方程(k2-1)x2+(k+1)x-2=0

  (1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?

  板书设计:一元二次方程

  (1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

  2x2-13x+11=0(1)含一个未知数(2)2次

  x2-8x-20=0(3)整式方程

  x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)

  二次项一次项常数项

  二次项系数一次项系数常数项系数

  参加区优质课评比反思:

  这次有幸参加我区优质课评比,感受颇多。

  一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。

  二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的'课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。

  三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。

《方程》教案3

  学习目标:

  1、使学生会用列一元二次方程的方法解决有关增长率的应用题;

  2、进一步培养学生分析问题、解决问题的能力。

  学习重点:

  会列一元二次方程解关于增长率问题的应用题。

  学习难点:

  如何分析题意,找出等量关系,列方程。

  学习过程:

  一、 复习提问:

  列一元二次方程解应用题的一般步骤是什么?

  二、探索新知

  1.情境导入

  问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.20xx年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20xx年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长20xx年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?

  2.合作探究、师生互动

  教师引导学生分析关于环保的.情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20xx年实际完成的亩数是30(1+x),第二次增长后,即20xx年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.

  教师引导学生运用方程解决问题:

  ①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.

  ②全村坡耕地还林还草为50×36.3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90.75(万斤).

  三、例题学习

  说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

  例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?

  (小组合作交流教师点拨)

  时间 基数 降价 降价后价钱

  第一次 600 600x 600(1-x)

  第二次 600(1-x) 600(1-x)x 600(1-x)2

  (由学生写出解答过程)

  四、巩固练习

  一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

  五、课堂总结:

  1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

  2、注意解方程中的巧算和方程两个根的取舍问题。

  六、反馈练习:

  1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()

  A.x+(1+x)x=20% B.(1+x)2=20%

  C.(1+x)2=1.2 D.(1+x%)2=1+20%

  2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()

  3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?

《方程》教案4

  学习目标(学习重点):

  1. 针对函数及其图象一章,查漏补缺,答疑解惑;

  2. 一次函数应用的复习.

  补充例题:

  例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系

  (1)B出发时与A相距 千米;

  (2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;

  (3)B出发后 小时与A相遇;

  (4)求出A行走的路程S与时间t的函数关系式;

  (5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.

  例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.

  (1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

  (2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.

  例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.

  (1)求s与t之间的函数关系式.

  (2)与图③相对应的P点的运动路径是: ;P点出发 秒首次到达点B;

  (3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.

  课后续助:

  1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.

  (1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式

  ①用水量小于等于3000吨 ;②用水量大于3000吨 .

  (2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.

  (3)若某月该单位缴纳水费1540元,则该单位用水多少吨?

  2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

  (1)有月租费的收费方式是 (填①或②),月租费是 元;

  (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;

  (3)请你根据用户通讯时间的多少,给出经济实惠的'选择建议.

  3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:

  (1)在y轴( )内填入相应的数值;

  (2)沙尘暴从发生到结束,共经过多少小时?

  (3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.

  (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?

  4.如图所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得的指距与身高的一组数据.

  指距d/cm 20 21 22 23

  身高h/cm 160 169 178 187

  (1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)

  (2)某人身高为196cm,一般情况下他的指距应是多少?

  5.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.

  (1)请问汽车行驶多少小时后加油,中途加油多少升?

  (2)求加油前油箱剩余油量y与行驶时间t的函数关系式;

  (3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

《方程》教案5

  一、背景与意义分析

  本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。

  方程有悠久的历史,它随着实践需要而产生,被广泛应用。从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。

  本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。

  在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。

  算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的突破。正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。

  二、学习与导学目标

  1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。

  2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的.一个有效模型。利用率100%。

  3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话、与同学合作,合理清晰地表达自己的思维过程。

  4、情感修炼与开导:积极创设问题情景,认识到列方程解应用题的优越性,初步体会到从算式到方程是数学的进步的含义。

  5、观念确认与引导:通过经历方程这一数学概念的形成与应用过程,感受到问题情境分析讨论建立模型解释应用转换拓展的模式,从而更好地理解方程的意义。结合例题培养学生观察、类比的能力和渗透数形结合思想。

  三、障碍与生成关注

  通过问题情境,建立数学模型,难度较大,为此要充分引导学生关注生活实际,仔细分析题目题意,促使学生朝数学模型方面理解。

  四、学程与导程活动

  (一)创设情景、引入新课

  同学们知道南通市的东城区吗?那宽广的人民东路延伸段正吸引着许多投资者的目光,南通市最大的环保热电厂已在东城区的新胜村拔地而起(图片展示),让我们乘36路公交车去感受一下吧!

