当前位置:育文网>教学文档>教案> 鸡兔同笼教案

鸡兔同笼教案

时间:2023-04-22 12:01:11 教案 我要投稿

鸡兔同笼教案集合5篇

  作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么写才合适呢?以下是小编为大家收集的鸡兔同笼教案5篇,仅供参考,希望能够帮助到大家。

鸡兔同笼教案集合5篇

鸡兔同笼教案 篇1

  【教学目标】

  1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

  3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

  【重点难点】

  用假设法和列方程的方法解决“鸡兔同笼”问题。

  【教学指导】

  1.要注重解题策略的多样化教学中,教师通过组织学生采取讨论,自主探索等方式,多手段、多层面、多角度地探索问题,引导学生运用列表法、画图法、假设法、代数法等方法分析和解决问题,从而使学生获得分析问题和解决问题的基本方法,体验解决问题策略的多样性,发展创新意识。在注重解决问题策略多样化的同时,教师还应注重解决问题策略的自主优化(如列表法中的从两边开始,从中间开始,依据数据跳跃猜测等),并注重不同策略间的相互联系和影响,注重解决问题策略的局限性和一般性。

  2.要注重逻辑思维能力的培养让学生在参与观察、猜想、证明、归纳等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初随意、无序的猜想到表格中的有序、有目的的猜想;从一般验证到表格中数据变化规律的发现;从列表法(8只兔0只鸡或8只鸡0只兔这两种情况中)很快自然联想到假设法(通过假设——计算——推理——解答的过程,掌握假设法的独特的特点)、代数法。学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

  3.要注重数学思想的渗透“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数据替代《孙子算经》原题中的大数据的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,既渗透了函数的思想和方法又强调了解题策略的优化;用“假设法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

  4.要注重数学文化的传承鸡兔同笼问题是《孙子算经》中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,我们把《孙子算经》中关于鸡兔同笼问题的原题和《孙子算经》中用“抬腿法”这种特殊而灵巧的方法解决这一问题的过程,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味。

  【知识结构】

  第1课时 鸡兔同笼(1)

  【教学内容】

  教材第103~105页例1及“做一做”、教材第106页练习二十四第1~3题。

  【教学目标】

  1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

  3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

  【重点难点】

  用多种方法解决“鸡兔同笼”问题。

  【教学准备】

  课件、列表法的表格卡片。

  【情景导入】

  1.师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)

  2.这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。鸡兔同笼问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。你们有没有信心把这节课的内容学好呢?

  【新课讲授】

  (一)出示情景,获取信息

  1.出示“鸡兔同笼”画面。为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”

  2.我们一起来看看被关在同一个笼子里的鸡和兔。鸡和兔是两种不同的动物,但我们从数学的角度思考,它们有什么相同点和不同点呢?学生理解:相同点——鸡和兔都只有1个头;不同点——鸡只有2条腿,而兔有4条腿。

  (二)列表法

  1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?在猜测时要抓住哪个条件?(鸡和兔一共是8只。)

  2.那是不是抓住了这个条件就一定能猜对呢?怎样才能确定猜的对不对呢?(把鸡的腿和兔的腿加起来看等不等于26条腿。)

  3.现在就请同学们,把你们猜测的数据填在答题卡上。师巡视,可能会出现如下四种情况:① 随意猜,直到猜对为止;② 从鸡的只数开始尝试,直到符合26条腿为止;③ 从兔的只数开始尝试,直到符合26条腿为止;④ 对半分开始尝试,不断调整,直到符合26条腿为止。

  4.我们把这种方法叫做列表法。(板书:列表法)

  (三)直观画图法

  1.师:刚才我们同学介绍了用列表法来解决这个问题,还有别的.方法吗?谁愿意来给大家讲一讲?

