有关可能性教案模板6篇
作为一名无私奉献的老师,通常需要用到教案来辅助教学,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!下面是小编为大家收集的可能性教案6篇,欢迎阅读与收藏。
可能性教案 篇1
[教学内容]
教材第94、95页的内容,第96页练习十八的第1、2题。
[教学目标]
1、使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
3、使学生在学习过程中乐意与他人交流自己的想法,并获得一些成功的体验。
[教学重点]
会用分数表示简单事件发生的可能性大小。
[教学难点]
理解并掌握用分数表示可能性大小的基本思考方法。
[教学过程]
一、谈话
你们知道我们国家的国球是什么吗?你知道哪些著名的乒乓球运动员?(电脑上显示著名乒乓球运动员的照片。)这些运动员通过努力为祖国争得了许多的荣誉,真了不起,我们要向他们学习。
大家都这么喜欢乒乓球这一运动,老师想考考大家对乒乓球比赛的规则是不是了解呢?(猜裁判把乒乓球放在左手还是右手,猜对的先发球;五局三胜;每球得分制;每局11分)
[教学设想:乒乓球是我们国家的国球,和学生交流相关的话题,往往可以激发学生的兴趣,学生乐于交流,这样一种良好的交流氛围也一定可以延伸到之后的教学活动中。在谈话的同时放一些相关的图片,学生在交流和欣赏的同时一定会产生自豪感的,同时进行了思想教育。]
二、新课教学
1、教学例1。
谈话:刚才我们讲到在乒乓球比赛中,通过猜裁判把乒乓球放在左手还是右手的方法来决定谁先发球。(出示场景图。)
你们认为这种用猜左右的方法决定由谁先发球的方法公平吗?(公平)你们有没有想过为什么这么做对双方运动员来讲都是公平的呢?能不能把你的`想法先和你同桌交流一下。
全班交流,形成共识:裁判员把1个乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在裁判的左手,也可能在裁判的右手,所以,有可能猜对,也可能猜错。也就是说猜对或猜错的可能性是一样的、相等的。
老师也要做一回裁判,请两位学生也来猜一猜,验证一下我们刚才讨论的结果。
[教学设想:先让学生通过讨论,让他们有自己的一些理解,再通过实际演示让学生更加直观地明白在这种情况下,猜对或猜错的可能性是一样的、相等的,所以是公平的。]
可能性教案 篇2
活动一:完成调查表
活动二:接力长跑
活动三:有奖游戏
教学内容:
教材P93《铺地砖》
教学目标:
l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。
2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。
3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。
4. 体会数学与生活的联系,感受数学的作用和价值。
教学重点:
运用多种知识解决问题。 合理地选择所需的'地砖,根据不同要求灵活解决问题。
教学难点 :
灵活运用面积计算的知识解决实际问题。
教学流程与设计
一、汇报课前调查情况,做好设计准备
师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?
师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)
二、联系实际,小组讨论计算。
1、出示卧室地面的平面图,并介绍地面的长和宽,分别是长5米,宽4米。
2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。
(估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)
50×50=2500(平方厘米)=0.25(平方米)
5×4=20(平方米)
20÷0.25=80(块)
80×8=640(元)
师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。
40×40=1600(平方厘米)=0.16(平方米)
5×4=20(平方米)
20÷0.16=125(块)
125×5=625(元)
通过计算用40*40地转铺地更省钱
三、活动小结,发散联想
师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?
板书设计:
估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)
50×50=2500(平方厘米)=0.25(平方米)
5×4=20(平方米)
20÷0.25=80(块)
80×8=640(元)
师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。
40×40=1600(平方厘米)=0.16(平方米)
5×4=20(平方米)
20÷0.16=125(块)
125×5=625(元)
通过计算用40*40地转铺地更省钱
可能性教案 篇3
教学目标:
进一步体会事情发生的不确定性,体会可能性的大小。并能用“一定”、“可能”、“不可能”等词来描述事情发生的可能性,获得初步的概率思想。
能力目标:
发展学生的语言表达能力和简单的推理、分析、判断能力,并能用所学知识解决生活中的实际问题。
情感目标:
培养学生的学习兴趣和良好的合作学习态度。在合作交流中培养学生团队精神,在自主探索中树立学生自信,在游戏活动中培养学生学习兴趣。
教学重点:
通过活动体验可能性并初步感受并判断可能性的大小。
教学难点:
通过活动体验可能性并初步感受并判断可能性的大小。
教学过程:
一、游戏引入,感受“一定、可能、不可能”。
老师这里有两张红桃,看看,一会我们玩游戏。我任意抽一张会是什么?谁来猜一猜?再看看。说说为什么?(都是红桃)
1、用两张红桃,感受抽出来的一定是红桃。不可能是黑桃
2、两张牌红桃及黑桃,得出可能是红桃也可能都是黑桃。为什么?板书:一定 不可能 可能
二、自主探究,初步感受可能性有大小
1、自己实验探索可能性的大小
同学们手里都有一个转盘, 小组合作,动手做转盘游戏。游戏规则:每人转一次,组长记录,红黄的次数。一种黄颜色多,一种红颜色少。说一说,哪种颜色的可能性大?看各组结果。如果有失误就加全班。得出结论黄颜色的可能性大。让学生说说原因。
总结理由:占的面积多的可能性大,面积少的可能性小。
教师总结:看来,可能性是有大,有小的。板书:大小
三、 通过各种练习进一步体会可能性的大小
1、初步感受可能性的大小及原因。
现在老师这里有一个同学们玩的游戏转盘,帮助老师猜猜他们最有可能玩的是哪一个。(1)判断:根据占的面积大小来判断,最有可能玩的是1号,因为面积大。
老师连线(2)看课件连线,1个。(1)从笼子里跑出兔子。看看会出来什么颜色的。一定不是白的、一定是白的、可能性大、一样。让孩子们先自己判断。然后交流。
重点是说理由。
2、探索有几种可能性,可能性大小。联系实际4个课件
(1)掷骰子、参观门票、摸球、圆珠笔、扑克牌与生活联系紧密的事情体会可能性的'大小。
教师:(1)色子是六个面,每个面是表示数字的点。想想有几种可能?.指名回答。(2)关于门票联系实际,说说几种可能?(3)摸球题,自己先看清楚每个盒子里有几个什么颜色的球?然后判断,填空。说明理由:什么颜色的多?可能性就大。(4)笔筒类似,比较简单。(5)审题:花色?红桃、黑桃、梅花都有可能,所以三种。红桃张数多,所以可能性大,梅花张数少,所以可能性小。
四、深化学习,联系生活,并且试着改变大小。
老师这里有一个特别有意思的动画,想看看吗?那就要认真看,还要认真思考,回答问题,能做到吗?