  假设36路公交车无障碍匀速行驶,途经小石桥、国胜东村、观音山三地的时间如表所示:

  地名时间

  小石桥8:00

  国胜东村8:09

  观音山8:17

  新胜村在观音山、国胜东村之间,到观音山的路程有3千米,到国胜东村的路程有1千米,请问小石桥到新胜村的路程有多远?

  先让学生读题,然后教师指出:这是一个行程问题,而行程问题一般借助于直线型示意图,教师首先画出下图,标出两端地点。

  小石桥观音山

  最后师生共同逐句分析,并提问:你从此题中可以获得哪些信息,让学生自由发挥,最后,教师作如下总结:

  1、看表格有:

  从小石桥到国胜东村有________分钟;从小石桥到观音山有_______分钟;

  从国胜东村到观音山有______分钟。

  2、你能画出汽车所经过四个地方的顺序图吗?不妨试一试;对照示意图,让学生指出有关路程的信息。教师最后整理成如下示意图:

  小石桥国胜东村 新胜村观音山

  (二)动手实践、发现新知

  你会解决这个实际问题吗?不妨试一试。(以同桌同学或前后两桌为一组,讨论交流一下此题怎样解,教师巡视之后,请两位同学上黑板板演,教师评讲时,让学生指出每个式子的意义。)

  如果学生中有人利用方程做出,教师分析左右两边的意义;如果没有,则作如下提示:

  如果设小石桥到新胜村的路程为X千米,教师根据示意图,提出下列问题,让学生自主讨论口答:

  1、小石桥到国胜东村有_____千米,小石桥到观音山有_____千米。

  2、小石桥到国胜东村行车_____分钟,小石桥到观音山行车_____分钟。

  3、从小石桥到国胜东村的汽车速度为_____千米/分。

  让学生口答,请学生判断修正,并提出此题中有哪些相等关系?从小石桥到国胜东村的汽车速度与从小石桥到观音山的汽车速度相等吗?由此启发得出方程:

  指出:以后我们将学习如何从此方程中解出未知数X,从而得出小石桥到新胜村的路程。

  (三)类比分析、总结提高

  1、方法解题时,列出的算式中只能用已知数表示;而方程是根据问题的相等关系列出的等式,其中既含有已知数,又含有未知数,即方程是含有未知数的等式。同学们也看到列方程比较方便,而算式较繁。

  2、列方程的步骤

  让学生根据例子,总结出列方程的三步骤:(1)设字母表示未知数;(2)找出问题中的相等关系;(3)写出含有未知数的等式方程。

  3、对于上面问题,你还能列出其它方程吗?如能,你依据哪个相等关系?(学生讨论,代表发言)

  (四)例题分析、揭示课题

  同学们是否参加过学校的义务劳动呢?下面一起讨论义务为学校搬运砖块的问题。

  例1、学校组织65名少先队员为学校建花坛搬砖,六(1)班同学每人搬6块,六(2)班同学每人搬8块,总共搬了400块,问六(1)班同学有多少人参加了搬砖?

  1、这个问题已知条件较多,题中的数量关系较复杂,列算式不易直接求出答案,这时,教师抓住时机,引导学生分组讨论,合作交流,帮助学生分析题意,分清已知量、未知量,寻找题中的相等关系。先让学生试做,然后抓住时机,亮出如下表格,见机讲解。

  六(1)班六(2)班总数

  参加人数

  每人搬砖数68

  共搬砖数 400

  2、 通过上面所做的题目分析看出,有些问题利用算术方法解比较困难,而用方程解决比较简单。由上面题目分析也得出:这些都是只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程(板书课题:一元一次方程)

  3、让学生根据一元一次方程的定义,举出一元一次方程的例子,师生对照定义进行分析评讲。

  4、例2:根据下列问题,设未知数并列出方程:

  (1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

  (2)一根长的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?

