【实用】小学数学教案范文合集8篇
作为一名教职工,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写才好呢?下面是小编为大家整理的小学数学教案8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学教案 篇1
教学内容:
教科书第83页例2及“练一练”,练习十六第1-4题。
教学目标:
1.学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
2.在运用已有知识和经验解决一些稍复杂的实际问题的过程中,发展思维,提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。
教学重点:
学会用分数乘法和减法解决一些稍复杂的实际问题,进一步积累解决问题的策略,增强数学应用意识。
教学对策:
借助画线段图和分析数量关系来寻找解决问题的方法,鼓励学生要积极交流自己的思考过程,真正理解数量关系后再列式解答。
教学准备:
教学光盘及补充练习
教学过程:
一、复习铺垫
1.口算下列各题。
4/15+7/15 1/2-1/3 5/9×3/5 2÷1/2 1/4÷4
18÷1/2 18×1/2 0÷2/5 1-3/4 1÷4/7
21×3/7 10/7÷15 21÷3/7 1/2×1/3 5/6×36
进行口算,学生将得数写本子上,时间到后统计完成的题目数量及正确率。
2.口答。
(1)五(1)班中男生人数占全班人数的2/5,那么女生人数占全班的`( )。
(2)一本故事书已看了2/7,还剩全书的( )。
(3)一根绳子长12米,剪去了1/4,剪去了( )米。
(4)一盒牛奶900毫升,喝去了1/3,喝去了( )毫升。
指名学生口答得数并分析每一题的数量关系。
二、学习新知
1.教学例2。
出示例题:岭南小学六年级有45个同学参加学校运动会,其中男运动员占5/9。女运动员有多少人?
(1)学生读题,提问:从题中你知道了什么?要我们解决什么问题?指名学生回答题中的已知条件和所求问题。
(2)提问:根据“男运动员占5/9”这个信息你还知道了什么?(把45个同学看作单位“1”、女运动员占总人数的4/9)为了清楚地表示男、女运动员和总人数之间的关系,我们可以借助画线段图来分析。你能在线段图上分别表示出男、女运动员所占的部分吗?
(3)教师在黑板上画出完整的线段图。
(4)提问:要求女运动员有多少人,可以先算什么?用你想到的方法列式算一算。(学生独立思考后列式计算)
(5)探讨方法。
指名学生交流自己的解题方法:
方法一:根据男运动员占5/9,先算出男运动员的人数,再算女运动员人数,列式:45-45×5/9
方法二:根据男运动员占5/9可以知道女运动员占总人数的4/9,最后求女运动员人数。列式为:45×(1-5/9)。
追问:45×5/9表示什么?1-5/9又表示什么?
小结:刚才两种不同的解题思路中,都把哪个数量看做单位“1”,第一种方法先求出男运动员人数,再用总人数减去男运动员人数求出女运动员人数;而第二种方法先求出女运动员占总人数的几分之几,再用乘法求出女运动员的人数。不管哪种方法都要两步计算才能解决这个问题,题目比以前复杂一些,所以今天我们研究的是稍复杂的分数乘法的实际问题。(板书课题)
2.“练一练”。
(1)学生读题后可以先找出关键句分析数量关系,然后列式解答。
(2)先同桌之间说说解题思路,再请几位学生全班交流,教师及时评价。
三、巩固练习
用你喜欢的方法解决下列各题。
1.某粮库原来有大米1500袋,运走3/5,还剩多少袋?
2.少先队员一共采集标本168件,其中5/8是植物标本,其余是昆虫标本。昆虫标本有多少件?
3.张大伯有一块长方形菜地,长30米,宽20米。这块地的7/12种茄子,其余种番茄。番茄种了多少平方米?
学生认真读题后独立列式解答,讲评时重点让学生说说解题思路。
4.(1)一桶油10千克,用去4/5,用去多少千克/
(2)一桶油10千克,用去4/5,还剩多少千克?
(3)一桶油10千克,用去4/5千克,还剩多少千克?
学生独立思考后解答,讲评时将这三小题进行比较,比较已知条件和所求问题以及解题思路。
四、全课总结
通过这节课的学习,你有什么收获?在解题时要注意什么?
