当前位置:育文网>教学文档>教案> 分数乘法教案

分数乘法教案

时间:2024-08-09 01:43:24 教案 我要投稿

有关分数乘法教案范文合集10篇

  作为一名老师,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。快来参考教案是怎么写的吧!下面是小编收集整理的分数乘法教案10篇,欢迎大家分享。

有关分数乘法教案范文合集10篇

分数乘法教案 篇1

  教学目标

  使学生理解分数乘分数的法则适用于分数和整数相乘,提高分数乘法计算的熟练程度。

  教学重难点

  用分数乘分数的法则计算分数和整数相乘。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 引入新课

  二、教学新课

  三、巩固练习。

  四、课堂小结

  五、作业

  1、在分数乘法里,我们学过哪几种情况的计算?

  2、把下面的数改写成分母是1的假分数。(口答)

  36813

  3、把下面的乘法算式改写成分数乘分数的形式。

  2/11×36×

  上面两题都是什么数和什么数相乘?

  怎样改写成分数乘分数的.形式?

  为什么可以这样改写?这就把分数和整数相乘改写成了怎样的数相乘?

  1、统一法则

  由于整数可以看成分母是1的分数,所以分数和整数相乘就可以改写成分数乘分数,按分数乘分数的法则来计算。这就是说,分数乘分数的计算法则,也适用于分数和整数相乘。

  2、引导计算

  把这里的两道分数和整数相乘的题按分数乘分数的法则计算出结果。

  说说为什么?

  3、教学约分方法

  分数乘法计算时,为了简便,还可以直接约分。

  看课本10页上的计算。

  说说是怎样直接约分的?

  1、练一练上下练习

  2、练习二7说出错误和改正的方法。

  3、练习二8

  前2题:每组里哪几题可以直接约分,那些不能,并说明理由。

  后2题:说说有什么不同的地方,并口算出结果。

  4、练习二9口算

  5、练习二11自己练习,说说想法

  练习二10

  板书约分、计算过程。

  课后感受

  由于前面的基础较好,学生学起来挺轻松,但计算方面还有待加强。

分数乘法教案 篇2

  教学内容:第45页例题4、5

  教学目标:

  1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

  2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  教学重点、难点:

  分数乘分数的计算法则。

  对策:

  使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

  一、 复习

  1、计算下列各式

  1/15╳5= 2╳2/3 = 7/8 ╳14= 15/6 ╳24=

  2、说说整数与分数相乘的计算方法?先约分再计算还是先计算再约分方便?

  二、 新授

  1、出示例题4题目和图。

  2、理解题目意思。

  3、你知道左边图中画斜线的部分占1/2的几分之几?是这张纸的几分之几?你是怎样想的?

  4、右边呢?

  5、你能看图用算式来表示结果吗?填在书上。组织交流。

  6、总结:求一个分数的几分之几是多少,也可以用乘法计算。

  7、探究:观察这两个算式,猜才分数与分数相乘是怎样计算的?

  学生说出自己的猜想。

  验证猜想,教学例题5。

  (1)出示例题5

  (2)在图中画斜线表示计算结果,再填空。

  (3)组织交流:你发现积的分子、分母与两个因数的分子、分母各有什么关系?

  (4)总结得出:分数与分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

  三、巩固

  1、出示 1/42/3 8/93/4

  2、学生独立完成,指名板演

  3、可能出现两种:先乘再约分 或先约分再相乘

  引导学生比较这两种方法谁更好?如果是24/7755/8呢?再次体会到先约分再计算比较简便。

  4、介绍简便书写格式,发现可以在算式上直接约分,再计算,提高速度。

  四、比较

  出示2/113和45/6,先计算,再比较,分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

  所以不管上分数乘整数还是分数,都可以看作是分数乘分数的计算方法来计算。

  五、巩固提高

  您现在正在阅读的苏教版《分数乘法》第四课时教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《分数乘法》第四课时教学设计1、第46页上的练一练

  先独立计算在书上,指名板演,再组织交流。

  2、第48页上的第1题

  读题先在图中表示出来,再列式计算。组织交流想法。

  3、第48页上的第3题

  先独立判断,将不对的改正过来。组织交流:是否正确?错在哪里?怎样改?最后是多少?

  4、第48页上的第4题

  先独立计算,再组织交流:上下两题有什么相同的地方?结果怎样?