  让2位学生上黑板板演,其余科学生在下面做,然后,师生共同批改,批改时,对照一元一次方程的定义及列方程的步骤讨论讲解,并指出方程左右两边的意义。

  (五)总结巩固、初步应用

  1 师生共同小结归纳

  上面的分析过程可以表示如下:

  设未知数找相等关系 列方程

  实际问题

  一元一次方程

  分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  2、练习:

  (1) 环形跑道一周长,沿跑道跑多少周,可以跑?

  (2) 甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?

  (3)一个梯形的下底比上底多,高,面积是,求上底。

  2、 作业:课本73页第1、5题。

  五、笔记与板书提纲

  课题例1例1示意图

  定义例2

  列方程的分析过程归纳

  六、练习与拓展选题

  根据生活经历,自编一道列方程应用题。

  七、个别与重点辅导:学生姓名(略)

  八、反思与点评记录

《方程》教案6

  一元一次方程

  一、教学目标:

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程

  1、课前训练一

  (1)如果 || =9,则=;如果2 =9,则=

  (2)在数轴上距离原点4个单位长度的数为

  (3)下列关于相反数的说法不正确的是( )

  A、两个相反数只有符号不同,并且它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0

  D、互为相反数的两个数的和为0(字母表示为、互为相反数则)

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数 ,如:

  (5)如果,则( )

  A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )

  A、B、C、D、00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

  A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?

  解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是( )

  A、B、C、D、

  (2)下列方程中,属于一元一次方程的是( )

  A、B、C、D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了场,则平了 场,依题意可列得方程:

  解得=

  答:甲队胜了 场,平了 场。

  (4)根据条件“一个数比它的一半大2”可列得方程为

  (5)根据条件“某数的与2的差等于最大的一位数”可列得方程为

  四、课外作业 P151习题5。1

  一元一次方程

  一、教学目标:

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程

  1、课前训练一

  (1)如果 || =9,则=;如果2 =9,则=

  (2)在数轴上距离原点4个单位长度的数为

  (3)下列关于相反数的说法不正确的是( )

  A、两个相反数只有符号不同,并且它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0

  D、互为相反数的.两个数的和为0(字母表示为、互为相反数则)

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数 ,如:

  (5)如果,则( )

  A、,互为倒数 B、,互为相反数 C、,都是0 D、,至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程( )

  A、B、C、D、00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )

  A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0。8元。已知每个笔记本比练习本贵1。2元,求每个练习本多少元?

  解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是( )

  A、B、C、D、

  (2)下列方程中,属于一元一次方程的是( )

  A、B、C、D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了场,则平了 场,依题意可列得方程:

  解得=

  答:甲队胜了 场,平了 场。

  (4)根据条件“一个数比它的一半大2”可列得方程为

  (5)根据条件“某数的与2的差等于最大的一位数”可列得方程为

  四、课外作业 P151习题5。1

《方程》教案7

  教学目标:

  1、通过回顾等式、不等式、用字母表示的式子等内容,进一步巩固加深学生对方程的理解和认识。

  2、会用方程表示简单的等量关系,会列方程解决简单问题。

  3、感受式与方程在解决问题中的价值,培养初步的代数思想。

  教学重点:

  明确字母表示数的意义和作用;会灵活的用方程解答两步简单的实际问题。

  教学难点:

  找等量关系式,用方程解决实际问题。

  教学过程:

  一、导入

  我们都记得这首儿歌

  一只青蛙一张嘴,两只眼睛四条腿;

  两只青蛙两张嘴,四只眼睛八条腿;

  请你来接下句

  三只青蛙_________;

  五只青蛙呢?

  N只青蛙呢?

  一首小小的儿歌展示了数学的机智和趣味,细心的.同学已经发现,这首儿歌不仅融入了数字,还包含着字母,用字母来表示数。我们今天的课就围绕用“字母表示的数”来展开。

  二、进行复习

  1、用字母表示数

  (1)同学们想一想,在数学中有哪些地方常用字母来表示?