五、布置作业
课内作业:完成练习十六第1-4题。
小学数学教案 篇2
教学内容:
1、 探索长方体的特征
2、探索正方体的特征。
3、引出认识五边形和六边形。
教学目标:
1、借助观察、操作,认识长方形和正方形的特征,并能用语言进行描述,能在方格纸上画出长方形和正方形。初步认识五边形和六边形。
2、经历探索长方形和正方形的过程,发展空间想象力和创新意识。
3、 在具体情境中,感受欣赏图形美,培养爱护鸟类、保护环境的意识。
教具准备:
长方形鸟巢(能把每条边都剪下来、左右两个面是正方形的)、五边形鸟巢、六边形鸟巢、一个长方形留着竖着用、
教学过程:
同学们,在不知不觉中温暖的春天来了,小鸟也出来了。大家看(课件)。有了良好的环境和温暖舒适的巢穴,小鸟高兴地似乎在唧唧喳喳的叫着。所以,我们要保护环境,还要给小鸟做一个温暖舒适的巢,为小鸟的生活提供一个良好的环境。老师就为小鸟做了几个小巢,我们一起来看这个鸟巢。
(一)长方形。
1、探索长方形的边特征。
(1)你知道这个鸟巢都是用那些图形的纸卡做出来的吗?(长方形的、正方形的)
(2)是吗?为了让同学们看得更清楚,老师把这个鸟巢每一面的纸卡拆下来,你们好好观察观察。(把鸟巢拆开,把每一个面都贴在黑板上)
(3)好,先看这个面,他是什么图形的?(长方形的)
(4)对,这就是我们以前认识的长方形,可是长方形的身上还藏着许多的小秘密,我们一起来找一找!先来找他的边的秘密。板书:长方形的特征
(5)拿出长方形,你可以用尺子量一量或者用手折一折的方法,来找出长方形边的特点。小组四人边量或折边记录,看长方形的边究竟有什么特征!如果你是量的就请记录到量1的'表格中,如果你是折的,就请记录到折2的空里。开始!【生操作、交流】
(6)谁来交流你们组找到的有关边的特征?【长方形的这条边和这条边相等,一样长,这条边和这条边相等】【你们组是用什么方法得出这样的结论的?】【量的】【把你们组是怎么量的展示一下】【这条边长20厘米,这条边也长20厘米。这条边是15厘米,这条边也是15厘米】
(7)是不是他们组的长方形凑巧有这个现象呢?还有谁是用测量的方法的呢?【你来展示你们组是怎样测量的】【这条边长15厘米,这条边也长15厘米,这条边是12厘米,这条边也是12厘米】【所以,它们俩一样长】
(8)看来,这个特征应该是真的。那么还有用折的方法吗?【我们组使用折一折的方法】【你们组是怎样做的】【我们是先把他们俩对折,他们俩一样长,再把它们俩对折,也是一样长】【嗯,如果像这样,叫这两条边完全重合,那说明这两条边是相等的,而这两条边呢,也是完全重合,就是相等】。
(9)和他们组发现的是一样的特征的举手!看来经过好几个组的验证,这个特征是真的。
(10)对,我们用不同的方法总结了一个规律:长方形的这两条边相等,这两条边也相等!经过自己动手所得出的结论同学们一定记忆非常深刻,对吗?
(11)刚才我们找到了几组相等的边?【2组】
(12)这两条边就好像我们俩这样,我们这是?脸对着脸!对,叫做相对!那么他们叫做什么样的边?【对边】
(13)真聪明!所以说,长方形边的特征就是【对边相等】板书:对边相等。
2、认识长方形的长和宽。
(1)我们来给这四条边起个名字。来,看这组对边和这组对边,哪一组比较长?
(2)对,这一组较长的对边叫做长方形的长。板书:长这一组较短的对边叫做长方形的宽。
板书:宽
(3)长方形有几条长?板书:【2条】。几条宽?板书:【2条】。
3、找出长方形的长和宽。
(1)你能指出黑板的长吗?你能指出黑板的宽吗?
(2)你能找到这个长方形的长吗?宽呢?
(3)看来不是横着的这个边就是长。重点要看谁更长!
4、探索长方形角的特征。
(1)长方形有几个角呢?那么长方形的这四个角又会有什么特征呢?【都是直角】
(2)你是怎么知道的?【看着像】
(3)嗯,有依据的猜测和估计是可以的。那么,要看看我们估量的是不是准确,我们就要用什么文具来帮忙验证长方形的角是直角呢?【三角板】【对,三角板上的直角】【那还等什么?小组开始吧!】
(4)长方形的角都是直角吗?谁来演示你们组的的测量过程!
