有关平行四边形教案模板集合9篇
作为一名人民教师,就难以避免地要准备教案,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?以下是小编帮大家整理的平行四边形教案9篇,希望能够帮助到大家。
平行四边形教案 篇1
教学要求:
1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:
在制作中发现平行四边形的基本特征。
教学难点:
引导学生发现平行四边形的特征。
教学过程:
一、生活引入
1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。
2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)
3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)
二、操作探究
1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。
2.师:谁来汇报?你选了那种材料?是怎么制作的?(让学生依次在投影上演示,并介绍制作过程)
3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?
4.下面,请每个小组的同学根据老师的提示进行讨论。
小组活动:
(1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。
(2)用什么方法去验证你们的猜想?怎样操作?
(3)通过观察,操作,验证,你们的结论是什么?
5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)
6.师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。
7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的'。
三、探索平行四边形与长方形的相同点与不同点。
1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。
2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?
3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?
四、小结,并认识平行四边形的不稳定性。
1.通过这节课的学习,你对平行四边形有哪些认识?
2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。
平行四边形教案 篇2
教学目标设计:
1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
教学重点:探究平行四边形的面积公式
教学难点:理解平行四边形的面积计算公式的推导过程
教学过程设计:
一、创设情境,激发矛盾
拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽
教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。
教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底
边长×邻边长吗?
今天这节课我们就来研究“平行四边形的面积”。教师板书课题。
学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?
二、另辟蹊径,探究新知
1、寻找根源,另辟蹊径
教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?
引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?
学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?
2、适时引导,自主探索
教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?
(1)学生操作
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。
第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较
刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?
(3)课件演示
是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型
既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?
B、拼成的长方形的.长和宽与原来的平行四边形的底和高有什么关系?
C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底 × 高
4、变化对比,加深理解
引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?
5、自学字母公式,体会作用
请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的
面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用
1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)
2、看图口述平行四边形的面积。
3分米 2.5厘米
3、这个平行四边形的面积你会求吗?你是怎样想的?
4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?
平行四边形教案 篇3
教学
目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题
重点
难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
导学过程教师复备
(学生笔记)
复习回顾
1.平行四边形有哪些性质?
2.判别四边形是平行四边形的条件有哪些?
3.平行四边形的'性质与条件的区别?
例题精讲
例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?
例2、如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的中点,四边形GEHF是平行四边形吗?为什么?
反馈练习
1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分线分别交BC于E、F,则EF=__________(在右边写出过程)
2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?
3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由.
平行四边形教案 篇4
一、教学目标:
1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。
3.培养学生发现问题、解决问题的能力及逻辑推理能力。
二、重点、难点
1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。
2.难点:运用平行四边形的性质进行有关的论证和计算。
3.难点的突破方法:
本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的.性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。
学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。
平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。
为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。
讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。
新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。
教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。
平行四边形教案 篇5
教学内容:
《义务教育课程标准实验教科书数学(四年级上册)》教科书70-71页例1,练习十二相关练习题。
教学目标:
知识目标:
1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;
2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;
能力目标:培养学生动手操作能力和概括能力,发展空间思维能力。
情感目标:在小组合作中,培养学生团结合作互助精神,在拼图的过程中感受图形的美。
教学重点:掌握平行四边形和梯形的特征。
教学难点:理解平行四边形、长方形、正方形的关系。
教学准备:
教具:课件,四边形关系图,长方形、正方形、平行四边形、梯形模具各一个。
学具:三角尺,直尺,量角器。
教学过程:
一、回顾旧知,引入新课。
师:我们以前已学过很多图形了,请认真观察下面图形它们是由几条边围成的?(课件出示)
生:四条。
师:你观察得真仔细。由四条边围成的这些图形叫四边形。
师:在这些四边形中,你最熟悉的是什么图形?
生:长方形,正方形。
师:长方形、正方形的边和角各有什么特点?
生:长方形的对边相等,对边平行,四个角都是直角。(板书)
生:正方形的四条边都相等,对边平行,四个角都是直角。(板书)
师:看来同学们对以前的知识掌握得真牢固!正方形是长方形吗?