  生列举:数量关系(路程、速度、时间即s=vt)

  计算公式(长方形面积计算公式:s=ab圆柱的体积公式:v=sh等)

  运算定律(加法结合律:a+b+c=a+(b+c)等)

  (2)请同桌之间相互举两个这样的例子。

  (3)你们知道为什么用字母表示数吗?

  (4)现在就让我们一起来试一试:请大家翻开课本71页,抓紧时间做一做吧。生自主完成课本(1)~(4)题。师巡视;完成后全班交流答案,重点说一说表示的意义。

  (5)现在我把第(4)题做一下修改:一台插秧机上午工作5小时,下午工作3小时,上下午一共插秧160平方米,问:每小时插秧多少平方米?

  算法有两种:其一:算术方法:160÷(5+3)=20

  依据:总插秧数量÷时间=单位时间量

  其二:列方程:x(5+3)=160

  依据:单位时间量×时间=总插秧数量

  观察比较:以上两种解法有哪些相同点和不同点?

  相同点:都是根据数量间的相等关系列式。

  不同点:解法一:以已知推出未知,是算术法。

  解法二:把未知数用x表示,列出含有未知数的等式,即方程。

  同学们想一想,等式和方程有什么联系和区别?

  方程有哪些性质呢?(等式、含有未知数)

  2、方程

  (1)判断下列哪些是方程(说明理由)

  7+8=3×5 4a+5b a+12=89

  4x=y 3+100>25+y 6+x=0.5×3

  (2)你会解方程吗?从中选择一个试一试。

  (3)如何判断方程的解是否正确?

  (4)列方程解应用题的解题步骤是怎样的?

  讨论后得出:①弄清题意,找出未知数,并用x表示;

  ②找出应用题中数量之间的相等关系,列方程;

  ③解方程;

  ④检验,写出答案。

  3、列方程解决问题

  (1)在生活中我们经常会遇到一些实际问题,列方程解方程能帮我们很快解决。例如,这副乒乓球拍到底多少元呢?让我们一起来算一算。

  请生一起看书71页例一:李老师买下面的球拍,给售货员100元,找回2元,一副乒乓球拍的价钱是多少元?

  引导生认真审题,找出等量关系,自己列出方程并求解。交流解题思路。

  (2)生尝试自主解决例二:相遇问题。师巡视,请生到黑板完成,全班交流。

  (3)练习

  ①练一练1

  ②师展示习题:说出下面每组数量之间的相等关系。

  (1)女生人数,男生人数,全班人数;

  (2)苹果的重量,梨的重量,梨比苹果少的重量。

  (3)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?

  (4)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?

  ③课本练一练5

  三、小结

  说一说你今天的收获在哪里?

《方程》教案8

  教学内容:数学书P57,及“做一做”,练习十一第4题。

  教学目标:

  1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

  2、会检验一个具体的值是不是方程的解,掌握检验的格式。

  3、进一步提高学生比较、分析的能力。

  教学重难点:比较方程的解和解方程这两个概念的含义。

  教学过程:

  一、导入新课

  上一节课,我们学习了什么?

  复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

  二、新知学习。

  1、解决问题。

  出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

  能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

  全班交流。可能有以下四种思路:

  (1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

  (2)利用加减法的`关系:250-100=150。

  (3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

  (4)直接利用等式不变的规律从两边减去100。

  对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

  2、认识、区别方程的解和解方程。

  得出方程的解与解方程的含:

  像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

  而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

  这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

  方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

  3、练习。(做一做)

  齐读题目要求。

  怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x

  =5×3

  =15

  =方程右边

  所以,x=3是方程的解。

  用同样的方法检查x=2是不是方程5x=15的解。

  三、作业。

  独立完成练习十一第4题,强调书写格式。

  四、小结。

  通过这节课学到了什么?还有什么问题?

《方程》教案9

  学习目标:

  (一)学习知识点

  1、用分式方程的数学模型反映现实情境中的实际问题.

