当前位置:育文网>教学文档>教案> 分数的基本性质教案

分数的基本性质教案

时间:2024-06-13 10:42:08 教案 我要投稿

分数的基本性质教案模板8篇

  作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编帮大家整理的分数的基本性质教案8篇,仅供参考,欢迎大家阅读。

分数的基本性质教案模板8篇

分数的基本性质教案 篇1

  设计说明

  1.注重情境创设,激发学生的学习兴趣。

  伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

  2.突出学生的主体地位,在实践操作中掌握新知。

  学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

  课前准备

  教师准备 PPT课件

  学生准备 若干张同样大小的圆形纸片 彩笔

  教学过程

  ⊙故事引入

  1.教师讲故事。

  师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

  大毛、二毛、三毛都满意地笑了,妈妈也笑了。

  设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

  2.探究验证。

  (1)提出猜想。

  师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

  生:同样多。

  师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

  (2)验证猜想。

  请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

  ①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

  ②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

  ③剪一剪:把圆形纸片中的涂色部分剪下来。

  ④比一比:把剪下的涂色部分重叠,比一比。

  师:通过比较,结果是怎样的?

  生:同样大。

  设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的'实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

  3.揭示课题。

  师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

  ⊙探究新知

  1.观察比较,探究规律。

  (1)请同学们观察,比较三个分数的大小。

  师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

  师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

  (2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

  师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

  (课件出示:比较它们的分子和分母)

  ①从左往右看,是按照什么规律变化的?

  ②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

  师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

  师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

  师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

  师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

  (3)教师总结分数的基本性质。(板书)

分数的基本性质教案 篇2

  教学目标:

  1、理解分数的基本性质。

  2、初步掌握分数的基本性质。

  3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。

  教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

  设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。

  在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。

  通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。

  第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的`地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。

  教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =

  从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。

  请全班同学将结语说完整,全班读。 小结:就是我们今天学习的内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习

  (用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)

  3、请找我的好朋友练习。(以游戏的形式来进行)

  要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。

  ( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)

  4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

  (这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)

  5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。

分数的基本性质教案 篇3

  教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。

  教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题。

  教学难点:理解分数的基本的性质。

  教学课型:新授课

  具准备:课件

  教学过程:

  一,复习铺垫,准备迁移 [课件1]

  1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢

  2,比较下列每组数的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分数改写成两个数相除的形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,发展智能

  1,同学操作:将手中的纸圆片平均分成若干份。

  2,反馈。

  (1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几

  B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样

  板书: 1/2=2/4=3/6

  C,观察一下:这些分数的分子,分母变化有什么规律

  (2)引导同学概括出分数的基本性质,并与前面的猜测相回应。

  (3)小结:这里的"相同的数",是不是任何数都可以呢

  (零除外)

  板书:分数的分子和分母同时乘上或者除以相同的'数(0除外),分数的大小不变。

  3,分数的基本性质与商不变的性质的比较。

  提问:在除法里有商不变的性质,在分数里有分数的基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗

  4,巩固认识。

  P109 。1

  (2)说数接龙。

  5/6=5+5/( )……

  三,运用延伸,深化概念

  1,要求大小不变。[课件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分数中哪两个分数相等 [课件3]

  3/4 21/32 15/20 1/5 4/20

  习后提问:A,依据是什么

  B,3/4和1/5哪个大 你是怎么比较出来的

  C,那么,从中你又有什么新发现 你的新发现是什么

  四,全课总结

  提问: A,这节课你学习了什么

  B,运用分数的性质,你能做什么

  C,本节课你还有哪些疑问 你还想从哪些方面去探索分数

  的知识呢

  五,家作

  P109 。3,5,6

  板书设计: 分数的基本性质

  1/2=2/4=3/6

  分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

分数的基本性质教案 篇4

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程

  一、导入新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书:

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书:

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题( )里可以填多少个数?第4题呢?

  为什么3、4题( )里可以填无数个数?

  ( )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的'分数:

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书:

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业.

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

分数的基本性质教案 篇5

  教材简析:

  分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

  设计理念:

  分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

  在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的.教学价值观,构建了新的教学模式。

  《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

  教学目标:

  1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

  2、培养学生观察、分析、思考和抽象、概括的能力.

  3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

  教学重点:

  使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

  教学难点:

  让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教具准备:

  每生三张正方形纸

  教学方法:

  演示法、观察法、讨论法、交流法。

分数的基本性质教案 篇6

  (一)激趣引思、提出要求

  同学们,你们听过阿凡提的故事吗?今天老师也带来了一则阿凡提的故事。让我们一一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?

  有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!

  (二)自主探究,发现规律

  1、出示例1的四幅图。

  我们先来看一道题目。分别用分数表示每个图里的涂色部分。

  (1)谁来说第一个?

  全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?

  同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?

  (2)师:这里有个1/2,你能说一个和1/2相等的分数吗?

  2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?

  那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?