  2.生1:还可以用画图——先画好8个圆圈代表鸡和兔的8个头,再给每只动物先安上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。因为每只兔少算了2条腿,所以一次增加2条腿,这样一只鸡就变成了一只兔,要把10条腿安完,就要把5只鸡变成兔。 所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)问:你们听懂他的方法吗?请同学们在练习本上画一画。

  3.生2:我也是用画图法——先画好8个圆圈代表鸡和兔的8个头,但我是先给每只动物安上4条腿(也就是都看成兔。),这样一共有32条腿,多了6条腿。因为每只鸡多画了2条腿,所以一次减少2条腿,这样一只兔就变成了一只鸡,要去掉多的6条腿,就要从3只兔的身上各去掉2条腿,这样3只兔变成了鸡。所以在这个笼子里鸡有3只,兔有5只。(指名该生上台演示。)

  师:画图的方法非常便于观察、非常容易理解。

  4.你们觉得用猜想列表法或直观画图法解决鸡兔同笼问题怎么样?(

  生:我认为有局限性,当头和腿的数目较大时,用这两种方法会很麻烦。)

  5.是呀!假如鸡和兔不是同关在一个笼子里,而是同关在一个养殖场里,鸡和兔共有1000只,它们共有2700条腿。问这个养殖场里的鸡和兔分别有多少只?如果用列表的方法或画图的方法来解决就太麻烦了。看来我们还有必要继续研究新的解题方法。

  (四)思考交流你还能用什么办法来解决这个问题呢?

  学生讨论后交流。

  A、假设法现在请同学们一起来看看XXX同学表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡)

  ①假设笼子里的8只全是鸡,那么笼子里就只能有多少条腿?

  ②与实际的腿数不符,腿的条数少算了多少条?

  ③假设全是鸡,是把4条腿的兔当成2条腿的鸡,这样每只兔就少了多少条腿?

  ④少算的10条腿是把多少只兔当成了鸡来算?

  ⑤鸡的只数怎么算?

  B、列方程解在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)

  要用列方程的方法就必须找到等量关系式。

  通过得到的信息能写出哪些等量关系式呢?(兔的只数+鸡的只数=8;兔的腿数+鸡的腿数=26)(课件出示)

  这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设其中一个未知数为x,再用含有字母的式子表示出另一个未知数。让我们来试试吧。

  小结:请同学们回忆一下,在解决鸡兔同笼问题时,可以用哪些方法?(列表法、画图法、假设法或列方程。)

  (五)现在我们就用刚才学到的这些方法来解决《孙子算经》中的原题,你会用列表法和画图的方法解决吗?

  【课堂作业】

  完成教材第105页“做一做”。运用列表法和画图法解决这两道题,然后交流订正。

  【课堂小结】

  通过这节课的学习,你有什么收获?小结:鸡兔同笼问题可以用猜测列表法、假设法等多种方法解决,但数字较大时可以用列方程的方法。

  【课后作业】

  1.完成教材第106页练习二十四第1~3题。

  2.完成练习册本课时的练习。

鸡兔同笼教案 篇2

  教学目标

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

  3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡876543

  兔012345

  脚161820222426

  (2)、假设法:

  假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)4=26

  2x+84-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)4=94

  2x+354-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  235=70(只)

  94-70=24(只)

  24(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、巩固与运用

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的'算理)

  68=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、作业

  练习二十六第一、二题。

鸡兔同笼教案 篇3

  教学目标:

  (一)知识技能

  1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。

  2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。

  (二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。

  (三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。

  教学重点:

  使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。

  教学难点:

  使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。

  教学过程:

  一、激趣导入 渗透方法

  1、 出示绕口令

  1只小鸡2条腿, 1只兔子4条腿;

  2只小鸡( )条腿, 2只兔子( )条腿;

  3只小鸡( )条腿, 3只兔子( )条腿。……

  【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】

  2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同

  【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】

  3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?

  老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?

  如果学生说出列表,老师先出示无序列表,再请学生帮忙修改

  【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】

  接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿

  【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】

  二、独立探究 解决问题

  刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。

  谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)

  1、出示例题,读儿歌

  菜市场里真热闹,鸡兔同笼喔喔叫。

  数数头儿有8个,数数腿儿26。可知鸡兔各多少?

  2、 指名说说已知条件和问题。

  引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿

  3、你们愿意自己尝试解答吗?

