当前位置:育文网>教学文档>教案> 可能性教案

可能性教案

时间:2024-07-24 20:59:05 教案 我要投稿

可能性教案范文集锦8篇

  作为一名教学工作者,就难以避免地要准备教案,借助教案可以让教学工作更科学化。我们应该怎么写教案呢?以下是小编为大家整理的可能性教案8篇,欢迎大家分享。

可能性教案范文集锦8篇

可能性教案 篇1

  教学内容:

  国标本苏教版数学二年级上册《可能性》

  教材简析:

  在小学阶段,苏教版教材对“可能性”知识的教学共安排了四次(见下表)。本节课是苏教版教材第一次安排有关“可能性”内容。 二年级 用“一定”“可能”和“不可能”描述事件的可能性 三年级 用“经常”、“偶尔”、“差不多”描述一些事件发生可能性的大小 四年级 游戏规则的公平性 六年级 用分数表示可能性的大小 本节课将可能性和摸球等活动相结合,在活动中让学生体验可能性,借助活动的素材用语言描述可能性。“一定”和“不可能”是用来对确定事件发生结果的预测,“可能”则是对不确定事件发生结果的预测。但无论是确定事件还是不确定事件,都存在事件发生的随机性,这是教学中的难点,难在无法用语言描述,难在无法在一节课中用事实证明,难在学习对象是二年级孩子——他们的逻辑思维能力还很弱。对随机思想渗透的时机和程度是教学设计时的重要和难点问题。

  教学目标:

  1. 通过摸球,经历事件发生的过程,初步感受事件发生的随机性。

  2. 会用不可能、可能和一定,描述摸球事件发生的结果。

  3. 能根据摸球的结果设计事件,并进行解释。

  4. 能用不可能、可能和一定描述抛硬币、转盘和掷骰子事件的结果。

  5. 尝试用不可能、可能和一定描述已经掌握的简单数学知识。 教学重点: 学会用不可能、可能和一定,描述数学与生活。 教学难点: 理解不确定事件,感受随机性。 教学过程:

  一、故事引入,定位起点

  出示故事——“乌鸦喝水”的三幅图,请学生用“一定”“可能”和“不可能”分别说一说这三幅图上的故事。

  【设计意图:“乌鸦喝水”是小学语文一年级课本中的一篇文章,是学生耳熟能详的故事。借助这个故事,让孩子们用“一定”“可能”和“不可能”进行描述,可以充分了解他们对一定”“可能”和“不可能”这三个词的理解,定位孩子们对可能性知识的已有认知水平。】

  二、理解“一定”“可能”和“不可能”

  (一)理解“一定”

  1. 小组操作活动 在小组内开展摸球的活动(活动材料见图1),每人任意摸一个球,结果会 怎样?指导学生学会用比较规范的语言描述:“从袋子里任意摸一个球,一定是红球。”

  2. 独立思考 将如图1的两个袋子里的球倒入一个布袋(见图2),请学生独立思考:任 意摸一个球,结果会怎样?

  3. 对比提升

  (1)比较图1和图2两个袋子里的球,请学生思考为什么“任意摸一个球,都一定是红球。”通过讨论,学生能总结出:两个袋子里都是红球,所以任意摸一个一定是红球。

  (2)教师追问:如果要往这个袋子里再放入一些球,任意摸一个还是红球,可以怎么放呢? 学生通过思考,提升对“一定”的认识:只要袋子里都是红球,没有其它颜色的球,不管多少个,任意摸一个就一定是红球。

  (二)理解“可能”

  1. 借助实物思考讨论

  (1)教师将红球和黄球混入一个袋中(见图3),提问:如果从这个袋子里任意摸一个球,结果会怎样?为什么用“可能”呢? 教师从图3的袋中拿走一个黄球(见图4),追问:现在呢? 教师再从图4的袋中拿走一个黄球(见图5),追问:现在呢?

