关于分数除法教案模板汇编九篇
作为一名人民教师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编精心整理的分数除法教案9篇,仅供参考,大家一起来看看吧。
分数除法教案 篇1
教学准备
教学时数2课时
教学过程
一,你学到了什么?与同学进行交流。
1,第一单元的内容。
学生先小组交流,然后师生共同讨论知识的过程。
分数乘法的意义,分数乘法的计算方法,解决简单的分数乘法应用题。
2,第二单元的内容。
长方体,正方体的'特点,长方体,正方体的展开图,长方体,正方体的表面积的计算方法。
3,第三单元的内容。
除法的意义,除法的计算方法,倒数的含义,用方程解决问题,算术方法解决除法问题。
二,决问题
1.第1题,学生独立完成,教师集体对答案,表扬做全对的同学。
2.第2题,学生独立完成,让学生说说是怎样想的?
3.第3题,学生先独立完成,要向学生讲清怎样才知道10包纸巾的长、宽、高。师生共同讨论。
4.第4题,引导学生从不同的角度思考解决问题的方法,也可引导学生通过画图来理解题意。
5.第5题,首先鼓励学生看懂图意,然后分析图中的数量关系,列出方程解决问题:2/9Ⅹ=140。
6.第6题。鼓励学生理解题意,然后分析题目中的数量关系,在此基础上独立解决问题。
7,第7题。学生独立完成,教师集体讲评。
8.第8题。小组交流,然后师生共同完成。
9.第9题。以统计表的形式出现复习分数乘法,但是很容易解决。先让学生独立解决,然后说一说题意的策略。
三.
通过这两单元的与复习,你学到了什么?
分数除法教案 篇2
教学内容:人教版小学数学第十一册p37。“已知一个数的几分之几是多少,求这个数”类型的应用题。
教学目标:
1、使学生理解“已知一个数的几分之几是多少,求这个数”类型的应用题的数量关系,能用方程解答。
2、培养学生的分析、比较、迁移等能力。
3、建构知识间的联系,渗透“事物间是相互联系的”这一辩证思想。
教学重难点:
1、理解数量关系,掌握分析方法。
2、正确分析数量关系并解答。
教学过程:
一、复习准备。
1、下面这些句子中,哪两个量进行比较,谁为单位“1”?
⑴一桶水用去3/4。 ⑵书的价钱是钢笔价钱的1/3。
师:第一题是部分与总数的'比,总数为单位“1”。第二题是一个量同另一个量比。和谁比?谁为单位“1”。
[点评: 通过对比练习, 帮助学生理解“两个数量的比较”有两种情况: 一是部分与整体之间的关系; 二是两个相对独立的数量之间的关系。 ]
2、出示准备题。说出关系式,再列式计算。
爸爸体重75kg,小明的体重是爸爸的7/15。
⑴小明的体重是多少千克?
爸爸的体重×7/15=小明的体重 75×7/15=35(kg)
⑵小明体内水分的质量占小明体重的4/5,小明体内有多少千克水分?
小明的体重×4/5=小明体内水分的质量 35×4/5=28(kg)
二、探究新知。
1、激趣引入。
师:我们对自己的身体应该是再熟悉不过了, 我们的身体内有很多科学知识藏在里面呢,你们知道自己体内水分的含量吗?
[点评: 通过创设情境, 调动学生积极参与的情感, 让学生在轻松愉快的数学活动中提高分析能力。 ]
2、出示:
根据测定,成人体内的水分约占体重的2/3,儿童体内的水分约占体重的4/5,照这样计算,小明体内有28kg的水分,和爸爸体内的水分差不多重了。可是小明的体重才是爸爸的7/15。
[点评: 设计有多余条件的问题, 让学生有目的地筛选, 使学生进一步理解应用题的结构和解题方法, 训练了学生整理信息、解决问题的能力。 ]
问题一:小明的体重是多少千克?
出示思考问题,学生先分小组进行讨论。
①小明的体重与什么数量有关系?有什么关系?
②应该把哪个量看做单位“1”, 为什么?
③单位“1”所表示的数已知吗?