  每个同学有2个选择

  第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。

  第二:用填表的方法,看能否找到答案。

  (如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)

  【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】

  三、小组交流 开阔思路

  小组讨论的要求是

  1、给组内同学讲一讲你解题的方法和过程。

  2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。

  【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】

  四、全班交流 成果共享

  1、画图法

  预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)

  预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡

  为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?

  你认为这两种画法哪种简单?

  【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】

  2、列表法

  教师让学生在实物投影下讲解列表的方法。

  (预设3种列表法)

  3、逐一列表法

  情况1:鸡的只数 1 2 3 4 5 6 7

  兔的只数 7 6 5 4 3 2 1

  共有足数 30 28 26 24 22 20 18

  情况2

  鸡的只数 1 2 3

  兔的只数 7 6 5

  共有足数 30 28 26

  情况1与情况2进行比较

  确定只有一个答案时,找到了问题答案,后面的情况可以不再列举

  情况3:兔的只数 1 2 3 4 5 6 7

  鸡的只数 7 6 5 4 3 2 1

  共有足数 18 20 22 24 26 28 30

  情况4:兔的只数 1 2 3 4 5

  鸡的只数 7 6 5 4 3

  共有足数 18 20 22 24 26

  情况3与情况4进行比较

  确定只有一个答案时,找到了问题答案,后面的'情况可以不再列举

  情况2与情况4进行比较

  哪个列表能快速找到答案,为什么?

  4、取中列表法

  鸡的只数 4 3

  兔的只数 4 5

  共有足数 24 26

  5、跳跃列表法

  鸡的只数 1 3

  兔的只数 7 5

  共有足数 30 26

  (如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。

  如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)

  【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】

  五、灵活运用 巩固方法

  1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。

  我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。

  出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?

  你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?

  用你刚才没有尝试过的方法解决

  2、设计意图:

  1、使学生感受我国传统的数学文化。

  2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。

  3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。

  【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】

  六、总结收获 畅谈体会

  通过今天的学习,你有什么收获?

鸡兔同笼教案 篇4

  学情分析:

  鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

  教学目标:

  1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

  2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

  3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的'广泛应用,提高学习数学的兴趣。

  教学重点:

  尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。

  教学难点:

  理解用假设法解决“鸡兔同笼”问题的算理。

  教学过程:

  一、以史激趣,导入新课:

  同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)

  二、独立探索,构建新知:

  (课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?

  你从这道题中,找到了什么数学信息?

  (鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)

  这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)

  谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)

  能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)

  有了猜测的依据,还有谁想继续猜?(……)

  给老师一个机会,我猜鸡是1只,那兔有几只?(19只)

  怎么知道我猜得对不对?(通过计算来验证)

  (板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)

  虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)

  现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。

鸡兔同笼教案 篇5

  复习目标:

  通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  复习重点:尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

  复习难点:在解决问题的过程中,培养学生的逻辑思维能力。

  教法:分析、引导

  学法:自主探究

  课前准备:多媒体。

  教学过程:

  一、定向导学:2分钟

  1、板书课题

  2、复习目标:

  掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  二、方法归类:8分

  1、填空:

  一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。

  一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。

  鸡兔共五只,腿有( )条。

  2、谁记得解决这类问题的`方法呢?

  学生回答

  3、了解抬脚法

  笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,

  有94只脚。鸡和兔各有几只?

  古人的算法可以用下图表示:

  头… 35 脚减半 35 下减上 35 上减下 23 …鸡

  脚… 94 47 12 12 …兔

  三、解决问题:10分

  (1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?

  (2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?

  (3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )

  分。

  (4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?

  四、小结检测:20分钟

  1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?

  2、检测:

  a、问答:

  (1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。

  b、解决问题

  (1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

  (2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?

  (3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)

  (4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

【鸡兔同笼教案】相关文章:

《鸡兔同笼》教案09-22

鸡兔同笼教案09-13

鸡兔同笼小学教案03-27

精选鸡兔同笼教案3篇07-09

鸡兔同笼教案六篇03-25

鸡兔同笼教案8篇01-20

鸡兔同笼教案5篇03-06

鸡兔同笼教案九篇01-31

鸡兔同笼教案3篇01-17

鸡兔同笼教案三篇02-06