生:是。
师:正方形是特殊的长方形,我们也可以说长方形包含正方形。
师:你知道这两个图形的名称吗?(指课件中的平行四边形和梯形)。
生:平行四边形和梯形。
师:你们认识得真多,这节课我们就一起来探究一下平行四边形和梯形的有关知识。(板书课题)
二、合作学习,探究新知
(一)动手操作初步感知平行四边形和梯形的特点。
师:平行四边形和梯形又有什么特点呢?现在我们用学具分别量一量它们的边、角各有什么特点,把你的发现像这样写下来。并相互说说你是怎样发现的?四人小组活动开始。
生:学生活动,教师巡视。
(二)教学平行四边形的特点。
1、汇报发现。
师:谁来大胆汇报自己的发现?你是怎样知道的?
(指名说说平行四边形的特点)
师:谁还有其它的发现吗?
2、?验证结论
师:刚才有的同学找到平行四边形的两组对边是互想平行的,我们一起来验证吧,请看大屏幕!(大屏幕展示方法:用直尺、三角尺平移验证)
3、总结概念。
师:(边操作边说)这组对边平行,这组对边也平行,两组对边都平行。
师:你们能用自己的话说说怎样的四边形叫“平行四边形”吗?(指名回答)
师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。
揭示概念:[课件展示]两组对边分别平行的四边形叫做平行四边形。(并板书)
4、引导学生找出关键词。
师:在这定义中,你认为哪些词语比较重点?
生:两组,平行,四边形。
师:你真会找。我们把重点词读重音,齐读一遍。
生:学生读。
师:下面我们男女同学比赛,看谁读得好。(男女分别读)
师反问:要想判断一个图形是不是平行四边形,必须符合什么条件?
5、穿插练习。
请判断下面图形是平行四边形的打“”,不是打“”。
(三)认识梯形
1、汇报发现
师:梯形的边又有哪些特点呢?
生:只有一组对边平行。
师:你们都有同样的发现吗?(板书)
生:有。
2、?验证结论
师:我们一起来验证一下。
师:(边操作边说)这组对边不平行,这组对边平行,只有一组对边平行。
3、总结概念。
师:你们能用自己的话说说怎样的四边形叫“梯形”吗?
师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。
揭示概念:[课件展示]只有一组对边平行的四边形叫做梯形。
(并板书)
4、引导学生找出关键词。
师:在这定义中,你又认为哪些词语比较重点?
生:只有一组,平行四边形。
师:你找得真准确,我们把重点词读重音,再读一遍。
师:下面我们来小组比赛,看哪个小组读得好。
师反问:要想判断一个图形是不是梯形,必须要符合什么条件?
5、穿插练习。
请判断下面图形是梯形的打“”,不是打“”。
6、比较平行四边形与梯形有什么不同。
师:(指练习中的平行四边形)问:它为什么不是梯形?它其实是个平行四边形,那平行四边形与梯形有什么不同?
三、教学四边形之间的关系。
师:我们已经认识了这么多的图形了,这些图形都是四边形。(课件出示四边形的集合图)
师:我们先看长方形,正方形和平行四边形的边都有什么共同的特点?
生:两组对边都平行。
师:那长方形,正方形是特殊的平行四边形吗?(四人小组讨论)
师:指名汇报。
师总结:长方形,正方形是特殊的平行四边形。它们特殊在哪里?
生:四个角都是直角。
师:梯形有没有两组对边平行?
生:没有。
师:所以梯形自己为一类。
教师总结:所以在四边形这个大家族中[展示:四边形集合圈],有平行四边形、梯形、一般四边形这几个家庭组成[展示:平行四边形、梯形集合圈],在平行四边形这个家庭中,包含有长方形这个特殊的小家庭[展示:长方形集合圈],长方形这个小家庭中又包含正方形这个特殊的成员[展示:正方形集合圈]。
师:现在我们对照课本71页的这个集合图,同桌互相说说这些四边形之间的关系。
生:学生活动。
师:谁来说说它们的关系。(指名说)
四、质疑。
师:请打开课本70--71页,看书有没有要问老师的呢?