小学数学教案 篇3
教学目标:
1、认识千米,初步建立1千米的长度概念,知道1千米等于1000米。
2、会进行长度单位间的换算及简单的计算。
3、进一步培养学生的估测意识和实践能力。
教学重点:
建立1千米的长度概念,会用千米表示实际长度。
教学准备:
要求学生到路边观察路标,教师制作一块路标。
教学过程:
一、复习导入
1、教师提问:我们都学了哪些长度单位?
学生回答后,让学生具体表示一下1毫米、1厘米、1分米及1米的长度。
2、教师说明:我们以前学过的长度单位比较大的是米。你们还见过或听说过比米大的长度单位吗?
学情预设:学生可能会提到“千米”。
二、探究新知
1、认识千米。
教师出示例3的情境图。(有条件的学校也可以播放提前录制好的视频录像,录像中出现路牌标志)
提出下面的问题:类似图中的情境你见过吗?从图中你知道了什么?
[学情预设:看到上面的情境图,学生一下子会调出已有的知识经验,他们会想到周围的路标。]
学生根据自己的生活经验解释路标上的“21千米”和“23千米”是什么意思。
教师指出:在计量比较长的路程的时候,通常用千米作单位,千米也叫做公里。千米是比米大的长度单位。
2、出示老师收集到的学校附近的路标,让学生理解、体会从某路口到当地某个标志性建筑的路程是多少千米的含义。
3、建立1千米的长度概念
(1)师:那么1千米的路程有多远呢?它与我们以前学过的长度单位“米”有什么关系呢?
同学们都喜欢上体育课,(教师出示学校操场的图片)学校操场的跑道一圈是400米(注:每个学校的跑道可能不相同,这里仅以400米为例说明大体教学思路,实际教学时,尽可能用学生身边的数据),算一算,跑几圈就是1000米?
教师指出:1000米就可以用较大的长度单位来表示,就是千米。
板书:1千米(公里)=1000米
教师:同学们上学,有步行的,有骑自行车的,有坐公交车的,还有父母开车接送的.。人步行每小时可以走5千米,骑自行车每小时可行15千米,坐公交车每小时可以行40千米。你们能估计一下从自己家到学校有多少千米吗?
(2)实际感受1千米。
到操场上量出100米的距离,让学生仔细观察一下。并让学生按一般的步行速度实际走一走,所需时间大约是1分十几秒。(注:这个教学环节也可以放到课前进行)。然后告诉学生10个这样的长度就是1千米,一般步行12分左右的距离大约是1千米,并让学生想象一下10个100米有多远。
4、完成教科书第8页上的“做一做”。
到校门口,以小组为单位,互相说一说(估)从学校门口到什么地方大约是1千米?在确保学生安全的前提下,可以组织学生到校外走1千米的活动,感受1千米的距离。(注:如果条件不允许,此题可以作为课外作业)
5、教师出示教科书第22页的例5。
3千米=( )米 5000米=( )千米
教师放手让学生先独立填写,然后让学生在组内互相说说是怎样想的。
通过学生回答,使学生明白:1千米是1000米,3千米是3个1000米,就是3000米;1000米是1千米,5000米是5个1000米,就是5千米。
6、练一练。
6000米=( )千米 4千米=( )米
( )米=7千米 9000米=( )千米
[设计意图:本节课的教学,教师没有平均使用力量,教学时把重点放在千米的认识上,长度单位间的变换由于学生基本上属于“教师不讲就会”的状态,所以教师花费的教学时间相对就少一些。]
三、巩固练习
1、指导学生完成练习二第1、2题。
第1题,是关于物体运动速度的练习,目的是让学生对常见物体运行速度有一定的认识。可以先让学生独立完成,然后再进行反馈。
第2题,目的是帮助学生进一步感受千米在生活中的应用。可以让学生独立完成。
2、练习二第3题。
学生在教科书上独立完成,然后集体订正。
3、解决生活中的问题。
(1)老师家离学校大约有4千米的路程,如果让你选择,你会选择什么交通工具来学校?为什么?大概需要多少时间?