  六、布置作业: 练习九 2、5

  课前思考:

  教学例4和例5时,我想如果借助投影仪依次呈现长方形图,可能会对学生思考问题有帮助,特别是对于一些学习困难生来说,这样便于他们直观地看出所求部分占了这张纸的几分之几。当然,最后还是要让学生从直观图中抽象出本质的东西,即认识到分数与分数相乘的计算方法。

  在试一试的教学中,要分三个层次进行。第一层次是计算分数乘分数时用先约分再计算的方法;第二层次尝试用分数乘分数的方法计算分数乘整数;第三层次学习直接在题中约分的方法来计算分数乘法。估计这么多的计算方法一下子呈现在学生面前,会使一部分学生不知所措。课中教师要多关注学生学习情况,及时调整教学行为。

  课前思考:

  例4的教学可分三步进行,第一,看图理解1/2的1/4和1/2的3/4表示的意义,联系图弄清分别是这张纸的几分之几。第二,进一步明确求1/2的1/4或1/2的3/4是多少,也可以用乘法。第三,前两步的思考过程完成教材上的填空,建立关于分数乘分数计算方法的初步猜想。

  例5可以根据例4的猜想,算出算式的积,再通过画图验证。教学时让学生观察比较几个算式的因数和积,通过交流归纳出分数乘分数的计算方法。

  在介绍简便书写格式,发现可以在算式上直接约分再计算,学生可能在整数乘分数时会把整数同分子约分,教学时要进行强调。

  课后反思:

  本节课在教学时,我借助直观的图形,不仅让学生掌握分数与分数相乘的计算方法,更重要的是让学生理解分数乘分数的含义。并在例题教学之后增加了一个画一画环节----(1)教师写一个分数乘分数的算式,让一个学生上黑板画图表示算式的意义,要求边画边说为什么怎样画;(2)再写一个分数乘分数的`算式,让全体学生独立画图表示,再同桌交流,最后指名交流。这样学生对分数乘分数的意义有了更深的认识。

  在第48页第4题练习时,加强了分数乘法与分数加法的对比,强化计算方法区别,防止学生对两种计算出现混淆。

  课后反思:

  反思本节课的教学,在例4的教学中由于要借助直观图来思考1/2的1/4和1/2的3/4是这张纸的几分之几,所以忽略了指导学生理解1/2的1/4和1/2的3/4所表示的意义,这是今天这节课上的一处败笔。因为对于分数乘分数的计算方法的推导和理解、运用,对于学生来说反而不存在太大的问题。

  从学生作业情况来看,遇到整数乘分数时,往往出现错误,分析原因是计算时不会把整数改写成分母是1的分母来计算,出现分子和分子约分的现象;还有些学生约分时仍存在错误,这样就造成乘法计算错误。

  估计明天的课上计算分数连乘时问题会更多,教学时要思考对策。

  课后反思:

  通过教学,学生能理解分数乘分数的意义,掌握分数乘分数的计算方法,并通过学习分数乘分数的计算方法适用于分数与整数相乘,体会数学知识的内在联系,感受数学知识和方法的应用价值。

  对于能约分的可以直接在题目上约,课堂上进行了讲解和示范,但在做作业时考虑到有部分学生约分时容易出错,我还是让学生写出了分母和分母相乘,分子和分子相乘的那一步,再约分,最后计算。从作业的反馈情况来看学生的计算的正确率也比较高

分数乘法教案 篇3

  设计说明

  本节课是在学生学习了分数乘法的意义和计算方法的基础上进行教学的。围绕教学重点,以探究为主线设计教学过程,通过观察、对比、讨论、交流来理解分数乘法的意义,探究分数乘法的计算方法。本节教学在设计上主要有以下两个特点:

  1.重视数形结合在学习中的作用。

  数形结合是学生获取数学知识的有效手段之一,它能促进学生对抽象数学知识的理解。上课伊始,就充分地调动了学生动手操作的积极性,通过画图的'方式初步感知一个数的几分之几是多少;在新课的教学中,再次利用数形结合的方法,帮助学生在自主探索和合作交流的过程中理解分数乘法的意义并获得广泛的数学活动经验。

  2.注重从不同的问题情境中引导学生从不同的角度理解分数乘法的意义。

  在教学过程中从生活情境中提出不同的问题,引导学生根据已有的知识经验或画图法去解决问题,从中理解分数乘法的意义。

  课前准备

  教师准备 PPT课件

  学生准备 圆形卡片

  教学过程

  第1课时 求一个数的几分之几是多少

  ⊙创设情境,激趣导入

  1.动手操作。

  (1)你能从桌面上的12根小棒中拿出它的吗?呢?