(1)动画:扑到那种可能性大?因为蓝蝴蝶很多,所以可能性大,黄蝴蝶只有一只,所以可能性小。演示。学生看,证实自己的答案。改变大小:怎样才能抓到更多的黄蝴蝶?多放几只。可能性就更大了。教师小结:想让谁的可能性大,就把谁多放进去一些。
现在同学们看看第四道题。你试着涂一涂。怎样才能符合要求。设计好了,再做。
(2)涂色;学生自己涂色,必须有三种颜色,而且红色必须最多。3个红色,2个黄色,2个绿色。4个红色,1个黄色,2个绿色,4个红色1个绿的,2个黄的。5个红色1个绿色,1个黄色。展示学生作品。
(3)设计转盘, 培养孩子思维能力。
五、这道题比较难,看看谁最聪明。
(1) 小组交流先说说怎样画,用铅笔把字写下了来,觉得合适了再画。看题目要求。
同学们,元旦快到了,班里准备搞一次抽奖活动分别设立一、二、三等奖。请同学们开动脑筋帮助老师设计一下转盘。
要求:三等奖最多,用黄颜色表示。
二等奖其次,用蓝颜色表示
一等奖最少,用红颜色表示。
(2)集体交流,展示 两种:1红2蓝5黄 1红3蓝4黄
六、总结归纳
今天我们知道了可能性有大有小,还简单的接触到可能性的大小是可以改变的。
可能性教案 篇4
教材说明
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
1.事件发生的可能性以及游戏规则的公平性。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的'体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
2.加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。
可能性教案 篇5
教学内容:
人教课标版教材三年级上册第八单元(P110—111)
教学目标:
1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。
2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。
3、巩固本单元知识。
教学过程:
一、情境引入,回顾再现
师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)
师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)
生1:张晨做丢手绢游戏的可能性大,因为……。
生2:……
生3:……
师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的练习。)
(设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的`解答,回忆再现新授课中有关的知识和方法。)
二、分层练习,强化提高
师:首先,看一看同学们能不能做一名合格的小法官。(出示)
1、基本练习
(1)我是小法官。(快速抢答,看谁说的又对又快。)
①一周有七天。()
②人的一生中一定要吃饭。()
③小明长大后一定能当飞行员。()
④下周一一定是阴天。()
(2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)
师:刚才同学们的表现真棒!下面我们来做个游戏好吗?
2、综合练习
(1)课本110页第8题。
师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。
①让生说一说掷出后可能出现的结果有哪些?
②猜测试验后的结果会有什么特点?
③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)
④说说从统计数据中发现了什么?
⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。
(设计意图:让学生亲自动手实践,使学生进一步感受事件发生的等可能性。)
(2)课本110页第9题。(出示主题图)
师:过元旦的时候,三一班用抽签的形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的一员,你最有可能表演什么节目?
生:我最有可能表演讲故事。
师:为什么?
生:因为讲故事的签比较多。
师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?
生:我觉得最有可能抽到唱歌,最不可能抽到跳舞。
(3)课本111页第10题。
师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)
①生猜。
②简单统计猜测情况。
③揭示结果。
④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)
师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?
可能性教案 篇6
教学内容:
教材P107—109
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知
1、教学例5
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数
黄
红
活动汇报、小结
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证
让学生初步感受到实验结果与理论概率之间的关系。
2、练习
P107“做一做”
3、小结
三、巩固练习
P1096
学生说说掷出后可能出现的结果有哪些
猜测实验后结果会有什么特点
实践、记录、统计
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的差异,也可能得不到预期的.结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
P1097
学生讨论完成
教学反思:
【可能性教案】相关文章:
可能性教案06-21
《可能性》教案03-18
《可能性》教案01-31
《统计与可能性》教案04-06
数学可能性教案04-09
精选可能性教案3篇05-14
《可能性》教案 15篇04-21
精选可能性教案四篇03-09
精选可能性教案六篇01-30
精选可能性教案三篇02-03