  (2)思考:为什么从这三个袋里任意摸一个球,都可能是红球?学生讨论后得出结论:袋中有3个红球,有3个黄球,任意摸一个就有可能摸到红球。

  2. 摸球,想象推理。 请一生从图5的袋中任意摸一个球,摸3次。

  摸球的结果可能会出现以下两种

  (1)三次摸球的结果,可能会出现黄球,可能会出现红球。学生从摸球的结果中验证了刚才的预测结果。

  (2)三次摸球的结果,都三次出现红球。这种情况是有可能出现的,比较袋中的红球占大多数。如果出现此种情况,立即引导学生思考:如果再摸一次,结果会怎样?

  【设计意图:此处是渗透事件随机性的最好时机。通过实际的摸球并不能立即验证猜测,有时会出现摸球多次仍没有摸到红球,解决问题的关键是要通过让学生想象、推理,完成对随机性的'感受。】

  3. 回顾思考。

  观察三袋子里球(见图3、4、5),为什么从这三个袋里任意摸一个球,都可能摸到红球? 学生得到结论:只要袋中有红球,有黄球,任意摸一个就有可能摸到红球。

  4. 思考提升。

  提问:如果从这个袋子再拿走一个球,任意摸一个还可能是红球,你准备拿什么球?学生通过思考,得出结论:只要袋子里有红球,不管有几个,还有黄球,就有可能摸到红球。

  (三)理解“不可能”

  1.教师出示一个空袋子(见图6)。

  (1)根据要求“从这个袋子里任意摸一个球,不可能是红球”,往袋里装球,可以怎么装?教师提供一些红球和黄球,请学生示范装球。学生会装出如同图7的方法。

  (2)追问:还有不同的装法吗?并在小组里交流。

  2.思考:只要怎么装,就不可能摸出红球?学生得出结论:只要袋中没有红球,就不可能摸到红球。

  (四)回顾与小结

  1. 教师引导学生回顾:从这三个袋子里任意摸一个球,见(图2、3、7)第一个袋子一定摸到红球,第二个袋子可能摸到红球,第三个袋子不可能摸到红球。在数学上,就把小朋友们刚才用这三个词说的几句话,叫做摸到红球的可能性。教师板书课题:可能性。

  2. 教师提问:你能看着这三个袋子,说一说摸到黄球的可能性吗? 生:从第一个袋子里任意摸一个球(图2),不可能摸到黄球。 从第二个袋子里任意摸一个球(图3),可能摸到黄球。

  从第三个袋子里任意摸一个球(图7),一定能摸到黄球。

  三、巩固练习设计

  (一)装球活动练习

  在小组内开展装球的活动,分层次巩固对不可能、可能和一定的理解,练习用这些词语描述摸球事件结果的可能性。 活动材料(见下图):三种不同颜色的球若干个,三个透明塑料袋。 任务一:每小组装3袋球,装完后要用“一定”来说一说,你准备怎么装? 生汇报后,师提问:观察这些袋子里的球,有什么发现?

  生1:每袋中的球颜色一样。

  生2:每袋中球的个数不同。

  生3:不管有多少个,每个袋中只有一种颜色的球,任意摸一个,一定就是这个颜色。

  任务二:每小组装3袋球,装完后要用“可能”在小组里说一说。 师提问:你有什么发现?

  生1:袋中有绿球和紫球,任意摸一个,可能是绿球,也可能是紫球。

  生2:袋子有绿球、蓝球和紫球,任意摸一个,可能是绿球,可能是蓝球,也可能是紫球。

  生3:只要袋中的有不同的颜色的球,每种颜色都有摸到的可能。

  任务三:如果就看着每人现在手里的这袋球,会用“不可能”来说一说吗?在小组里交流,并说说你的发现。

  生:袋子里没有那种颜色的球,任意摸一个,就不可能摸到。

  (二)拓展练习

  摸球游戏中蕴含着“可能性”,其它的游戏中也蕴含了“可能性”。

  1. 抛硬币。 师:任意抛一次硬币,结果会怎样?

  2. 转盘。 师:任意转一次转盘,结果会怎样?

  3. 掷骰子。

  师:任意掷一次骰子呢? 追问:如果任意掷一次,一定是3,骰子上的数字可以怎么改?