  (2)说一说你是怎么想的。

  2.引导发现。

  从刚才的操作中,你发现了什么?

  3.交代学习目标。求一个数的几分之几是多少。

  设计意图:通过动手操作,使学生初步感知分数乘整数的意义,为理解整数乘分数的意义作铺垫。

  ⊙类比推理,明确意义

  1.获取信息,提出问题。

  课件出示问题:奇思早上吃了6块饼干,笑笑吃的饼干数是奇思的,淘气吃的饼干数是奇思的。

  (1)从题中你获得了哪些数学信息?

  (2)你能提出哪些数学问题?

  预设

  ①笑笑吃了多少块饼干?

  ②淘气吃了多少块饼干?

  ……

  2.分析、解决问题。

  (1)讨论解题策略。

  师:要求笑笑吃了多少块饼干,这道题应该如何解答呢?请大家在小组内讨论、交流一下。

  (学生独立思考,小组交流)

  (2)学生试做。

  (指导学生通过画图的方法帮助思考)

  (3)汇报,并说出思考过程和解答方法。

  方法一

  生:笑笑吃的饼干数是奇思的,也就是说把奇思吃的6块饼干看作单位“1”,再把单位“1”平均分成2份,其中的1份是笑笑吃的饼干数。

  师:说得真好!把6块饼干看作一个整体,6块饼干的是3块饼干。

  方法二

  生:把每块饼干都分成2个,6块饼干的就相当于6个,也就是3块饼干。

  师:这也是一个很好的方法。我们知道了6块饼干的是3块饼干。

  师:那么这道题应该如何列式计算呢?(6个列式为6×)

  设计意图:引导学生借助“画图”的方法来理解数学问题,得到解决数学问题的策略的方法,渗透了数形结合思想,让学生通过实践得出“画图”是一种很好的解决问题的方法。

  3.拓展分数乘整数的意义。

  师:综合以上两种方法,你们有什么发现?

分数乘法教案 篇4

  重点:

  1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

  2.渗透对应思想。

  难点:

  1.理解这类应用题的解题方法。

  2.用线段图表示分数应用题的数量关系。

  教学过程:

  一、复习、质疑、引新

  1.说出、、米的意义。

  2.列式计算:

  20的是多少?6的是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的'新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

  二、探索、质疑、悟理

  1.出示例1(也可以结合学生的实际自编)

  学校买来100千克白菜,吃了,吃了多少千克?

  ①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

  ②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。

  ③画图:(课件一演示)补:把100千克当做什么?(单位1)

  画图说明:

  a.量在下,率在上,先画单位1

  b.十份以里分份,十份以上画示意图。

  C.画图用尺子,用铅笔。

  ④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

  学生可能会出现下面解答方法:

  解法一:用自己学过的整数乘法做

  (千克)

  解法二:(千克)

  在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

  ⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

  2.巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?

  订正时候强调1)把哪个数量看作单位1?

  2)为什么用乘法计算?

  3.学习例2

  例2小林身高米,小强身高是小林的,小强身高多少米?

  在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

  (课件二演示)

  先画单位1

  再画单位1的几分之几

  画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

  在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

  列式:(米)

  答:小强身高米。

  4.改变例2

  改变例2的条件和问题成为下题(可让学生完成)。

  小强身高米,小林身高是小强的倍,小林身高多少米?

  改编后,可让学生独立画图完成。

  (米)

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

  四、训练、深化

  1.先分析数量关系,再列式解答

  ①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

  ②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

  2.提高题

  ①一桶油400千克,用去,用去多少千克?还剩多少千克?

