- 相关推荐
关于分数乘法教案模板汇总5篇
作为一名人民教师,往往需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。怎样写教案才更能起到其作用呢?以下是小编整理的分数乘法教案5篇,希望对大家有所帮助。
分数乘法教案 篇1
教学重点:
1、掌握两步分数应用题的解题思路和方法。
2、画线段图分析应用题的能力。
教学难点:
渗透对应思想。
教学过程:
一、复习、质疑、引新
1.指出下面分率句中谁是单位1(课件一)
①乙是甲的;
②小红的身高是小明的
③参加合唱队的同学占全班同学的;
④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。
2.口头分析并列式解答
①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?
②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?
3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。
二、探索、悟理
1.出示组编的例题
例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?
学生审题后,教师可提出如下问题让学生思考讨论。
①小华储蓄的钱是小亮的,是什么意思?谁是单位1?
②小新储蓄的是小华的,又是什么意思?谁是单位1?
思考后,可以让学生试着把图画出来。
(演示课件)
然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的',把小华的钱看作单位1,再标出小新的储蓄钱:。
由此基础上试列综合算式:
2.做一做
小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?
1)可先让学生一起分析数量关系,然后独立画图并列式解答。
请一名中等学生板演。
(张)
(张)
答:小明有40张。
③你能列综合算式吗?
三、归纳、明理
1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。
①认真读题弄清条件和问题
②确定单位1找准数量关系
根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。
③列式解答
板书为:抓住分率句,找准单位1,
画图来分析,列式不用急。
2.质疑问难
四、训练、深化
1.联想练习根据下面的每句话,你能想到什么?
①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)
②修了全长的
③现在的售价比原来降低了
2.先口头分析数量关系,再列式解答。
①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?
②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?
3.提高题。
六、板书设计
分数乘法应用题
小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?
分数乘法教案 篇2
教学内容:
练习一
教学目标:
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。
教学方法:
师生共同归纳和推理
教学准备:
教学参考书、教科书
教学过程:
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?这些分数乘法运算有什么不同?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)
二、课堂练习
学生做第8题,让学生明白商场打折的意思,分别求出一个整数的几分之几是多少?如: =?
学生做第9题,注意让学生用分数乘以整数的.知识求出梨、苹果、香蕉各占水果总数的多少?
学生做第10题,让学生计算一个分数的几分之几是多少?注意提醒学生及时约分。
学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。
学生做第12题,教师注意让学生观察统计图表,求出20xx年比20xx年增加多少元?
学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。
学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
练习二
15 10(米) 15-10=5(米)
分数乘法教案 篇3
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“
个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果
3.比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为
提出质疑:3个
相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个
相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。
(二)分数乘整数的计算方法
1.不同方法呈现和比较
师:刚才的'第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,
的计算过程用式子该如何表示?预设:
生1:按照加法计算
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个
2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。
二、巩固练习,强化新知
1.例1“做一做”第1题
师:说出你的思考过程。
2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。
预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)
交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的
是多少。”
(3)出示第2小题学生自练。引导说出:“12×
表示求12 L的
是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)
归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的
,吃了多少千克?
师:你能说说这个算式表示的意义吗?“求3千克的
是多少。”
2.比较两种意义
出示:一袋面包重
千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。
引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。
师:那么,它们有什么是相同的呢?(计算方法和结果)
【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。
五、联系实际,灵活运用
1.算式
可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了
,用去了多少吨?
(2)一堆煤有
吨,5堆这样的煤有多少吨?
你能编写出类似的问题并加以解决吗?
3.拓展练习
1只树袋熊一天大约吃
kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
2.谁会用含有字母的式子表示分数乘整数的计算方法?
【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。
分数乘法教案 篇4
教学目标
知识与技能
结合具体情境理解一个数乘分数的意义就是“求一个数的几分之几是多少”。
过程与方法
通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
情感态度与价值观
通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点 理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点 推导算理,总结法则。
教法与学法 直观演示法
教学准备及手段 根据例题制作的挂图、投影片或多媒体课件。
教学内容:
教材第3页及相关教学内容”
教学过程:
一、复习导入
1、计算下列各题并说出计算方法。
×4 ×4 ×14×
2、引入:这节课我们来继续学习分数乘法的问题。(板书课题)
二、探索新知
(一)一个数乘分数的意义
1.投影出示例题2。
(1)问题一:3桶水共多少升?
指名列出算式:12×3。
提问:你是怎么想的?
启发学生得出:求“3桶水共多少升?”就是求3个12L,也就是求12L的3倍是多少。(2)问题二:桶水共多少升?
指名列出算式:12×。
提问:根据什么列示的?
启发学生思考:桶就是半桶,求桶是多少升?就是求12L的一半是多少,也就是求12L的是多少。
(3)问题三:桶水共多少升?
指名列出算式:12×。
提问:你是怎么想的?
启发学生思考:求桶是多少?就是求12L的是多少。
2.结合上面的几个问题,你知道“12×”和“12×”这两个算式表示的意义分别是什么吗?