  【设计意图:抛硬币、转盘和掷骰子是苏教版教材第一学段概率与统计领域常用的活动素材类型,也是学生十分熟悉的游戏。只有当学生有了充分的活动经验支撑时,才能更好地将今天所学习的可能性的知识提升、升华,内化为个体的经验,为后继的学习铺垫。】

  四、全课总结。

  设问:回顾今天的学习,你对“可能性”有什么新的认识? 生1结合具体的摸球活动解释“一定”“可能”和“不可能”。 生2能适当抽象出“一定”“可能”和“不可能”的含义。

  五、拓展练习。

  用可能性的知识我们还可以用来描述已经学过的数学知识。 出示1+花<5 设问:“花”的后面藏着几呢,用今天学习的可能性知识,你能说一说吗?

  生1:方框里的数一定小于4。

  生2:方框里的数不可能大于4。

  【设计意图:可能性是逻辑十分严密的概率领域的知识,用数学的知识进行解释,符合其“严密性”的特征,不会让学生产生歧义。选择学生已经掌握的数学知识则更加易于学生理解,能更好地运用可能性的知识进行解释。】

  师作全课总结:只要小朋友们留心观察,我们的身边处处都有数学。

可能性教案 篇2

  教材分析

  从选择的素材看,准备部分是十分简单的随机事件,事件的可能性是1/2;例2的情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的球的可能性。

  学情分析

  是让学生初步认识确定性事件和不确定现象。在此基础上,继续教学可能性,用分数表示事件发生的可能性有多大。从感性描述可能性到定量刻画可能性,对可能性的体验深入了一步。

  教学目标

  1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。

  2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。

  3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

  4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

  教学重点和难点

  重点:理解并掌握用分数表示可能性的大小的基本思考方法。

  难点:是在认识事件发生的不确定现象中感受统计概率的数学思想。

  教学过程

  一、复习旧知,唤起经验。

  同学们一定玩过抛硬币游戏,其实抛硬币在生活中有很多的应用(足球、排球),我们一起来看看它在足球比赛中的运用吧。

  板书:可能性

  这一环节的设计是从学生感兴趣的.事出发,带领学生用数学的眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。

  二、创设情境、引导发现

  1、教学例1

  (1)课件出示例1场景图 ,提出问题。

  足球比赛中是用抛硬币决定谁先发球的,乒乓球比赛中时是怎么决定谁先发球的?

  提问:用猜左右的方法决定由谁先发球公平吗?为什么?

  2、同步体验:试一试

  这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。

  三、迁移和提升。

  教学例2

  1、 课件出示例2中的实物图(逐一出示,学生说出各是什么牌)

  2、提问迁移。

  3、对比提升。

  这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。

  四、实践与应用。

  1、生活中的数学问题。(一边说一边出示“转一转”课件)

  2、出示练一练

  这一环节的设计是借助转盘创设了转盘的游戏情境,让学生自主探索事件发生的可能性是几分之几,帮助学生进一步巩固用几分之几表示可能性大小的方法。

  五、巩固练习

  六、课堂小结

  这两个环节的设计是通过总结、游戏和释疑,既呼应了开头,解开了学生心中的疑团,培养了学生小组合作的精神和动手操作的能力,也使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。进一步感受数学思考的严谨性。

可能性教案 篇3

  教学目标:

  1、结合具体事例,知道事件发生的可能性是有大小的。

  2、结合具体情境或生活中的某些现象,能够列出简单实验所有可能发生的结果。

  教学重点:

  通过具体的操作活动,直观感受到有些事件的发生是确定的,有些事件的发生是不确定的。

  教学难点:

  结合具体情境或生活中的某些现象,能够列出简单实验所有可能发生的结果。

  教具准备:

  多媒体课件。

  教学过程:

  一、创设情景,导入新课

  师:什么是名片?再什么情况下用名片?

  生:名片就是一张卡片,上面写着自己的名字、工作。

  在第一次见面时使用、 在交朋友时使用。

  教师将事先准备好的卡片放在几个信封里,然后分给每个小组,同学们按要求填写名片。同学们添完名片后小组讨论。

  师:在制作的名片中发现了哪些规律?

  学生会从性别、属相、姓名等进行回答。例如:有几个男的、几个女的、有属猪的、有属鼠的。

  二、新授

  师:请同学们记好你们组各种属相的人数,我们来做摸名片的游戏好吗?

