当前位置:育文网>教学文档>教案> 分数乘法教案

分数乘法教案

时间:2023-04-17 13:12:52 教案 我要投稿

有关分数乘法教案集锦十篇

  作为一名老师,常常需要准备教案,借助教案可以更好地组织教学活动。那么应当如何写教案呢?下面是小编收集整理的分数乘法教案10篇,欢迎大家借鉴与参考,希望对大家有所帮助。

有关分数乘法教案集锦十篇

分数乘法教案 篇1

  教学目标:

  1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

  2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算法则。

  教学难点:

  分数乘整数的计算方法以及算法的优化。

  教学方法:

  自主合作探究。

  教具准备:

  多媒体

  教学过程:

  一、复习引入

  1.同学们,我们已经学会了分数的加法和减法,下面口算。

  2.今天我们来学习分数乘法。板书

  谁能编一道分数乘法算式(择几道板书黑板一侧)

  分数乘法有很多,今天先研究其中一种:分数乘整数。

  看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

  二、探究

  1.理解意义。

  出示例题1:做一朵绸花用 米绸带。

  (1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

  课件: + + =(米)

  (2)小华做7朵这样的绸花,一共用了几分之几米绸带?

  课件: + + + + + + =(米)

  (3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

  + + + + + + + + + + + + + + =?

  这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

  导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

  板书: ×3= 7×= ×15=

  谁能说说 ×3表示什么意思?7×呢?

  前面大家所说的'(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

  2.探究算法。

  现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

  ×3= =

  ×3=++=

  ……

  交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

  练习:×7,与原来加法结果比较,完全正确。

  谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

  继续研究:×30

  提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

  指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

  讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

  练习:先判断可不可以约分?怎样约分?

  总结注意事项:能约分的先约分再乘。

  三、练习

  填一填:练习第一、二题。

  算一算:完成3第三、七题。

  四、总结

  本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

  五、作业

  练习八第2题、第4题。

分数乘法教案 篇2

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“

  个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果

  3.比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

  生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为

  提出质疑:3个

  相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个

  相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的'方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

  (二)分数乘整数的计算方法

  1.不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,

  的计算过程用式子该如何表示?预设:

  生1:按照加法计算

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

  2.归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

  二、巩固练习,强化新知

  1.例1“做一做”第1题

  师:说出你的思考过程。

  2.例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的

  是多少。”

  (3)出示第2小题学生自练。引导说出:“12×

  表示求12 L的

  是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的

  ,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的

  是多少。”

  2.比较两种意义

  出示:一袋面包重

  千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

  五、联系实际,灵活运用

  1.算式

  可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了

  ,用去了多少吨?

  (2)一堆煤有

  吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3.拓展练习

  1只树袋熊一天大约吃

  kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2.谁会用含有字母的式子表示分数乘整数的计算方法?

  【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

分数乘法教案 篇3

  教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等。小学生分数乘法的数学教案,我们来看看。

  教具、学具准备

  1. 根据例题制作的挂图、投影片或多媒体课件。

  2. 每个学生准备一张长15 cm、宽10 cm的长方形纸。

  教学过程

  一、创设情境引入新课

  教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

  出示粉刷墙壁的画面,给出条件:每小时粉刷这面墙的1/5。

  师:能提出什么问题?

  学生提问题,教师板书。

  以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

  师:怎样列式?(板书1/5×4)

  师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

  让学生计算,并说说怎样计算。

  师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

  学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

  师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

  板书课题:分数乘分数

  二、操作探究计算算理

  1?笔合旅嫖颐抢刺教址质?乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

  学生操作。

  学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

  师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

  小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

  学生自己涂色。

  师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

  师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

  学生讨论交流汇报。

  教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的`1/20。由此可以得到(板书)。

  三、迁移延伸,归纳法则

  提出问题:3/4小时粉刷这面墙的几分之几?

  师:“3/4小时粉刷这面墙的几分之几?”是求什么?(1/5的3/4是多少?)

  小组讨论并操作:怎样列式?涂色表示15的34。怎样计算?

  交流计算方法和思路:与前面一样,也是把这张纸分成5×4份,不同的是取其中的3份,可以得到(板书)

  根据板书的两个计算算式讨论归纳计算方法。

  通过学生讨论交流得到:分数乘分数,用分子乘分子,分母乘分母。

  四、反馈提高,巩固计算

  出示例4,读题。

  师:怎样列式?依据什么列式?