12×表示12L的是多少:12×表示12L的是多少。
3.总结:一个数乘分数的意义。
一个数乘几分之几表示的是求这个数的几分之几是多少。
4.完成教材第3页“做一做”。
引导:这道题求吃了多少千克,也就是求3千克的是多少千克。
(二)分数乘分数的计算方法。
投影出示例题3。
李伯伯家有一块公顷的地。种土豆的面积占这块地的,种玉米的面积占。
1.问题一:种土豆的面积是多少公顷?
(1)提问:求“种土豆的面积是多少公顷?”实际上就是求什么?怎样列示呢?
(实际上就是求公顷的是多少公顷,列示是:×。)
(2)探究×的计算方法。
①让学生拿出准备好的一张正方形纸表示一公顷,先画出它的,表示公顷。
②再涂出公顷的。
引导理解:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。
③观察交流。
观察手中的长方形纸,想一想,公顷的是多少公顷,你是怎么想的?
先让学生在小组内交流,在组织全班交流。
通过交流得出:求公顷的是多少公顷,就是把公顷平均分成5分,取其中的1份。也就是把1公顷平均分成(2×5)份,取其中的1份,即×1==。
板书:×===(公顷)
2.问题二:种玉米的面积是多少公顷?
⑴学生独立列出算式:×
⑵提问:“×”等于多少呢?你能用颜色表示的`吗?
⑶学生动手操作,交流计算方法和思路。
与前面一样,也是把这张纸平均分成(2×5)份,不同的是要取其中的3份,可以得到:×===(公顷)
3.分数乘分数的计算方法。
先小组讨论,再汇报交流。
计算法则:分数乘分数,用分子相乘的积作分子,用分母相乘的积分母。(板书)
三、巩固练习。
1.教材第4页“做一做”第1题。
这道题是有关一个数乘分数的意义的练习。
组织练习时,可以先让学生独立阅读理解,在教材上填一填。再指名汇报,并让学生说一说是怎么想的。
2.教材第5页“做一做”第2题。
这是一道看图计算的练习,皆在通过练习,培养学生的观察能力,加深对分数乘分数计算方法的理解。
组织练习时,可以先让学生看图填一填,再让学生说一说思考过程。
3.教材第5页“做一做”第3题。
这道题是运用所学的分数乘法计算知识解决实际问题,在加深对一个数乘分数的意义理解的同时,又可以巩固整数乘分数的计算方法。
4.教材第6页“练习一”第4、5题。
先学生独立计算,并让学生说一说是怎么想的。
四、全课小结。
作业设计 练习二第3、4题。
板书设计 分数乘法
12×3
想:求3个12L,也就是求
12L的3倍是多少。⑴种土豆的面积是多少公顷?
12××===(公顷)
想:求12L的一半,就是求⑵种玉米的面积是多少公顷?
12L的是多少。×===(公顷)
12×分数乘分数,用分子相乘的积作分子,
想:求12L的是多少。用分母相乘的积作分母。
分数乘法教案 篇5
教学目标:
1、使学生理解分数乘整数的意义和整数乘法的意义相同,并掌握分数乘整数的计算法则,正确运用法则进行计算。
2、通过引导学生进行比较、归纳,培养学生迁移类推的能力和初步概括能力。
3、在探究活动中激发学生学习数学的兴趣。
教学重点:分数乘整数的意义和计算法则。
教学难点:为了计算简便,能约分的要先约分,然后再相乘。
教学过程:
一、复习导入
1、填空。
(1)8+8+8=()()
(2)54=()+()+()+()
(3)5个12是多少?列式为()
乘法的意义是什么?
2、计算。
二、引导探索,展示反馈
1、揭示课题。
今天开始我们学习分数乘法。首先学习分数乘整数。
2、分数乘整数的意义。
(1)出示P8例1。
(2)表示什么意义?
(3)的分数单位是多少?有几个这样的分数单位?
(4)人走3步的距离是袋鼠跳一下的几分之几?就是求什么?
(5)3个相加的和是多少?怎样列式?
(6)++,这3个加数有什么特点?还可以怎样列式比较简便?
(7)3表示什么意思?
(8)把3和125的意义相比较,引导学生归纳本部门分数乘整数的意义与整数乘法的'意义相同。
3、分数乘整数的计算法则。
(1)用加法算:
(2)用乘法算:
(3)引导学生归纳:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
4、教学例2:6
学生试做,强调为了计算简便,能约分的要先约分,然后再乘。
5、尝试练习:P9做一做第1题。
三、巩固深化,拓展思维
1、P9做一做第2、3题。
2、小结:这节课学习了什么内容?分数乘整数的意义是什么?分数乘整数的计算方法是怎样的?计算时要注意些什么?
3、课堂练习:P12练习二第1、2、4题。
4、课外补充,拓展延伸
(1)、一种稻谷每千克能出大米千克,100千克稻谷能出大米多少千克?
(2)、甲、乙两袋橘子,如果从甲袋中拿出千克橘子放入乙袋,则两袋橘子一样重。原来甲袋橘子比乙袋橘子重多少千克?