  生:好。

  师:游戏是这样的:把你们组的名片合在一起,每人摸十次,一次摸一张,每次摸完后再返回,打乱顺序再摸。猜猜看,摸到什么属相的可能性大呢?

  生1:摸到属鼠的可能性大。因为我们组属鼠的多。

  生2:我猜摸到属猪的可能性大,因为我们组属猪的多。

  为了让同学们更清楚结果,教师先不回答,将名片发给各个小组,每个小组在小组长的带领下去做这个游戏--摸名片。让学生亲历知识探索的过程,获得直观的感受。在摸的过程中,每摸一次让学生作下记录去探索其中的规律。

  在做完游戏后集体讨论其规律性,看一看是不是得到相同的结果,实际的`结果与原来的猜测是否吻合。并引导学生用特定的词语描述,如:“可能”“一定”“很少”“不可能”“偶尔”“经常”等。

  有的同学会说摸到了几次属猪的,几次属鼠的,几次男的,几次女的等。让学生自己在游戏中去发现摸到的可能性大小。师:从这个游戏中,大家体会到了可能性是有大小的。在我们的生活中,一些事件发生的可能性确实是有大小的。你能说

  一些有关可能性的例子吗?

  同学们会举一些例子,有的可能不近人意,教师可以给予提示,如:抛硬币,猜拳,抽奖等。

  三、课堂练习

  1、教师事先准备好两个盒子里面放好黄、白两种颜色的球,数量相等,将全班学生分男、女两组,双方各派一代表上前摸球,摸到白球得1分,摸到黄球不得分,男同学给女同学记分,女同学给男同学记分,看谁的分数高。

  师:摸到的球可能是什麽球?摸到什麽球的可能性更大?

  学生根据问题有目的的进行探索游戏。

  2、自主练习第6题。

  四、课堂总结

  这节课你有什么收获吗?

  板书设计:

  一件事情发生的可能性是有大有小的。

可能性教案 篇4

  【教材分析】

  (一)教学内容分析:

  可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

  教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

  (二)学情分析

  考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

  【教学目标】

  1、 了解概率的意义

  2、 了解等可能性事件的概率公式

  3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

  进一步认识游戏规则的公平性

  【教学重点、难点】

  重点:概率的意义及其表示

  难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

  【教学过程】

  (一) 创设情境,引入新知:

  引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

  分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

  解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

  (这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

  (二) 师生互动,探索新知:

  从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

  ①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

  ②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

  ③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

  接着类似的可以让学生自己结合生活经验独立举一些例子。

  (这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

  然后教师归纳,在教学中我们把事件发生的可能性的.大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

  如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

  强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

  例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

  (三) 讲解例题,综合运用:

  在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

  例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

  分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

  解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

  一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

  (例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

  从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

  (四) 练习反馈,巩固新知:

  做一做:

  1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

  (根据班级各小组的实际人数回答)

  2、 转盘上涂有红、蓝、绿、黄四种颜色,

  每种颜色的面积相同。自由转动一次转盘,

  指针落在红色 区域的概率是多少?

  指针落在红色或绿色 区域的概率是多少?

  (1/4,1/2)

  (五)变式练习,拓展应用:

  例2:如图所示的是一个红、黄两色各占

  一半的转盘,让转盘自由转动2次,指针2

  次都落在红色 区域的概率是多少?一次落在

  红色 区域,另一次落在黄色 区域的概率是多少?

  分析:

  (1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

  (2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

  (3)统计所求各个事件所包含的可能结果数。

  解:根据如图的树状图,所

  有可能性相同的结果数有4种:

  黄,黄;黄,红;红,黄;红,红。

  其中2次指针都落在红色 区域的可能结

  果只有1种,所以2次都落在红色 区域

  的概率 ;

  一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

  变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

  (本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

  (五) 反思总结,布置作业:

  引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

  五、教学说明:

  本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇5

  学具准备:

  学生学具:

  1、每组一盒 3红3白(号盒子2红2黄2白,号盒子5白1红,发给左侧两小组)

  2、分好6个小组,按坐的顺序定好1-6号,中间一人组长,培训组长、示范摸球。

  教师学具:

  1、四个硬纸板盒子(其中13号打印,塑封;还有一个用作放球用);三块黑卡纸;4红4黄4绿吸铁石。

  2、教师有3个盒子,一号1白1红1黄(例题演示),二号7白(备10白1红),三号4红3黄(用作猜球练习)。

  3、备红粉笔1支,确认磁性黑板,在黑板上布好点,放好12个吸铁石。

  教学过程:

  一、摸球

  师:同学们一定在想,今天给我们上课的'怎么是杨老师?不过,杨老师上课可不空手,今天,我给大家带来了一盒球礼品,想不想看看?