  ②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

  五、课后作业:练习五1、2、3

  六、板书设计:

  分数乘法应用题

  100==80(千克)

  答:吃了80千克。

  (米)

  答:小强身高是米。

分数乘法教案 篇5

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“

  个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果

  3.比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

  生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为

  提出质疑:3个

  相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个

  相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

  (二)分数乘整数的计算方法

  1.不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,

  的计算过程用式子该如何表示?预设:

  生1:按照加法计算

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

  2.归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的.积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

  二、巩固练习,强化新知

  1.例1“做一做”第1题

  师:说出你的思考过程。

  2.例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的

  是多少。”

  (3)出示第2小题学生自练。引导说出:“12×

  表示求12 L的

  是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的

  ,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的

  是多少。”

  2.比较两种意义

  出示:一袋面包重

  千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

  五、联系实际,灵活运用

  1.算式

  可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了

  ,用去了多少吨?

  (2)一堆煤有

  吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3.拓展练习

  1只树袋熊一天大约吃

  kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2.谁会用含有字母的式子表示分数乘整数的计算方法?

  【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

分数乘法教案 篇6

  教学目标

  1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

  2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

  教学重点和难点

  1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

  2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

  教学过程

  (一)复习准备

  1.谈话、提问。

  我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

  为什么呢?

  分5份后取其中的2份是多少。)

  当一个数乘以分数时求的是什么?

  (一个数乘以分数就是求这个数的几分之几是多少。)

  2.口述下列算式的意义。

  求一个数的.几分之几是多少怎样列式呢?

  3.列式。

  (二)学习新课

  1.出示例1。

  2.分析题意。

  (1)读题,找出已知条件和所求问题。

  (2)分析已知条件。

  ①谈话提问:

  题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

  那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

  ③汇报讨论结果。

  均分成5份,吃了的占其中的4份。)

  ④那么我们应把谁看作单位1?(100千克)

  ⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

  3.列式解答。

  (1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

  10054=80(千克)

  1005求的是什么?再乘以4呢?

  (2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

  所以把谁看作单位1?(100千克)

  根据一个数乘以分数的意义应怎样列式?

  答:吃了80千克。

  4.课堂练习。

  队的有多少人?

  (1)读题,找出已知条件和问题。

  (3)请你们以小组为单位进行分析,并画出线段图,解答出来。

  (4)反馈。

  说一说你们小组的分析思路及解答方法。

  是多少。)

  5.小结。

  刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?

  (分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)

  6.下面我们来看这样一道题,看看它与上面的题有什么不同?

  (1)出示例2。

  (2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

  (3)分析、画图。

  ①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)

  ②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

  ③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

  (4)看图列式。

  少。)

  ②怎样列式解答?

  7.改动上题,你能独立分析吗?

  米?

  (2)画图分析解答。

  (3)提问反馈:

  ①把谁看作单位1?

  ②小林身高怎样用线段图表示?

  ③求小林身高就是求什么?

  求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

  (三)课堂总结

  例1、例2有什么相同点和不同点?

  (四)巩固反馈

  (画图,解答)

  球价格多少元?

  3.对比练习:

  少元?

  (五)布置作业

  20页第1~5题。

  课堂教学设计说明

  本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

  例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

  例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

分数乘法教案 篇7

  【教材简析】

  本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

  例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

  【教学目标】

  1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

  2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

  【教学过程】

  一、谈话引入:

  同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

  时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

  评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

  二、探索新知:

  1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

  2、反馈。

  学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

  3、以图促思。(媒体出示线段图。)

  4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的`部分吗?

  5、学生操作:

  学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

  6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

  7、列式解答。指名一生板演,其余学生在书上完成。

  8、集体批改。(对解题正确的学生进行鼓励。)

  9、探讨其它算法。

  设问:想一想,还可以怎样算?

  如果有学生想出行如A(1-N/M)的式子,要给以表扬,但不要求学生都去掌握。

  评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的解决问题的知识和经验,更有利于学生学习能力的培养。

  三、巩固深化

  1、完成练一练第1题

  (1)弄清题意。(媒体出示题目,让学生仔细阅读。)

  (2)谈话:要求还剩多少页没有看,可以先算出什么?

  (3)学生独立分析并解答。

  (4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

  2、完成练一练第2题

  (1)引导学生弄清题意。

  (2)让学生独立解答。

  (3)组内交流评议。

  3、完成练习十六第1、2题

  (1)指名两位学生板演,其余在自备本上完成。

  (2)组织交流。

  (3)集体反馈,重点让学生说一说解题时先算什么?

