- 相关推荐
关于分数乘法教案模板汇编7篇
作为一位不辞辛劳的人民教师,时常需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?下面是小编为大家整理的分数乘法教案7篇,希望对大家有所帮助。
分数乘法教案 篇1
教学目标:
1、使学生进一步理解求一个数的几分之几是多少的应用题的数量关系,掌握这类应用题的解题思路和解题方法。
2、培养学生认真审题,独立思考的学习习惯。
3、训练学生分析、解题问题的能力。
教学过程:
一、书上第44页上的第12题
1、先引导学生观察每一组分数的大小特点,知道有一些分数比1大,有些分数比1小。计算后,再把每一个积分别与15(或36)比较。
从而发现:一个数与比1大的分数相乘,所得的结果比原数大;一个数与比1小的分数相乘,所得的结果比原数小。
2、书上第44页上的第13题
引导学生根据第12题发现的规律,直接判断出每组两道算式得数的大小。
二、说说分数的意义,并把数量关系补充完整
(1)今年的产量比去年增产1/8。
×1/8=
(2)钢笔枝数的2/5相当于圆珠笔的枝数。
×2/5=
(3)花布的米数比白布长1/4。
×1/4=
(4)实际每月比计划节约了1/10。
×1/10=
(引导学生想到:单位“1”是哪个量,另一个量是多少,写出数量关系。)
二、对比练习。
1、有两块布,白布长15米,花布是白布的1/3,花布有多少米?
2、有两块布,白布长15米,花布比白布长1/3,花布比白布长多少米?
3、有两块布,白布长15米,花布长1/3米,白布比花布长多少米?
(1)分别说说题中的分数是哪两个量比较的结果,比较时把哪个量看作单位1?
(2)比较3题有何异相点?
三、综合练习。
1、一种商品原价是250元,现价是原价的4/5,现价是多少?
2、一种商品原价是250元,后来降价了1/5,降价多少?
3、修路队修一条1米的路,第一天修了全长的1/6,第二天修了全长的1/4。
(1)两天分别修了多少米?
(2)第二天比第一天多修多少米?
(3)还剩多少米没修?
四、作业
课前思考:
潘老师确实是多年教学毕业班老师,教学经验比较丰富。在她补充的练习中,3题对比练习是每届六年级学生易混淆之处,在此比较,加深对三种类型实际问题的印象,理清思维。增加的综合练习,是本课内容的拓展延伸。我要借用一下了。
第二,在明天的教学中,我还要增加分数乘法计算练习,提高计算的'正确率。
课前思考:
上完分数乘法的第三课时——简单的分数乘法实际问题(二)(例3)后,我们三位数学老师都感到这一课时的内容学生学得不够扎实,所以需要增加一课时,设计一些对比题,进一步提高学生分析数量关系的能力,尤其是加强对学习困难生的辅导。潘老师在根据学生学习情况后及时增加了这一节练习课,设计了“看关键句说数量关系”、“对比题”、“综合题”这几个层次的练习,练习题较典型,在课上,我们还是要组织学生认真读题,理解题目意思后再思考题中各数量间的关系。课上还要多给学生互相交流的机会,多说说数量关系,让更多的学生真正掌握分析数量关系的方法,学会思考。另外,练习八中的第12、13题要放进本课时,分数乘整数的计算练习也可增加些,计算正确率要提高,学生良好的计算习惯亟需培养。
课后反思:
由于自己在前两节课新授学习时轻视了这单元的难度,高估学生,所以在新学习分数乘法时,就说明:熟练以后可以省略中间的计算过程直接写出得数,且补充习题册上也有这样的要求,造成很多学生在计算还不熟练的情况下就不愿意写出计算过程,结果计算正确率不高,还有部分学生计算方法没有得到完全巩固。所以在今天的练习课上,再次复习巩固计算方法,并且要求学生以后一定要写出计算过程,特别是有约分的类型,直到以后熟练后我再通知什么时候可以省略中间的计算过程。从今天的课堂作业看,这样操作确实收到了一定效果。
第二,继续加强对数量关系的训练,关键是对其中分数含义的理解。只要学生能理解分数的意义,说明是将什么看作单位1,平均分成几份,表示这样的几份,那么写数量关系基本上没有困难了。同时,继续教学生学习借助线段图分析部分题目,这样更直观形象。
课后反思:
通过这节课的练习,大部分学生都能正确说出题中分数的具体含义和正确找出单位“1”的量,对课堂上预设的题完成的不错。从作业的反馈情况来看(要求写出数量关系),有部分学习困难的学生还是没能准确的找对单位“1”的几分之几表示哪个数量。对于这些学生课后还得加强这方面的辅导。
课后反思:
今天这节课的教学重点、难点是帮助学生学会分析简单分数乘法实际问题的数量关系,潘老师设计的教案,我再结合两个班级学生学习实际情况,补充了几道对比题,加强对不同类型实际问题数量关系的辨析。反思自己的教学,可能在组织学生分析数量关系时有点过于急噪,要加以改进。我想在根据关键句分析时,一是思考其中分数的意义,即找出单位“1”的量,然后分析谁是谁的几分之几,要把谁比谁多几分之几转化为谁是谁的几分之几,这是学生分析数量关系时感到困难的地方。二是可以借助画线段图理解数量关系,在画图分析的过程中能更清晰地看出两个数量间的关系,也为以后学习较复杂的分数乘、除法实际问题打好基础。
从学生作业情况看,遇到题中要求写出数量关系仍有困难,特别是一些学习困难生。要抽时间进行个别辅导。
分数乘法教案 篇2
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、培养学生大胆猜测,勇于实践的思维品质。
教学重点:
会进行分数的混合运算,运用运算定律进行简便计算。
教学难点:
灵活运用运算定律进行简便计算。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1、运算定律。
我们在四年级时学习过乘法的运算定律,同学们还记得吗?
(学生回答,教师板书运算定律)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
2、这些运算定律有什么用处?你能举例说明吗?
2574 0.36101
(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)
二、自主探究(自主学习,探讨问题)
1、引入
同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。
(板书课题:整数乘法的运算定律能否推广到分数乘法)
2、推导运算定律是否适用于分数。
(1)学生发表对课题的见解。
(2)验证
有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的`观点吗?(学生小组合作学习)
3、教学例5.
(1)出示: ,学生小组合作独立解答。
4、教学例6.
(1)出示: ,学生小组合作独立计算。
(2)小组汇报学习成果,说一说你们组应用了什么运算定律。
5、小结
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
三、拓展总结(应用拓展,盘点收获)
1、完成练习三的第6题。
学生说一说应用了什么运算定律。
2、完成课本第10页的做一做题目。
其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。
3、总结
这节课你有什么收获?
分数乘法教案 篇3
教学内容:
教材第8页例6、例7,做一做1~2,练习一5~11。
教学目标:
1、懂得分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。
2、知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。
3、在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
教学重点:
会计算分数混合运算,能利用乘法的运算定律进行简便运算。
教学难点:
根据题目特点,灵活地运用定律进行简便计算。
教学过程:
一、复习导入。
1、提问:整数混全运算顺序是怎么样的?
预设:先算乘、除法,再算加、减法。
2、追问:遇到有括号的题该怎么来计算?
预设:有括号的要先算小括号里面的,再算中括号里面的。
3、计算题并提出要求:观察下面各题,先说说运算顺序,再进行计算。
1/23+2/5
68-54
1/2(3/6-1/4)
二、探索新知
1、向学生说明:分数混合运算的'运算顺序和整数混合运算的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
1/33/5+1 1-5/721/25学生独立完成,小组内订正。
2、分数混合运算
出示例题6:一个画框,长 米,宽 米,做这个画框要多长的木条?
3、学生读题,理解题意。已知长方形画框的长是45m,宽是12m,求做这个画框所需要的木条的长度,就是求这个长方形画框的周长。
4、学生独立列式或启发自学,交流收获。
教师启发:两个算式都是分数混合运算,那分数混合运算的运算顺序是怎样的呢?
(1)请学生自学教材第9页的内容。
(2)指名交流汇报。引导学生发现:分数混合运算的顺序和整数混合运算的顺序相同。
5、学生独立完成计算过程,交流汇报。交流时,指名说说整数混合运算的顺序是什么?