  生:想(很兴奋)

  师:咱们看看。(满面含笑摸出一个球,高举这是一个),

  生:齐答:黄球

  师:(放进去再摸出一个),里面啊还有(生接:白球),还有(生接:红球)

  师:(欣喜)这红球漂亮吗?(漂亮)想要吗?(想)

  师:这红球可不是心里想要就要得到的,我得把这几种颜色的球放在一个盒子里,让小朋友们去摸,如果你摸到红球,就把它送给你,想不想试试?

  生:(斩钉截铁)想

  师:现在,老师这儿有三个盒子,都装了些什么球呢,瞧(贴,这是1号盒子,这是2号盒子,这是3号盒子)现在,如果你特别想从盒子里摸出一个红球,你会选择到几号盒子里去摸?1号、2号还是3号?

  生1:第3个,生2:第3个,生3:第3个。

  师:想摸3号盒子的举手。哇,你们都想摸第3个盒子?奇怪,为什么你们都选3号?

  生:因为3号盒子全部都是红球。

  师:追问:全部是红球怎么了呢?

  生1继续:随便摸哪个球都是红球。 生2:先摸哪个球都是红球。

  师:都这么想吗?还有补充吗?是呀,盒子里全是红球,任意摸一个,会怎么样啊?(贴一定摸出红球:数学上,我们可以说)

可能性教案 篇6

  3.1 认识事件的可能性(教参)

  【教材分析】

  (一)教学内容分析:本节课内容属于概率范畴,意在帮助学生分清不确定的现象和确定的现象,使学生能定性地认识事件“可能、不可能、必然”发生的含义.让学生学会怎样用观察的方法去认识身边的不确定现象的数学规律.

  (二)学情分析:学生在日常生活中接触过一些不确定的现象,但他们对这些不确定现

  象的观察往往是零星的,短暂的.同时,学生对未知的事物又充满好奇且敢于质疑,很愿意投人到合作探究的实践活动中去.在学生小学阶段已学的有关事件可能性的认识的基础上,进一步使学生通过实例体会到可以用列举法来获得各种可能的结果数,从而使学生的认识达到升华.

  【教学目标】

  1.通过实例进一步体验事件发生的可能性的意义.

  2.了解必然事件、不确定事件、不可能事件的概念.

  3.会根据经验判断一个事件是属于必然事件、不可能事件,还是不确定事件.

  4.会用列举法(枚举、列表、画树状图)统计简单事件发生的各种可能的结果数.

  【教学重点、难点】

  1.事件发生的可能性的意义,包括按事件发生的可能性对事件分类.

  2.用列举法(列表、画树状图)统计简单事件发生的各种可能的结果数,需要较强的分析能力,是本节教学的难点.

  (基于对教材、教学大纲和学生学情的分析,制订相应的教学目标.同时,在新课程理念的指导下,注重对学生的动手能力、合作交流能力和对学生探究问题的习惯和意识的培养.这里没有用“使学生掌握…”,“使学生学会…”等字眼,保障了学生的主体地位,反映了教法与学法的.结合,体现了新教材,新理念.)

  【教学过程】

  一、激趣、设疑、引题

  同学们做过抛掷硬币的游戏吗?请你试一试抛一枚硬币10次,把结果记录下来,看看有几次正面朝上,有几次反面朝上?

  做完游戏后,提出问题:

  (1)抛掷硬币10次,每次都正面朝上或反面朝上,可能吗?可能性大吗?

  (2)在刚才的游戏中,可能正反面同时朝上吗?