(2)妈妈带小明坐长途汽车去看奶奶,途中要走308千米。他们早上8时出发,汽车平均每小时行80千米,中午12时能到达吗?
四、课外拓展
1、汽车在高速公路上行驶每小时不能超过( )千米,磁悬浮列车每小时可行驶( )千米,地球绕太阳每秒运行( )千米。马拉松长跑比赛全程大约( )千米。(课后可在父母的帮助下到图书馆或网上查找这些资料。)
2、写一篇数学日记:《我心目中的千米》
[设计意图:教师在落实了教材所设定的教学目标后,课末布置了学生课后实践调查活动,把学生带向了研究性学习的行为中,为学生自主学习创造了环境。]
小学数学教案 篇4
教学内容:教科书第1—2页的内容
教学目标:
1、经历从实际情景里提出并解决问题的过程,理解十几减9的计算方法,能比较熟练地计算十几减9。
2、在观察、操作中逐步发展探究、思考的意识和思维的灵活性。
3、能应用知识解决生活中相关的实际问题,体会数学的作用。
教学重点:
能比较熟练地计算十几减9。
教学难点:
理解十几减9的退位计算方法。
教学资源:
学具。
教学过程:
一、创设情境,提出问题。
同学们,上一节课我们讲到小猴子水果店里的桃子可香甜了,你看(挂图出示)小白兔蹦蹦跳跳跑来了,它对小猴子说:“我买9个”。你们能看图提出哪些要解决的问题呢?
学生互相说图意。
全班交流,提出:还剩多少个?
应怎样计算呢?
根据回答板书:13—9=□
二、自主探索,领悟算法。
1、实物操作。
讲述:假如用小棒来表示,你应该怎样摆、怎样算?(学生摆学具)
2、请大家先独立思考,再四人一组互相讨论:13个怎样减去9个?
3、小组汇报:你是怎样算的?
4、结合学生的回答演示不同的算法。
方法一:10—9=1 1+3=4
方法二:13—3=10 10—6=4
方法三:9+( )=13 9+(4)=13
……
5、师:同学们能用这么多方法来计算13—9,真不简单,告诉老师,你喜欢哪一种方法?为什么呢?(根据学生的回答进行算法的优化)
6、试一试。
出示:14—9= 12—9= 17—9= 让学生用方法二来计算。
提示:可以先用小棒摆摆再计算。
指名学生口答,并要求说出算法。
三、巩固应用,深化拓展。
1、做“想想做做”第1题。
(1)引导学生看图,说图意。
(2)先独立完成,再同伴交流。
(3)全班交流算法。
2、做“想想做做”第2题。
让学生独立计算,然后说说算式的含义以及计算的方法。
3、做“想想做做”第3题。
让学生独立计算,然后说说计算的方法。
4、做“想想做做”第4题。www。
你能帮小蚂蚁算一算吗?指导书写格式后让学生独立完成在书上。
5、做“想想做做”第5题。
游戏“夺冠军”:让学生通过计算、比较发现算式间的某种联系,知道可以利用相邻的算式推出得数。
四、总结评价,点拨学法。
师:想一想,这节课我们学习了哪些新知识?
这些知识你是怎样学到的?先互相说一说,再告诉大家。(根据学生回答,板书:十几减9)
板书设计:
十几减9
方法一:一个一个地减。
13—9=4 方法二:先减去3,再减去6。
方法三: 9加(4)等于13。
2。22累计教时1课时
练习一(1)
教学内容:教科书第3页的1—5题
教学目标:
1、通过练习,帮助学生较好地掌握十几减9的计算。力求能正确地算出得数。
2、在观察、操作中逐步深化探究、思考的'意识和思维的灵活性。
3、为继续学习十几减8、7打好基础。
教学重点:
使学生掌握算法并能正确计算。
教学难点:
熟练十几减9法的计算方法。
教学资源:
学具。
教学过程:
一、揭示课题:
上节课我们学习了十几减9的知识,今天我们来做练习加深对知识的理解。
二、巩固练习,加深认识
1、做练习一第1题。
(1)分别出示插图,让学生看图说话,从中提出数学问题。
(2)学生独立计算,完成后同伴交流算法。
2、做练习一第2题。
让学生独立完成在书上,集体交流时让学生比较一下每组题有什么特点,并通过计算、比较发现算式间的某种联系,知道可以利用相邻的算式推出得数。
3、做练习一第3题。
游戏“跳树桩”:同桌间合作口算。抽几道题让学生说说计算的思路。
4、做练习一的第4题。
学生独立完成在书上,再以开火车的形式交流答案。
5、做练习一的第5题。
学生独立完成在书上,交流时说说先算什么,再算什么?