  评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

  四、总结回顾。

  1、通过今天的学习,你又有什么收获?

  2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

  评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

分数乘法教案 篇8

  一、教学目标:

  1、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。

  2、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  二、重点难点:

  学生能够熟练的计算出整数乘以不同分数的结果。

  三、教学方法:

  师生共同归纳和推理。

  四、教学准备:

  教学参考书、教科书。

  五、教学过程:

  (一)复习导入。

  教师出示教学板书,请学生计算下列分数加减运算题。

  1、教师:来回巡视学生的`做题情况,并提问学生说说每一道算式的意义。

  2、学生寻找完毕,纷纷举手准备回答问题。

  3、教师提问学生回答问题,并注意更正学生的错误和表扬回答问题的同学。

  (二)课堂练习。

  学生做第1题,教师注意让学生对比好门和小明的高度,并注意进行长度单位的换算。

  学生做第2题,教师注意提醒学生及时约分化成最简分数。并同桌之间相互说说每个算式的数学意义。

  学生做第3题,教师巡视学生做题情况,并及时对有困难得学生进行帮助。

  学生做第4题,教师注意让学生能够区分最少和最多这个数字范围,并提问学生说说自己的答案。

  (三)课堂小结。

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  480 180(千克) 180=150(千克)

分数乘法教案 篇9

  教学目标

  1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

  2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

  教学重点和难点

  1.正确分析关键句,找准单位1。

  2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。

  教学过程

  (一)复习准备

  1.口算,并口述第二组算式的意义。

  2.列式。

  这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

  这里的b,a,x就是什么?(单位1)

  3.找出下列各句子中的单位1,再说明另一个数量与单位1的关系。

  提问:(3)题中怎样求甲?(4)题中怎样求乙?

  今天我们继续学习分数乘法应用题。

  (二)讲授新课

  1.出示例3。

  2.理解题意,画出线段图。

  (1)读题,找出已知条件和所求问题。

  (2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的

  (3)分组讨论这两个已知条件应怎样理解。

  (4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

  18元看作单位1,平均分成6份,小华储蓄的钱数相当于这样的5份。

  师板演:

  数看作单位1,平均分成3份,小新储蓄的钱数相当于这样的2份。

  所以小新储蓄的钱数是以谁为单位1?(以小华储蓄的钱数为单位1。)

  怎样用线段表示小新的钱数?

  生口述,师继续板演:

  (把小华储蓄的钱数平均分成3份,小新储蓄的钱数相当于这样的2份。)

  求什么?(小新的钱数)

  3.分析数量关系,列式解答。

  (1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

  必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

  因此这道题要分两步解答。

  根据哪两个条件能求出小华的钱数?

  求出小华的钱数,又怎样求小新的钱数?

  (2)以小组为单位共同完成列式解答。

  (3)口述列式,并说明理由。

  求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

  求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

  (4)你能列综合算式解答吗?

  答:小新储蓄了10元。

  (三)巩固反馈

  1.出示做一做。

  小明有多少枚邮票?

  (1)读题,找出已知条件和问题。

  (2)请你确定从哪些条件入手分析。

  (3)小组讨论:分析已知条件并画线段图。

  (4)反馈:请代表分析,并出示该小组的线段图。

  作单位1,平均分成6份,小新的邮票数量是这样的5份。

  均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

  应先求什么?再求什么?

  (6)列式解答,做在练习本上。

  2.出示21页的9题。

  要求学生独立画图,分析解答。再互查。

  3.变换条件和问题进行对比练习。

  (1)找出已知条件中的相同处和不同处。

  (2)画图分析并列式解答。

  4.选择正确列式。(小组讨论完成)

  第二天看了多少页?

  (四)布置作业

  课本20页第6题,21页第10,12题。

  课堂教学设计说明

  解答分数应用题的.关键是弄清题中的数量关系,谁和谁比,把谁看作单位1,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

  这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位1的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

  教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法教案 篇10

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的.几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

【分数乘法教案】相关文章:

分数乘法教案01-17

《分数乘法》教案06-08

分数乘法的教案02-28

分数乘法教案05-18

关于分数乘法教案05-18

(实用)分数乘法教案05-24

分数乘法教案优秀12-11

分数乘法教案最新11-26

关于分数乘法的教案03-31

分数乘法教案[优]11-02