  2、用分式方程来解决现实情境中的问题.

  3、经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.

  学习重点:

  1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.

  2.根据实际意义检验解的合理性.

  学习难点:

  寻求实际问题中的等量关系,寻求不同的解决问题的方法.

  学习过程:

  Ⅰ.提出问题,引入新课

  前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.

  接下来,我们就用分式方程解决生活中实际问题.

  例1:某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.

  (1)你能找出这一情境的等量关系吗?

  (2)根据这一情境,你能提出哪些问题?

  (3)这两年每间房屋的租金各是多少?

  解法一:设每年各有x间房屋出租,那么第一年每间房屋的租金为______元,第二年每间房屋的租金为__________元,根据题意得方程,

  解法二:设第一年每间房屋的租金为x元,第二年每间房屋的租金为_______元.第一年租出的房间为__________间,第二年租出的房间为__________间,根据题意得方程,

  例2:小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少?

  解:设软皮本的价格为x元,则硬皮本的价格为________元,那么15元钱可买软皮本_________本,硬皮本___________本.根据题意得方程,

  图3-4

  活动与探究:

  1、如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(20xx年吉林省中考题)

  2、从甲地到乙地有两条公路:一条全长600千米的普通公路,另一条是全长480千米的高速公路。某客车在高速公路上行驶的`速度比在普通公路上快45千米/时,由高速公路从甲地到乙地所需时间是由普通公路从甲地到乙地所需时间的一半。求客车在高速公路上行驶的速度。

  3、轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流的速度为3千米/时求轮船在静水中的速度?

  积累与总结:

  1、列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.

  2、列分式方程解应用题的一般步骤:(1)审清题意,找出等量关系;(2)设出__________;(3)列出_________;(4)解分式方程;(5)检验,既要验证是否是原方程的的根,又要验证是否符合题意;(6)写出答案。

《方程》教案10

  教学目标

  了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

  1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

  2.一元二次方程的一般形式及其有关概念.

  3.解决一些概念性的题目.

  4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

  重难点关键

  1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

  教学过程

  一、复习引入

  学生活动:列方程.

  问题(1)《九章算术》勾股章有一题:今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?

  大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

  如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.

  整理得:_________.

  问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

  如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

  整理,得:________.

  老师点评并分析如何建立一元二次方程的数学模型,并整理.

  二、探索新知

  学生活动:请口答下面问题.

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)有等号吗?或与以前多项式一样只有式子?

  老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

  因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的.一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

  分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

  解:去括号,得:x2+2x+1+x2-4=1

  移项,合并得:2x2+2x-4=0

  其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

  三、巩固练习

  教材P32 练习1、2

  四、应用拓展

  例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

  分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

  证明:m2-8m+17=(m-4)2+1

  ∵(m-4)20

  (m-4)2+10,即(m-4)2+10

  不论m取何值,该方程都是一元二次方程.

  五、归纳小结(学生总结,老师点评)

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

  六、布置作业

《方程》教案11

  1。教学目标

  (1)知识目标: 1。在平面直角坐标系中,探索并掌握圆的标准方程;

  2。会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

  (2)能力目标: 1。进一步培养学生用解析法研究几何问题的能力;

  2。使学生加深对数形结合思想和待定系数法的理解;

  3。增强学生用数学的意识。

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

  2。教学重点。难点

  (1)教学重点:圆的标准方程的求法及其应用。

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题。

  3。教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的.货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2。7代入,得 。

  即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1。根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2。如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的方程。

  [教师预设] 方法一:坐标法

  如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}

  由两点间的距离公式,点M适合的条件可表示为 ①

  把①式两边平方,得(x?a)2 (y?b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

《方程》教案12

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1、教学重点:椭圆的定义及其标准方程

  2、教学难点:椭圆标准方程的推导

  (三)三维目标

  1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

  3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的`标准方程,并且对椭圆的标准方程进行了再认识。

  6、例题讲解:通过例题规范学生的解题过程。

  7、巩固练习:以多种题型巩固本节课的教学内容。

  8、归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

  9、课后作业:面对不同层次的学生,设计了必做题与选做题。

  10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

《方程》教案13

  【考点及要求】:

  1.掌握直线方程的各种形式,并会灵活的应用于求直线的方程.