五、巩固练习。
1、判断:
(1)两组对边分别平行的图形是平行四边形。()
(2)有一组对边平行的四边形是梯形。()
(3)平行四边形的两组对边分别平行并且相等。()
(4)长方形、正方形都是特殊的`平行四边形。()
2、找一找生活中的平行四边形和梯形。
师:你们判断得真准确。其实平行四边形和梯形就在我们的身边,你们在哪里看到过平行四边形和梯形呢?(指名说说)
师:好,老师现在带你们去校园找找,看这美丽的校园哪里有平行四边形和梯形呢?(主题图)
师:谁愿意上来找找?
师:同学们真会找,我们在生活中也要仔细观察身边的事物。老师也找到了一些生活中的平行四边和梯形。我们一起来欣赏一下。(课件欣赏生活中的平行四边形和梯形)
师:我们生活中很多建筑物都要用到我们学过的图形的。你们想不想利用我们学过的图形亲手拼一幅美丽的图画呢?
生:想。
3、拼图。
师:拼图要求:用学过的图形,拼出你们喜欢的图画。
(1)找图形(2)小组拼图画。(3)展示作品。
生:学生动手拼。
师:同学们真能干,能利用我们学过的图形拼出这么漂亮的图画,你们的手真巧。在这些美丽的图画中,你最喜欢哪一幅?它是由哪些图形拼成的?
六、总结:谈收获。
师:同学们,你觉得这节课里你表现怎样?你有什么收获和体会?
平行四边形教案 篇6
教学目标
1.进一步认识平行四边形是中心对称图形。
2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1.平行四边形的特征:对边( ),对角( )。
2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)
二、引导观察。
1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。
2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)
例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3.平行四边形ABCD的'两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。
5.练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题
平行四边形教案 篇7
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的`周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形教案 篇8
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的`中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 本单元教学平行四边形和梯形的特点以及它们的高。学生在第一学段直观认识了平行四边形,而梯形则是第一次学习。全单元的内容分成两部分编排: 先教学平行四边形,再教学梯形。编写的一篇你知道吗介绍了平行四边形容易变形的特性及其在日常生活中的应用。安排的一道思考题让学生体会应用图形的平移和旋转可以把平行四边形剪拼成长方形、把梯形剪拼成长方形、把长方形剪拼成三角形。 1、 让学生通过做图形发现平行四边形和梯形的特点。 《标准》要求学生通过观察、操作,认识平行四边形和梯形。短短一句话,指出了学生学习图形特征的方法和途径: 要以发现为主,而不是仅靠接受。 (1) 第43页例题要求学生凭已有的直观认识想办法做一个平行四边形,他们做的方法一定很多,教材里呈现的只是其中的一部分,很可能还有别的做法。做图形的目的是体会平行四边形的特点,教学时要注意四点: ① 课前要有充分的物质准备,如小棒、钉子板、方格纸这些材料可以是教师准备的,也可以是学生准备的。有些材料是预设的,有些材料是教学中即时想到的。 ② 在做中发现特征,要让学生说说做的体会。做图形的目的是感受图形的形状特征,所以,要组织学生交流做法与思考。如用小棒摆平行四边形,上、下两根小棒一样长,左、右两根小棒也一样长。在方格纸上画平行四边形,上、下两条边互相平行,左、右两条边也互相平行 ③ 要抓住平行四边形的主要特征进行教学。平行四边形有许多特点,如对角相等、邻角和是180等。例题的教学目的是使学生建立平行四边形的概念,所以要抓主要特点两组对边分别平行,两组对边长度分别相等。