  (3)在刚才的游戏中,还有哪些事件一定会发生?你能得到哪些结论?

  事实上在我们的周围有很多事件一定不会发生,有些事件可能会发生,也可能不会发生,有些事件必然会发生.

  引出课题:认识事件的可能性.

  (利用学生都感兴趣的小游戏引入,可以激发学生的学习欲望,让他们迅速投入到数学知识的学习中,同时加强了人文数学的教育)

  二、观察、思考、巩固

  (一)观察和思考:你能举出几个生活中必然发生,不可能发生,

  可能发生的例子吗?(请大家发言)

  不仅在现实生活中有很多例子,而且在我们所学的各学

  科中也有很多例子.(利用多媒体展示“铁杵磨成针”“守株待兔”

  “愚公移山”这三个成语故事和天气预报的动画)

  同时给出必然事件、不可能事件和不确定事件的概念:

  在数学中,我们把在一定条件下必然会发生的事件叫做必然事件(certainevent);

  在一定条件下必然不会发生的事件叫做不可能事件(impossibleevent);

  在一定条件下可能发生,也可能不发生的事件叫做不确定事件(uncertainevent)或随机事件.

  (这里用贴近学生生活的事例和动感十足的多媒体展示,不但能激起学生的学习兴趣和热情,而且能让学生感受到数学与现实生活以及其他学科之间的联系,增强学生应用数学的意识.)

  (二)巩固、检测、反馈(利用题组区分概念):

  在课件巾设置能力区分度不同的三组题,以利于同学们正确理解概念.

  1.头脑运动会(设置一组容易题,以快速抢答的方式请同学在规定的时间内给出正确答案,对于没有把握的问题也可以向其他人求助.)

  问题:下面哪些事件是必然事件?哪些事件是不可能事件?哪些事件是不确定事件?

  (1)打开电视机,它正在播广告;

  (2)抛掷10次硬币,结果有3次正面朝上,8次反面朝上;

  (3)将一粒种子埋进土里,给它阳光和水分,它会长出小苗;

  (4)黑暗中我从我的一大串钥匙中随便选中一把,用它打开了门;

  (5)抛掷一枚均匀的骰子.掷得的数不是奇数就是偶数;

  (6)从一副洗好的只有数字1到l0的40张卡片中任意抽出一张,卡片上的数比6小;

  (7)一个普通的玻璃杯从10层楼落下,落到水泥地上会摔破.

  2.头脑风暴.

  例在一个箱子里放有1个白球和1个红球,它们除颜色外都相同。

  (1)从箱子里摸出一个球,是黑球.这属于那一类事件?摸出一个球,是白球或者是红球.这属于哪一类事件?

  (2)从箱子里摸出一个球,有几种可能?它们属于哪一类事件?

  (3)从箱子里摸出一个球,放回,摇均匀后再摸出一个球,这样先后摸得的两球有几种不同的可能?

  (列表或画树状图是人们用来列出事件发生的所有不同可能结果的常用方法,它可以帮助我们分析问题,而且可以避免重复和遗漏,即直观又条理分明.)

  不可能事件 可能事件 必然事件

  |a|的值

  a的倒数

  若a+b=0(a,b的之间关系)

  3.个性空间(设置一组稍难题,对所学知识进一步巩固).

  问题1:列表造句:

  问题2:(1)有2种不同款式的衬衣和2种不同款式的裙子,各取一件衬衣和一条裙子搭配,问有多少种搭配的可能?

  (2)笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子的门都打开.松鼠要先经过第一道门(A,B或c),再经过第二道门(D,或E)才能出去.问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?

  (在完成了两组区分度不同的练习之后,对于培养学生合作学习,激发学习兴趣都有帮助,至此本节课的教学目标已达成)

  (三)完成课本课内练习.

  三、概括、梳理、升华

  1.采用谈话式小结.教师提问:

  (1)你在这节课的学习中,最大收获是什么?

  (2)你对哪一点最感兴趣?

  (3)你受到哪些启迪?

  (4)你还有什么新的发现?