  先别急,先来看看有哪些实验要求。

  咱们这个实验的目的上一什么?验证什么?

  咱们实验的方法有哪些呢?

  实验有什么要求?操作有序什么意思呢?要听从小组长的安排

  1、实验目的:验证猜想

  2、方法:折一折、分一分、画一画、算一算......

  3、要求:小组合作,明确分工,操作有序

  我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!

  学生操作,老师巡视指导。

  集体交流结果。

  咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。

  把你的发现先和同桌交流交流。

  生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。

  师:还有谁想说说你的发现?

  生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。

  师:换一组数据来说说自己的发现?

  生:由到,分子、分母都被缩小了3倍,它们的大小不变。

  师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?

  师:为什么要0除外?

  师:这就是咱们今天学习的“分数的基本性质”(板书课题)

  师:谁来说说看,分数的基本性质是什么呢?

  生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。

  我们一齐读一遍。

  师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?除法中商不变的'性质你还记得吗?

  同学们想想看,这两个性质之间有什么关系呢?

  根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。

  师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?

  师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。

  (三)巩固练习,强化记忆

  好,那下面咱们就用今天学的知识来做几道题,好不好?

  1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。

  集体交流。

  2、下面我们来填空补缺想理由。(出示练一练第二题)

  他们这样填是根据什么?

  3、出示练习十一第二题

  独立完成,集体订正。

  (四)课堂作业,运用知识

  练习十一第三题

  (五)课堂,认识自己

  今天这节课,你学到了什么?

分数的基本性质教案 篇7

  教学内容:省编义务教材第十册第91—93页例1、例2。

  教学目标:

  1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

  2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

  3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

  课前准备:

  课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

  教学过程:

  1.创设情境,作好铺垫

  出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

  为什么你会猜是一道除法算式?(分数与除法有密切的关系)

  除法与分数有什么样的关系?

  (黑板上出示:被除数÷除数=)

  根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

  为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

  什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

  2、迁移猜想,引疑激思

  分数与除法有这样的.关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

  交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  3、自主探究,验证猜想

  也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

  (1)初步验证

  ①出示:探究报告单,让学生读要求:

  a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

  b.选择合理的方法验证所前后两个分数是否相等。

  c.填写好探究报告单。

  选择探究的

  分 数

  分子和分母同时乘以或除以

  一个相同的数

  得到的

  分 数

  选择的分数与得到的分数是否相等

  相等( ) 不相等( )

  猜想是否成立

  成立( ) 不成立( )

  选择的分数与得到的分数是否相等相等()不相等()

  猜想是否成立成立()不成立()

  *:验证方法可用折纸、画线段图、计算、实物……

  ②学生合作进行探究。

  ③全班交流:

  a、同桌一起上来,拿好探究报告单及验证材料等。

  b、两人合作,一人讲解、一人验证演示。

  c、得到结论:

  (交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

  刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

  4、议论争辩,顿悟创新

  读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

  5、训练技能,激励发展

  刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

  (1)练习明目的

  根据分数的基本性质,填空。

  1/2=()/8=5/()=()/6=7/()

  采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  (2)慧眼辩是非

  (3)变式练思维

  把下面每组中的异分母分数化成同分母分数。

  A、3/4,4/7B、5/6,4/9C、3/5,5/8

  分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  (4)竞赛促智慧

  ①在1—9九个数字中任选一些数字组成大小相等的分数。

  可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

  并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

  ②出示:1/a=7/b(说明:a、b都不是0。)

  抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

  连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

  讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  6、回顾,掌握方法

  今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

  学生可能会回答:

  生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

  生2:我们是通过猜测的方法学的。

  生3:我们还用验证的方法学习。

  ……

  结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

分数的基本性质教案 篇8

  教学目标

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

  教学重难点约成最简分数

  教学准备:分数卡片口算卡片

  教学过程

  一、自主回顾

  回顾一下对约分的理解情况

  突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

  师:什么是最简分数?

  说一说。

  二、巩固练习

  师分数卡片判断

  1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的.魅力。

  师:你能写出不同的除法算式吗?

  =()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、快乐学习超市

  超市画面快乐套餐1快乐套餐2

  快乐套餐1:比一比○○0.4

  计算并化简+=-=

  在()填上最简分数20分=()时

  快乐套餐2、3同上。

  (分组练习小组代表汇报整合了练习十一10至14题)

  4、集中练习

  把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

  分母是10的最简分数有几个?

  请你提出一个类似的问题。

  课堂作业

  练习十一第9题,12、13、14题各自选2个

  课后练习:完成练习册上的相应练习。

【分数的基本性质教案】相关文章:

分数的基本性质教案04-12

分数的基本性质教案03-16

分数的基本性质的教案02-26

分数的基本性质教案15篇03-21

《分数的基本性质》的说课稿06-24

《分数的基本性质》说课稿07-02

分数的基本性质(说课稿)07-04

分数的基本性质的说课稿07-23

分数的基本性质说课稿03-19