至于其他特点,不必提出过多的要求。 两组对边分别平行是平行四边形的本质特征,必须使学生充分体会。不仅凭眼睛看,还要用画平行线的工具和方法进行验证。两组对边长度分别相等是平行四边形的重要特点,在以后计算面积时经常用到。也要让学生通过度量发现或验证。 ④ 要促进学生在交流中集思广益、互补共享。每个学生的发现往往是点滴的,用小棒摆容易发现对边相等,不注意对边平行;用直尺画容易体会对边平行,不注意长度相等。因此,相互倾听、相互评价、相互吸收、共享发现成果尤为必要。听听别人的发现,看看自己做的平行四边形是不是也这样,就能做到互补共享。教师参与学生一起交流,要帮助学生提高语言水平,如把上、下两条边互相平行,左、右两条边互相平行概括地说成两组对边分别平行。 (2) 在活动中体会长方形和平行四边形的关系,进一步认识这两种图形。想想做做第3、4题都是把一个平行四边形通过分移拼的活动变成一个长方形,让学生一方面体会到平行四边形和长方形的形状不相同,另一方面体会到变化前后的两个图形的面积相同。这些都为以后探索平行四边形面积的计算方法作了准备。第6题把4根饮料管先串成一个长方形,再拉成一个平行四边形。这些操作活动帮助学生发现长方形和平行四边形都是四边形,两组对边都互相平行且长度相等。它们的不同点主要表现在四个角上。 (3) 第一次教学梯形,先让学生观察屋顶的'一个面、梯子、清洁箱的抛物口、足球门的侧面,形成对梯形的直观感知。然后通过做梯形体会它的特点。教学线索和主要活动与平行四边形基本相同,仅有两点变化: 一是白菜卡通的提问方式变了,不是问梯形有什么特点,而是问梯形与平行四边形比较,有什么区别;二是多了辣椒卡通在回答问题。这些变化是引导学生寻找梯形的本质特征,帮助他们建立准确的梯形概念。 学生有想办法做出一个平行四边形的活动体验,现在做一个梯形,教学可以放得更开一些。如做的材料自己寻找、做的方法自己设计,并要求学生通过做了解梯形的特点。在交流梯形的特点时,要紧扣教材中的问题进行,突出梯形只有一组对边平行。 2、 精心设计高的教学。 四年级(上册)教学平行的时候,曾经让学生在两条互相平行的直线中间画几条与两条直线都垂直的线段,通过度量还发现了画出的所有垂直线段长度都相等。那时候让学生做这道题的目的是体会平行与垂直是不同的位置关系。并通过平行线之间的垂直线段长度相等,体会两条平行的直线永远不会相交。这道题又可以成为本单元教学平行四边形和梯形的高的起点。 (1) 平行四边形有两组互相平行的对边,有两条长度不等的高。教材把两条高分两步教学,先讲平行四边形上、下一组对边间的高,再讲左、右一组对边间的高。 第44页例题要求学生量出平行四边形上、下一组对边间的距离。这两条边之间的距离是它们之间垂直线段的长度,量距离要先画出垂直线段。画垂直线段的方法一般是在一条边上确定一点,从这一点向对边作垂线。学生经过这样的过程,理解教材中关于平行四边形高的描述式定义就有了感性认识。所以,教学时要引导学生思考什么是两条红线间的距离,并画一画两条红线间的垂直线段。 试一试的左边一题仍然是上、下两条边之间的高,通过这题巩固对平行四边形高的初步认识。同时看到,画高的时候要在上面一条边上任意确定一点,这任意一点也可以是上面一条边的一个端点,即平行四边形的一个顶点。右边两题是左、右两条边之间的高,要让学生想一想: 图中的红线是平行四边形的高吗,为什么?抓住高的本质特征思考,从而进一步理解平行四边形的高。 (2) 第47页教学梯形的高,教材的编写线索和安排的教学活动与教学平行四边形的高基本相同,有利于学生利用已有经验学习新知识。不同的地方有两处: 一是结合教学梯形的高讲了梯形的上底、下底和腰。二是例题里的梯形的底是上、下两条互相平行的边,试一试里出现底是左、右两条互相平行的边的梯形,还有直角梯形。直角梯形的高是垂直于底的那条腰。与画平行四边形的高相同,画梯形的高要在一条底上任意选一点。如果选的点是梯形的顶点,那么这条高把梯形分成一个三角形和一个梯形;如果选的点不是梯形的顶点,那么这条高把梯形分成两个较小的梯形。第48页第3题就为此而设计。 【平行四边形教案】相关文章: 平行四边形教案08-10 平行四边形面积教案02-09 平行四边形教案优秀08-29 《平行四边形的认识》教案03-15 平行四边形面积教案02-29 平行四边形的面积教案07-17 《认识平行四边形》教案05-28 平行四边形的认识教案07-30 《平行四边形的认识》教案07-09 平行四边形的面积教案06-18平行四边形教案 篇9