  (这种小结方式很容易沟通师生之间的感情,学生容易投入和参与,让学生自由说出自己的想法,把总结评价的主动权充分地交给学生,同时给学生一个开放的思维空间,培养学生的知识整理与语言表达能力,情绪会被再度调动起来,从而起到认知升华的作用)

  2.判断一个事件是属于必然事件,不可能事件,还是不确定事件.用列举法统计简单事件发生的各种可能的结果数.

  四、布置作业

  1、课本作业题

  2、1999年,全国少工委与中国青少年研究中心调查显示,46.9%的中小学生没有达到8时的睡眠时间标准,请你在班级里也做一次调查,你的结论是什么?

可能性教案 篇7

  活动一:完成调查表

  活动二:接力长跑

  活动三:有奖游戏

  教学内容:

  教材P93《铺地砖》

  教学目标:

  l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

  2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。

  3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。

  4. 体会数学与生活的联系,感受数学的作用和价值。

  教学重点:

  运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。

  教学难点 :

  灵活运用面积计算的知识解决实际问题。

  教学流程与设计

  一、汇报课前调查情况,做好设计准备

  师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?

  师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)

  二、联系实际,小组讨论计算。

  1、出示卧室地面的平面图,并介绍地面的`长和宽,分别是长5米,宽4米。

  2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。

  (估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

  三、活动小结,发散联想

  师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?

  板书设计:

  估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

  50×50=2500(平方厘米)=0.25(平方米)

  5×4=20(平方米)

  20÷0.25=80(块)

  80×8=640(元)

  师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

  40×40=1600(平方厘米)=0.16(平方米)

  5×4=20(平方米)

  20÷0.16=125(块)

  125×5=625(元)

  通过计算用40*40地转铺地更省钱

可能性教案 篇8

  教学目标:

  1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

  2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

  教学重点:

  通过活动认识一些事件发生的等可能性。

  教学难点:

  理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。

  教学准备:

  多媒体,红球3个 黄球3个

  教学过程:

  一、创设情境,激趣导入。

  1.出示装有3个红球的袋子

  (1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)

  (2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)

  2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)

  二、活动体验,探索新知。

  1.摸球。

  (1)猜测。

  (出示上述装有3个红球和3个黄球的透明口袋)

  谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?

  学生自由猜测

  (2)验证。

  谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)

  ①明确活动要求。

  谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。

  ②明确统计方法。

  提问:怎样能记住每次摸球的结果呢?

  以前我们用过哪些方法来记录?(画“√”、涂方块…)

  在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)

  怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?

  教师相***出示“摸球结果记录表”,向学生介绍。

  讲解示范:一画“一”表示1次,1个“正”字表示记录5次。

  红球

  黄球

  ③明确分工。

  谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。

  ④活动体验。

  学生分组实验,教师巡视指导。

  (3)归纳。

  ①各小组交流汇报统计结果,教师用实物投影展示。

  ② 提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?

  讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的***会和摸到黄球的***会是相等的,也就是摸到红球和黄球的可能性是相等的。

  提问:我们是用什么方法来记录摸球结果的'?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)

  三、玩中交流,内化交流。

  1.抛小正方体。

  教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?

  如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?

  验证。

  明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。

  在小组内明确分工。

  活动体验:学生先分组实验,再统计结果,填写下列表格。

  朝上的数字

  1、2、3

  次数归纳。

  各小组汇报统计结果,教师将数据填入下表。

  朝上的数字

  1、2、3

  合计

  第一小组

  第二小组

  第三小组

  第四小组

  提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?

  反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?

  讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)

  三、拓展深化

  谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?

  学生各抒己见

  谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)

  2.完成“想想做做”第2题

  先小组讨论,再展示交流,说说想法。

  四、总结

  提问:通过这节课的学习,你学会了什么?知道了什么?

  板书设计:

  统计与可能性

  3个红球 3个黄球

  当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的。

【可能性教案】相关文章:

《可能性》教案01-31

可能性教案人教版12-21

《可能性》教案(15篇)03-08

可能性教案精选15篇02-18

《摸名片统计与可能性》教案03-07

《可能性》教案汇编15篇03-08

《可能性》教案(通用20篇)09-24

可能性教案(通用15篇)02-28

《可能性》教案(集合15篇)03-11

可能性教案(集锦15篇)11-14