  由学生讨论得到:根据“速度×时间=路程”,列出3/10×2/3。

  让学生独立计算。通过请学生在黑板演算或用投影展示学生的演算过程及结果交流计算情况,强调能约分的要先约分再乘,这样可以使计算简便。并结合学生的演算情况说明约分的书写格式。

  课堂总结:今天我们学习了什么?分数乘分数怎样计算?

  学生独立完成“做一做”。

  教学目标

  1. 通过操作活动使学生理解分数乘分数的算理,从而掌握计算方法。

  2. 发展学生的观察推理能力。

分数乘法教案 篇4

  教学目标:

  1、结合具体情境, ,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  3、能正确运用“先约分再计算”的方法进行计算。

  教学重点:

  1、结合具体情境, ,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  教学难点:

  能正确运用“先约分再计算”的方法进行计算。

  教学过程:

  一、探索分数乘整数的意义和计算方法。

  1、出示情境:剪一个这样的图案要用一张彩纸的1/5,剪3个这样的图案需要多少张彩纸?

  2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。

  3、 组织全班交流。 师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗? 教师在学生讨论的过程中,把加法的板书和乘法的板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。

  4、练一练:教科书第2页“涂一涂,算一算”。 学生独立完成后,让学生说说自己的思路。 讨论:你能用自己的'语言说一说整数乘分数的计算方法吗? 小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。 练习:教科书“试一试”第1、2题。

  5、探讨“先约分再计算”的方法。

  出示 6×5/9。让学生独立完成,指名板演。 学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。 教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。

  练习:

  (1)教科书“练一练”第1题。

  (2)计算

  二、巩固练习

  1、教科书第4页“练一练”第2、3、4、题。 学生先独立完成,指名板演,在集体讲评。

  2、教科书第4页“练一练”第5题。 让学生把计算结果写在课本上,再仔细观察,看看发现了什么?

  3、教科书第4页“数学故事”。 先让学生说说,你从每幅图中得到了哪些信息?如何解决图中提出的问题。

分数乘法教案 篇5

  教学目标:

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  1/33/72/54/97/105/14

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习:

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的关系。

  学生做第4题,让学生能够学会比较1/2的.3/4和4/5占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法(三)

  1/23/43/8 ,2/44/54/10=2/5

  是整个操场1的3/8,2/

  5是整个操场1的2/5。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法教案 篇6

  教学目标

  1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、培养学生大胆猜测,勇于实践的思维品质。

  教学重点:

  会进行分数的混合运算,运用运算定律进行简便计算。

  教学难点:

  灵活运用运算定律进行简便计算。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1、运算定律。

  我们在四年级时学习过乘法的运算定律,同学们还记得吗?

  (学生回答,教师板书运算定律)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  2、这些运算定律有什么用处?你能举例说明吗?

  2574 0.36101

  (学生口述自己是怎样应用乘法的.运算定律简算上面各题的。)

  二、自主探究(自主学习,探讨问题)

  1、引入

  同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

  (板书课题:整数乘法的运算定律能否推广到分数乘法)

  2、推导运算定律是否适用于分数。

  (1)学生发表对课题的见解。

  (2)验证

  有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

  3、教学例5.

  (1)出示: ,学生小组合作独立解答。

  4、教学例6.

  (1)出示: ,学生小组合作独立计算。

  (2)小组汇报学习成果,说一说你们组应用了什么运算定律。

  5、小结

  应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

  三、拓展总结(应用拓展,盘点收获)

  1、完成练习三的第6题。

  学生说一说应用了什么运算定律。

  2、完成课本第10页的做一做题目。

  其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。

  3、总结

  这节课你有什么收获?

分数乘法教案 篇7

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的'5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

分数乘法教案 篇8

  教学目标:

  1、培养学生的计算能力,自主、合作探索意识及解决问题策略优化的思想能灵活运用所学计算方法解决生活中的简单问题。

  2、让学生在课堂中交流学习数学的感受,获得学习成功的体验。

  教学重点:

  理解分数乘整数的`意义,掌握分数乘整数的计算方法。

  教学准备:

  学生做的风筝

  教学过程:

  一、 复习

  1、1/2× 3表示的意义是什么?(让学生自己说一说,)

  2、分数乘整数的计算法则是什么?

  二、基础练习

  1、的3倍是多少?

  2、10个是多少?

  订正时说说每个算式表示的意义。

  三、专项练习

  1、自主练习第4、5、6题

  这三题是运用分数和整数相乘的知识解决实际问题的题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。

  2、第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。

  3、第7、10题

  这两道题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。

  4、第9、12题

  这两道题是学生自己独立作,利用分数与除法的关系解决问题的。

  四、合作总结

  这节课你巩固了那些知识?