④怎样求单位“1”所表示的这个数?你能列出关系式吗?讨论后汇报。
方法一:
分数除法教案 篇3
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:弄清单位1的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米X千克。x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的.人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。解:设航模小组有人。
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
教学追记:
本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。
分数除法教案 篇4
教学目标:
能力目标:
培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:
提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:解决实际问题。
教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的`量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
板书设计:
分数除法(三)
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
教学反思:
分数除法教案 篇5
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的` 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
分数除法教案 篇6
【教学内容】
《义务教育课程标准实验教科书数学》(人教版)六年制六年级上册第三单元《分数除法》的整理与复习
【单元主题分析】
本单元的概念比较多,尤其是比的初步认识这节中相似的概念较多,并且容易混淆,因此复习时要着重使学生弄清各个概念之间的联系和区别。计算是数学的基础,做题时掌握计算方法,培养良好的计算习惯。在做分数四则混合运算时,注意运算顺序,选择适合自己的方法计算,并通过交流了解其他算法。值得强调的是:掌握分数除法的计算方法,能正确进行计算,是学生必须掌握的一项技能,也是本单元的教学重点。但是,在计算过程中把除法转化为乘法,对学生来说是数学认识上的一次飞跃。另外,分数除法应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。。分析数量关系是解决实际问题的一个重要步骤。让学生知道分数应用题应该怎样想,学会思考的方法。还可以将它与比的应用进行对比,发现这两种题型是可以互相转化的。
【复习目标】
1、学生自主复习本单元的概念,进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。引导进一步理解分数除法和比的'意义、计算及应用。
2、通过梳理与沟通,让学生感悟相关知识的联系和区别。如分数乘除法解决问题,求比值、化简比,比和除法、分数之间的关系等。
3、培养学生良好的复习习惯。
【复习重点】
能比较熟练地进行分数除法、求比值以及化简比的计算;会正确地用方程或算术方法解答文字题。
【复习难点】
使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数除法应用题,提高学生解答分数应用题的能力.
【教具准备】
课件、练习纸
【复习过程】
一、回顾整理、汇报交流
师:昨天,老师布置同学们复习并整理分数除法这一单元,完成了吗?把你整理的内容先在小组内交流一下吧!
(生小组交流)
师:我选了几份有代表性的,想看看吗?
(学生汇报)
①简单列出本单元提纲 ②总结出个别重要的知识 ③虽然知识点零碎,但很全面
师:能把这么多零碎的知识全面的总结出来,看来你们很用心地对本单元进行了复习!可是,你们知道吗?复习不仅仅是回顾所学的知识,更重要的是找到知识间的联系,总结出学习方法,真正达到温故而知新!
二、练中梳理、沟通联系
师:请看(出示线段图) 什么图?仔细看,你能看明白什么?
生:b是单位“1”,分成了5份,a占了3份;a是b的 —理解的真好!
师:它可以用一个怎样的数量关系式来表示呢?
生:b× =a
师:你能把它改写成两个除法算式吗?
生:a÷b=
a÷ =b
师:为什么这样改?(积÷因数=因数)
所以说,分数除法的意义与整数除法相同,都是已知两个因数的积与一个因数,求另一个因数的运算。
师:想一想,两个数相除还可以用什么形式表示?
生:比。
师:什么是比?
师:那么a比b是 ?
生:a:b=
师: 是什么?(比值)
它还可以表示a与b的比是3:5
在a÷b= 这儿它是商
看来,比与分数以及除法之间,是有一定的联系的。有什么联系呢?
(生说,然后示课件)
有没有区别呢?(运算、数、关系)
师:既有密切的联系,又有本质的区别!
师:好了,下面看这儿 a÷ =b,如果a是2,你能算出b是多少吗?
(生计算)
师:说一说,怎么算的?
师:除以 ,算的时候变成了乘 ,依据什么?
分数除法的计算方法是什么?(生说)
乘除数的倒数,这样,就把分数除法的计算转化成了乘法。(示转化)
师:想一想,像这样,a是2,b是 , a与b的比还是( )吗?
(生有认为是,有的认为不是)
师:究竟是不是呢?(算算看)
生:(① 2÷ =2÷ =2× = )→这是求比值的方法,得到比值还是
师:②看看这种方法可以吗?2: =(2×3):( ×3)=6:10=3:5=
↓ ↓
为什么前项×3 后项也×3 ?
这是通过化简比,得出结果还是3:5
问:化简比依据是什么?
对比:谁能说一说:求比值与化简比有什么不同?
生:求比值可以用前项÷后项,是一个商,结果可以是小数,分数或整数。
而化简比是根据比的性质,化成最简整数比,结果必须写成比的形式。
师:其实,求比值的计算中,常常会用到分数除法的计算方法。
三、解决问题,提升方法
1、根据线段图提简单的分数除法问题
师:如果a是六年级女生有300人 ,你能提出什么问题呢?
生:六年级总数?
师:可以吗?还可以怎么提?(示题)会做吗?
生:300÷
师 为什么用除法?题目的关键是哪句话?
生:女生是男生的
师:根据条件,可以写出什么数量关系式?
生:(男生)× =300
师:现在知道为什么用除法了吗?
师:还可以用什么方法?
生: 〤=300
2、稍复杂的分数除法问题
师:如果把条件换一换:女生比男生少 怎么做呢?
(生做,然后汇报交流)
师:对比这两题,你有什么发现?
生:男生是单位“1”,未知 。
师:求单位“1”可以用什么方法?
生:可以用方程,也可以用除法。
师:用除法做是根据了除法的意义,而用方程相当于顺着题目的意思列式,把分数除法问题转化成分数乘法法问题 ,这样就简单了。
3、比的应用
师:我把题目全换一换(示投影),变成了什么问题?
生:比的问题
师:能直接列式吗?
生:列式解答
师:把比转化成分数
问:为什么不用方程?