三、总结评价,点拨学法。
想一想,这节课你有哪些收获?十几减9你会算了吗?
板书设计:
练习一(1)
13—9+8=12 18—9—9=0
17—9+7=15 8+7—9=6
小学数学教案 篇5
课 题:圆的认识
教学目标
1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
教材分析
重点:在观察、操作中体会圆的特征。知道半径和直径的概念。
难点:圆的特征的认识及空间观念的发展。
教具:教学圆规 电化教具 课件
教学过程:
一、 观察思考
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的',你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)
三、认一认
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认 。
四、画一画,想一想
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直
径呢?(放动画)
2、以点A为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?
五、应用提高
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业
1、教材第5页练一练
2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)
训练学生的观察能力,发现问题的能力
不直接说出圆,把思考的空间留给学生
在画图中体会圆的特征
思考共同之处时再一次体会圆的特征
通过正反例的练习,加深对半径和直径的理解
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)
巩固提高,满足不同学生要求
小学数学教案 篇6
教学目的:
1.使学生初步认识含有三个已知条件的两步应用题的结构。
2.使学生初步理解和掌握两步应用题的解题思路,会分步列式解答两步应用题。
3.培养学生分析问题和解决问题的能力,培养学生举一反三,灵活解题的能力。
教学过程:
一、引入新课
(1)师:谁知道10月1日是什么节?今年的10月1日是我们伟大的中华人民共和国50岁的生日,为了庆祝这一盛大的节日,一些同学做了许多美丽的花朵。
板书:同学们做黄花25朵,做紫花18朵。
根据这两个条件,谁能提出一个问题,使它成为一道完整的应用题呢?怎样列式解答呢?(学生口述,电脑出示。)
大家仔细观察,这是一道几步计算的应用题?
(2)师:老师也提一个问题--"做了多少朵红花?(板书)看能不能解答?为什么?"(因为题中没有告诉红花与黄花、紫花的关系,所以不能解答。)
如果老师增加一个条件--"做的红花比黄花和紫花的总数少3朵"(板书)。现在红花与黄花、紫花有关系吗?这道题能不能解答了?
二、进行新课
1.师:这是我们今天要学习的例1,谁来把题读一遍。
2.引导理解题意。
这道题告诉我们的已知条件有哪些?要求什么问题?
红花的'朵数跟什么有关系呢?(总数)有什么样的关系呢?谁能用自己的话说说这句话是什么意思?
3.画线段图。
师:我们可以借助线段图来分析它们之间的关系。先画出一条线段表示黄花的朵数,(边说边画)黄花有多少朵?接着画线段表示紫花的朵数,表示紫花的线段应该比表示黄花的线段长呢?还是短呢?为什么短?画完后问:哪一条线段表示的是黄花和紫花的总数呢?(指名上台指出)再画表示红花的线段(师故意把表示红花的线段画得和总数一样长)。提问:是这样吗?为什么不对?应该怎样改?这条线段就表示红花的朵数,也就是这道题要求的问题。
4.分析、解答。
(1)师:请大家想一想,求红花的朵数用一步计算可以吗?为什么不能?要求做了多少朵红花,必须先算什么?
(2)师:每一步怎样算呢?求出黄花和紫花的总数,就可以求出什么了?请你在练习本上试着列式解答,谁最先做完,就上来把答案写在黑板上,其他同学做完后看书自检。
(3)小结:解答例1时,已知红花的朵数比黄花和紫花的总数少3朵,题中没有直接告诉黄花和紫花的总数,所以要先算出黄花和紫花一共多少朵,再算做了多少朵红花,需要几步计算?(两步。)
5.揭示课题:这就是我们今天学习的"两步应用题"(板书课题)。
6.改编例题。
(1)师:下面老师把例1改变一下,把第三个已知条件中的"少"改为"多"。(电脑出示。)
请你默读题目,思考以下问题。
①这道题和例1比,哪些地方发生了变化?
②线段图怎样改?
③解答这道题要先算什么?再算什么?