  2.理解直线的平行关系与垂直关系, 理解两点间的距离和点到直线的距离.

  【基础知识】:

  1.直线方程的五种形式

  名称 方程 适用范围

  点斜式 不含直线x=x1

  斜截式 不含垂直于x=轴的直线

  两点式 不含直线x=x1(x1x2)和直线y=y1(y1y2)

  截距式 不含垂直于坐标轴和过原点的直线

  一般式 平面直角坐标系内的直线都适用

  2.两条直线平行与垂直的判定

  3.点A 、B 间的距离: = .

  4.点P 到直线 :Ax+Bx+C=0的距离:d= .

  【基本训练】:

  1.过点 且斜率为2的直线方程为 , 过点 且斜率为2的`直线方程为 , 过点 和 的直线方程为 , 过点 和的直线方程为 .

  2.过点 且与直线 平行的直线方程为 .

  3.点 和 的距离为 .

  4.若原点到直线 的距离为 ,则 .

  【典型例题讲练】

  例1.一条直线经过点 ,且在两坐标轴上的截距和是6,求该直线的方程.

  练习.直线 与两坐标轴所围成的三角形的面积不大于1,求 的取值范围.

  例2.已知直线 与 互相垂直,垂足为 ,求的值.

  练习.求过点 且与原点距离最大的直线方程.

  【课堂小结】

  【课堂检测】

  1.直线 过定点 .

  2.过点 ,且在两坐标轴上的截距互为相反数的直线方程是 .

  3.点 到直线 的距离不大于3,则 的取值范围为 .

《方程》教案14

  教学目标:

  1、本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.——行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.

  2、本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.

  教学重点:

  列分式方程解有关行程问题.

  教学难点:

  如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.

  3.疑点:对于列分式方程解应用题,学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的解是否与题意相吻合.

  教学过程:

  在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的`实践总结,概括出来的,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的,所以点出由实践——理论——实践这一观点,能更加激发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.

  为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量——速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.

  一、新课引入:

  1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?

  2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?

  3.以前所学过的列方程解应用题的步骤有哪些?

  通过对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于点题——本节课所学的内容.

  通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.

  二、新课讲解:

  例1甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?

  分析:

  (1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.

  (2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙

《方程》教案15

  一、复习引入

  1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.

  2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

  3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的'两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

  二、探索新知

  解下列方程,并填写表格:

  方程 x1 x2 x1+x2 x1?x2

  x2-2x=0

  x2+3x-4=0

  x2-5x+6=0

  观察上面的表格,你能得到什么结论?

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?

  (2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

  解下列方程,并填写表格:

  方程 x1 x2 x1+x2 x1?x2

  2x2-7x-4=0

  3x2+2x-5=0

  5x2-17x+6=0

  小结:根与系数关系:

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)

  (2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.

  即:对于方程 ax2+bx+c=0(a≠0)

  ∵a≠0,∴x2+bax+ca=0

  ∴x1+x2=-ba,x1?x2=ca

  (可以利用求根公式给出证明)

  例1 不解方程,写出下列方程的两根和与两根积:

  (1)x2-3x-1=0 (2)2x2+3x-5=0

  (3)13x2-2x=0 (4)2x2+6x=3

  (5)x2-1=0 (6)x2-2x+1=0

  例2 不解方程,检验下列方程的解是否正确?

  (1)x2-22x+1=0 (x1=2+1,x2=2-1)

  (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

  例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)

  例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.

  变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

  变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

  三、课堂小结

  1.根与系数的关系.

  2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.

  四、作业布置

  1.不解方程,写出下列方程的两根和与两根积.

  (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

  (4)3x2+x+1=0

  2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.

  3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

【《方程》教案】相关文章:

《方程》教案11-26

认识方程教案03-29

方程的意义教案03-30

简易方程教案04-03

《方程的意义》教案04-03

解方程教案03-29

《圆的方程》教案03-08

《方程》教案(15篇)02-22

《方程》教案15篇02-22