生:单位“1”知道,是800人。
师:这种按比分配的问题,也转化成了求“一个数的几分之几是多少”的分数乘法问题。
小结:这样把知识联系起来,问题就简单多了,应用起来也更灵活了!
四、综合练习,自我检测
师:经过我们再次整理,就把本单元这些散落的知识点穿在了一起,形成一个知识网。找到了联系,明确了方法,老师这儿还有一份检测题,有信心完成吗?
(分发练习纸,根据完成情况反馈交流)
(分析错因,大多是计算出错)
小结:看来掌握方法固然重要,细心认真的学习习惯也很重要!
五、课堂小结
师:咱们六年级的同学,面临对小学六年所学知识的复习。希望今天这节课对你们以后的学习能有所帮助,有所启发!
附练习题
一、 填空
1、8:10= =40÷( )=( )(填小数)
2、20千克:0.2吨的比值是( ),最简整数比是( )。
二、计算
÷2 ÷
×8÷ ( ÷
三、应用
一本书的 是80页,已看的与未看的页数比是9:1。已经看了多少页?
分数除法教案 篇7
教学目标
1.使学生理解两个整数相除的商可以用分数来表示.
2.明确分数与除法的关系,加深学生对分数意义的理解.
教学重点
理解、归纳分数与除法的关系.
教学难点
用除法的意义理解分数的意义.
教学步骤
一、铺垫孕伏.
1.读题说得数.
3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02
7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37
2.口述表示的意义.
3.列式计算.
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知.
1.新课导入.
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)
2.教学例2.
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)
(2)学生完整叙述自己想的过程.
(3)反馈练习.
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3.教学例3.
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流.
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义.
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的'数是.
(5)都是,意义有何不同?(结合算式说出的两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份.
(6)反馈练习:说说下面分数的两种意义
4.归纳分数与除法的关系.
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习.
三、全课小结.
通过今天的学习,你明白了什么?
四、随堂练习.
1.填空.
分数可以用来表示除法算式的().其中分数的分子相当于(),分母相当于().
2.用分数表示下列各式的商.
4÷511÷1327÷35
9÷913÷1633÷29
3.列式计算.
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业.
用分数表示下面各式的商.
3÷47÷1216÷4925÷249÷9
分数除法教案 篇8
教学内容:
分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。
教学目标:
使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。
教学重点:
分数除以整数的计算方法 。
教学难点:
除转化为乘和道理。
教学过程:
一、 复习
1.口答下面各题的倒数。
2 、1、0.4
2.根据一个乘法算式写出两个除法算式。
3×15=45 125×8=1000
二、 新授
揭示课题:分数除法
1.分数除法的意义和计算法则
(1) 出示25页的月饼图。
(2) 引导学生回答问题
1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?
板书:×4=2 (块)
2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?
板书:2÷4=(块)
3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?
板书:2÷=4(人)
(3) 让学生观察比较(板书的)3个式子的`已知数和得数。
明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。
第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。
小结:分数除法的意义。
强调:分数除法的意义和整数除法的意义相同。
(4) 练习:教科书第25页"做一做。
2.分数除以整数的计算方法。
(1)出示例子:把米铁丝平均分成2段,每段长多少米?
(2)启发学生分析数量关系。(画线段图表示)
米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。
板书 解法1:÷2==(米)
使学生明白。
1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。
2)这种计算方法有限制条件的,分子必须能被整数整除。
还有其它的解法吗?
引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。
板书 解法2:÷2=×=(米)
(3) 小结:分数除以整数的计算方法。
板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。
强调。
1)被除数不变;
2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;
3)0不能做除数,0没有倒数;
4)这种计算方法在一般情况下都可以进行,应用普遍。
5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。
三、 巩固练习
练习七第1、3题。
四、 作业
练习七第2、4、5、6题
五、 课外思考
练习七第7题。
分数除法教案 篇9
【学习目标】
1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。
2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。
3、通过练习,培养计算能力及初步的逻辑思维能力。
【学习重难点】
1、重点是确定运算顺序再进行计算。
2、难点是明确混合运算的顺序。
【学习过程】
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;
如果既有加减法又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面
的.,最后算中括号外面的。
2、整数四则混合运算定律在分数四则运算中同样适用。
3、说出下面各题的运算顺序。
(1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4
(3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)
二、探索新知
1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。
A、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3
算出一共做了多少朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。
2、列出综合算式,想一想它的运算顺序,再独立计算。
______________________________________________________________
3、独立完成P34 “做一做”第1、2题
4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。
三、知识应用:独立完成练习九第1题,组长检查核对,提出质疑。
四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。
(1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342
五、总结梳理:回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)
【分数除法教案】相关文章:
分数除法教案11-17
分数除法教案02-23
《分数除法》教案02-23
《分数与除法 》教案03-08
分数与除法的教案03-05
《分数除法二》教案03-29
关于分数除法教案03-27
《分数与除法的关系》教案03-29
关于分数除法的教案03-15
分数除法教案(通用)10-14