根据学生讨论情况归纳后,学生独立解答,个别板演。集体订正。问:解答这道题需要几步呀?第一步算什么?第二步算什么?
(2)师:下面老师把例1再改变一下(电脑出示题目。)指名读题后,先提问上述问题,学生再独立解答。
师生集体订正。
7.比较归纳。
(电脑出示)思考:这三道题有什么相同的地方?
有什么不同的地方?解答方法上有什么相同?有什么不同?
学生讨论。
小结:这三道题讲的事情相同,前两个已知条件和问题相同,第三个已知条件不同。从解答方法来看,因为红花的朵数都与黄花和紫花的总数有关系,而"总数" 没有直接告诉,所以三道题都需要两步计算,先算出来黄花和紫花一共多少朵,然后再求做了多少朵红花。不同的是求红花的朵数计算方法不同。因为例1告诉我们红花比黄花和紫花的总数少3朵,应该用总数减3;想一想第1题是告诉做的红花比黄花和紫花的总数多3朵,应该用总数加3;想一想的第3题是知道做的红花是黄花和紫花的总数的3倍,也就是3个43,所以用总数乘以3。大家在做应用题时一定要认真分析题意,确定先算什么,再算什么,每一步怎样计算。
三、巩固练习
1.(多媒体出示)填空。
(1)同学们跳绳,小华跳75下,小明跳85下。小青比小华和小明跳的总数少30下。小青跳了多少下?师引导学生分析题意。要求"小青跳了多少下",必须先算(
)。算式是:(
)。
(2)畜牧场养出羊120只,养奶羊410只。养绵羊的只数是山羊和奶羊总只数的4倍。养绵羊多少只?
师引导学生分析题意。
要求"养绵羊多少只",必须先算(
)。
算式是:(
)。
2.小游戏--猜一猜。
两名学生报出年龄、身高,师说出教师的年龄、身高与两名学生年龄、身高的关系,让学生猜一猜老师的年龄、身高。
四、课堂总结
今天我们学习了两步应用题,做题时要认真分析题意,确定先算什么,再算什么,每一步该怎样计算。
五、布置作业(略)
小学数学教案 篇7
第一课时
教学内容:
教科书P27例1、例2及“做一做”,练习六第1、2、5、6题。
教学目标:
1、通过操作活动,使学生体会所学平面图形的特征和平面图形的关系,并能用自己的语言描述长方形、正方形边的特征。
2、让学生在具体的情境中去思考、想像再创造,培养学生的创新意识。
教学设计:
一、引入新课
同学们还认识它们吗?(出示)
它们的身上还有很多的秘密,这节课老师看看哪位同学发现的秘密最多。
二、动手操作,探索新知
1、教学例1
(1)拿出一张长方形纸和正方形纸,让学生沿所标虚线折一折,体会长方形、正方形边的特征,从而了解到:长方形的对边相等,正方形的四条边都相等。
(2)带着学生做风车,在做的过程中,让学生说一说纸的每一步变化,从面体会到平面图形的特征又看到它们之间的关系。
如把长方形纸折成正方形纸利用了正方形四边相等的特征,把正方形纸剪成四个三角形时,看到了三角形和正方形的'关系,转动风车时,又看到了风车所转动的路径是一个圆。
2、教学例2
师:用几个相同的图形能拼出什么图形呢,请同学们拼拼看。
(让学生分组拼,拼完后组内交流,后教师引导全班交流。)
说一说用了几个什么图形拼成了一个什么图形。
三、巩固练习
(1)按P28上的“做一做”减正方形。
(2)思考并做一做练习六的第2、5、6题。
四、全课总结
小学数学教案 篇8
教学内容:第7册教科书第91页例4,92页的练一练及相关练习。
素质教育目标
(一)知识教学点
1.使学生进一步认识相遇问题应用题的结构.
2.通过分析相遇问题的数量关系,较熟练掌握相遇问题的思考方法.
3.学会解答已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.
(二)能力训练点
1.如何根据两地之间的路程和两个物体运行的速度,求相遇时间.
2.提高学生解答实际问题的能力.
(三)德育渗透点
1.培养学生积极动脑,独立思考的良好习惯.
2.通过应用题的教学培养学生热爱数学的品质.
教学重点:进一步认识相遇问题应用题的结构,能根据相遇问题的'数量关系学会已知两地之间的路程和两个物体运行的速度,求相遇时间的应用题.