  五、创意作业

  同桌出题交换解答,交换批改,共同提高。

分数乘法教案 篇9

  重点:

  1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。

  2.渗透对应思想。

  难点:

  1.理解这类应用题的解题方法。

  2.用线段图表示分数应用题的数量关系。

  教学过程:

  一、复习、质疑、引新

  1.说出、、米的意义。

  2.列式计算:

  20的是多少?6的是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)

  二、探索、质疑、悟理

  1.出示例1(也可以结合学生的实际自编)

  学校买来100千克白菜,吃了,吃了多少千克?

  ①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。

  ②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。

  ③画图:(课件一演示)补:把100千克当做什么?(单位1)

  画图说明:

  a.量在下,率在上,先画单位1

  b.十份以里分份,十份以上画示意图。

  C.画图用尺子,用铅笔。

  ④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。

  学生可能会出现下面解答方法:

  解法一:用自己学过的整数乘法做

  (千克)

  解法二:(千克)

  在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的.,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。

  ⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。

  2.巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?

  订正时候强调1)把哪个数量看作单位1?

  2)为什么用乘法计算?

  3.学习例2

  例2小林身高米,小强身高是小林的,小强身高多少米?

  在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。

  (课件二演示)

  先画单位1

  再画单位1的几分之几

  画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)

  在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?

  列式:(米)

  答:小强身高米。

  4.改变例2

  改变例2的条件和问题成为下题(可让学生完成)。

  小强身高米,小林身高是小强的倍,小林身高多少米?

  改编后,可让学生独立画图完成。

  (米)

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)

  四、训练、深化

  1.先分析数量关系,再列式解答

  ①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?

  ②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?

  2.提高题

  ①一桶油400千克,用去,用去多少千克?还剩多少千克?

  ②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

  五、课后作业:练习五1、2、3

  六、板书设计:

  分数乘法应用题

  100==80(千克)

  答:吃了80千克。

  (米)

  答:小强身高是米。

分数乘法教案 篇10

  教学内容:

  教科书15页,例2及做一做 ,练习四8─10题。

  教学目的:

  (1)、会画线段图分析分数乘法两步应用题的数量关系。

  (2)、掌握分数两步连乘应用题解答方法,并能正确解答。

  (3)、进一步培养学生初步的逻辑思维能力。

  教学重点:分析分数乘法两步应用题的数量关系。

  教学难点:抓住知识关键,正确、灵活判断单位1。

  教学过程:

  (一)、复习引入:

  1、先说说各式的意义,再口算出得数。

  ╳ ╳

  2、指出下面含有分数的句子中,把谁看作单位1。

  (1)乙数是甲数的 。(甲数)

  (2)乙数的 相当于甲数。(乙数)

  (3)大鸡只数的 等于小鸡的只数。(大鸡)

  (4)大鸡的只数相当于小鸡的 。(小鸡)

  (二)、探究新知:

  1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  (1)审题:

  全体默读,再指名读,说出已知条件和问题。

  师生边讨论边画出线段图。

  先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

  然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

  小亮

  18元

  ?元

  ?元

  小华

  小新

  (2)分析数量关系:

  引导学生从已知条件分析:根据小亮的`储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

  也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

  (3)确定每一步的算法,列出算式。

  怎么求小华的钱数?

  根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。

  板书:18╳ =15(元)

  怎么求小华的钱数?

  根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

  板书:15╳ =10(元)

  把上面的分步算式列成综合算式:

  板书:18╳ ╳ =10(元)

  (4)检验写答:

  答:小新储蓄了10元。

  2、做一做。

  学生独立画出线段图,教师巡视指导。

  3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

  (三)、课堂练习:

  独立完成练习四的第8、9、10题。

  板书设计:

  例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  小亮

  18元

  ?元

  ?元

  小华

  小新

  18╳ =15(元)

  15╳ =10(元)

  18╳ ╳ =10(元)

  答:小新储蓄了10元。

【分数乘法教案】相关文章:

分数乘法教案04-09

分数乘法的教案02-28

分数乘法教案01-17

关于分数乘法的教案03-31

关于分数乘法教案05-18

分数乘法教案7篇04-16

分数乘法教案3篇04-06

分数乘法教案9篇04-06

分数乘法教案4篇04-18

分数乘法教案10篇04-30