分数乘法教案 篇4
重点:
(1)理解分数乘以整数的意义
(2)理解并掌握分数乘以整数的计算法则
难点:
在计算的过程中,能约分的要先约分,然后再乘。
设计思想:
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
教学过程:
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的'结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
分数乘法教案 篇5
教学内容:
分数乘法
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的'结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算出整数乘以不同分数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
二、讲授新课
教师出示课本例题:小红有6个苹果,淘气的苹果是小红的 ;笑笑的苹果是小红的 ,淘气和笑笑各有几个苹果?
教师让学生思考这个例题,并对学生进行提问。
学生自己动手填完课本例题上的方格。
教师提问学生说一说自己是怎样计算的?
教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。
三、巩固练习
做课本5页试一试,36的 和 分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
四、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
分数乘法
整数乘以分数的数学意义:就是求整数的几分之几是多少?
分数乘法教案 篇6
重点:
1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。
2.渗透对应思想。
难点:
1.理解这类应用题的解题方法。
2.用线段图表示分数应用题的数量关系。
教学过程:
一、复习、质疑、引新
1.说出、、米的意义。
2.列式计算:
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)
二、探索、质疑、悟理
1.出示例1(也可以结合学生的实际自编)
学校买来100千克白菜,吃了,吃了多少千克?
①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。
②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。
③画图:(课件一演示)补:把100千克当做什么?(单位1)
画图说明:
a.量在下,率在上,先画单位1
b.十份以里分份,十份以上画示意图。
C.画图用尺子,用铅笔。
④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。
学生可能会出现下面解答方法:
解法一:用自己学过的整数乘法做
(千克)
解法二:(千克)
在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。
⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。
2.巩固练习
六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?
订正时候强调1)把哪个数量看作单位1?
2)为什么用乘法计算?
3.学习例2
例2小林身高米,小强身高是小林的,小强身高多少米?
在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。
(课件二演示)
先画单位1
再画单位1的'几分之几
画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)
在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?
列式:(米)
答:小强身高米。
4.改变例2
改变例2的条件和问题成为下题(可让学生完成)。
小强身高米,小林身高是小强的倍,小林身高多少米?
改编后,可让学生独立画图完成。
(米)
三、归纳、总结
1.今天所学题目为什么用乘法计算
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)
四、训练、深化
1.先分析数量关系,再列式解答
①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?
②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?
2.提高题
①一桶油400千克,用去,用去多少千克?还剩多少千克?
②一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、课后作业:练习五1、2、3
六、板书设计:
分数乘法应用题
100==80(千克)
答:吃了80千克。
(米)
答:小强身高是米。
分数乘法教案 篇7
教材分析
“分数乘法的意义”是学习和理解本节课内容的重要基础,因此在教学新知识前帮助学生找到知识的生长点很重要。
本节课的内容为简单的分数乘法一步应用题,掌握这部分知识才能为学习后面部分较复杂的分数乘法问题打下基础。
学情分析
本节课的内容是在学生已经掌握了分数乘法的计算方法和分数乘法的意义,具备了一定的分析题意中已知条件和找单位“1”等迁移知识的能力。学生认知的障碍点主要是理解分数问题中的单位“1”和问题的关系。
教学目标
1.理解掌握“求一个数的几分之几是多少”的分数问题的结构和解题方法。
2.渗透对应思想,发展学生分析推理能力和解决实际问题能力。
3.感受数学知识应用的`广泛性。
教学重点和难点
1. 理解分数问题中的单位“1”和问题的关系。
2.理解“求一个数的几分之几是多少”的问题的解题思路和方法。
3.抓住知识关键,正确、灵活判断单位“1”。
教学过程
一、复习导入。
1.读信息,找出单位“1”:
2.列式计算。
思考:这两道题为什么用乘法计算?
板书课题
二、探索新知。
1.教学例1
(1)读题,理解题意。知道题中已知条件和所求问题,搞清楚
数量间的关系。
(2)画线段图分析思考,分析重点句。
(3)在分析题意的基础上,学生尝试解答。
板书: 2500× =1000(㎡)
(4)结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
三、巩固练习。
1.让学生理解题意,解决问题并说出解决的依据是什么。
2.(1)解决的问题是什么?怎样解决?
(2)比较这两道题的异同。
3.要求学生画线段图分析题意,再独立列式解答。
四、拓展提高。
先让学生独立思考,尝试列式解答,再交流想法。
小结:解决这类问题应从哪里入手分析?解题步骤是什么?
五、归纳总结。
今天有什么收获?
六、布置作业。
教科书第18页第2、3、9题。