教学难点:如何根据相遇关系式解答相遇求时间的各类应用题.
教具学具准备:自制活动投影片一套,小黑板两块.
教学步骤
一、铺垫孕伏
1.投影出示:小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经3分钟两人相遇.两地相距多远?
(1)读题
(2)用两种方法解答
2.导入:
(1)引导学生把这题所求问题变为条件,改编成求相遇时间的应用题.
(2)出示改编后的例6,两地相距270米.小东和小英同时从两地出发,相对走来.小东每分钟走50米,小英每分钟走40米.经过几分钟两人相遇?这就是我们这节课要学的求相遇时间的应用题.(板书相遇求时间)
二、探究新知
1.教学例6,读题理解题以后解答
(1)这题告诉我们哪些条件?(相距路程,两人速度)
(2)要求的问题是什么?(相遇时间)
2.演示自制投影片.
第一次演示:你发现了什么?启发学生思考:
(1)小东走了多少米?(50米),小英走了多少米?(40米)
(2)两人共走了多少米?(50+40=90米)
(3)用了多少时间?(1分)为什么只用了1分钟?(因为他俩是同时出发)
(4)这时两人相距多少米?(270-90=180米)
第二次演示:请认真观察,根据第一次演示的思考方法讨论,你知道了什么?
引导学生知道:
(1)现在小东走了100米,小英走了80米.
(2)他们都用了2分钟,老师追问:为什么两人用的时间相同?
(3)现在两人共走了180米.(100+80=180米)
(4)两人还相距90米.(270-180=90米)
3.归纳
提问:通过以上两次演示还知道了什么?
引导学生知道:
(1)小东和小英走的时间是相同的.
(2)小东和小英走1分钟就是90米,走2分钟就是180米.
(3)如果小东和小英再走1分钟就走完全程相遇了.
提问:是不是呢?老师指名学生到前面演示.从中你发现了什么?
(4)小东和小英走完全程(相遇)用了3分钟.提问:
(1)这3分钟就是什么?(相遇时间)
(2)讨论:是怎样得来的?
引导学生知道:
(1)小东和小英同时出发1分钟就走90米,270米里有3个90米,所以两人同时走完270米就用了3分钟,也就是这题求的相遇时间.
(2)归纳数量关系,引导学生知道:
①270米是路程
②90米是速度
③3分钟是时间
④数量关系式是:路程速度=时间
4.列综合算式独立解答
三、巩固发展
1.甲乙两个车站相距270米,两辆汽车从两站同时相对开出,甲车每小时行50千米,乙车每小时行40千米,开出几小时两车相遇?改变条件出示:
提问:(1)根据今天学的数量关系解这题的关键是什么?
(2)说解题思路
①如果乙车每小时比甲车慢10米,几小时后两车相遇?
②如果乙车每小时行40千米,比甲车每小时少行10千米,几小时后两车相遇?
思考后先独立完成,然后汇报解题思路.
③如果甲车3小时行150千米,乙走2小时行80千米,几小时后两车相遇?
分组讨论,汇报解答思路,并列出综合算式.
引导学生思考:通过解答以上这三个小题,你知道了什么?引导学生回答:我知道了解相遇求时间这类题,都要先找出甲乙的速度各是多少和相遇时间,如不直接告诉我们,根据题意求出来,再按数量关系式解答.
2.根据条件列算式并说明理由甲乙两地之间的公路长540千米.两辆汽车相对而行,甲车每小时行65千米,乙车每小时行70千米,经过4小时两车相遇.
(1)(65+70)4=540 (2)540(65+70)=4
(3) 54065-70=65 (4) 54070-65=70
(5)540-654=70 4 (6)540-704=654
四、全课小结:引导学生总结这节课学习了什么知识?
五、布置作业
六、板书设计
应用题
复习题小黑板
速度时间=路程
例6
路程速度=时间
(速度的和)(相遇时间)(速度的和)(相遇时间)
270(50+40)
=27090
=3(分)
【小学数学教案】相关文章:
小学的数学教案03-24
小学数学教案07-19
小学数学教案02-07
小学数学教案04-07
【精】小学数学教案07-20
小学数学教案【荐】07-20
小学数学教案【推荐】07-20
小学数学教案【热】03-17
人教版小学数学教案03-14
小学数学教案【热门】03-15