当前位置:育文网>教学文档>教案> 平行四边形教案

平行四边形教案

时间:2024-07-07 15:28:29 教案 我要投稿

精选平行四边形教案模板锦集八篇

  作为一名无私奉献的老师,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。那么应当如何写教案呢?以下是小编整理的平行四边形教案8篇,仅供参考,欢迎大家阅读。

精选平行四边形教案模板锦集八篇

平行四边形教案 篇1

  教学目标

  1.通过生活情景与实践操作,直观认识平行四边形。

  2.在观察与比较中,使学生在头脑里建成长方形与四边形间的区别与联系。

  3.体会平行四边形与生活的密切联系。

  教学重难点

  通过生活情景与实践操作,直观认识平行四边形。

  教学准备

  教具:活动长方形框架点子图。

  学具:七巧板。课时

  安排1

  教学过程

  一、利用学具逐步探究

  1.拉一拉

  发给每位学生一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么变化?

  生动手操作,交流自己的发现。学生会发现长方形向一边倾斜了,角的大小发生了变化等等。程度较好的学生会说出长方形变成了平行四边形。

  教师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形

  长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里讨论。

  (1)小组观察、讨论。教师到各个小组中指导,引导他们从边和角两个方面探究。

  (2)分组汇报,小组之间互相补充。得出:平行四边形和长方形一样,都有四条边,四个角,对边相等。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。

  (设计意图:让学生亲自动手操作,经历将长方形拉成平行四边形的过程。在学生初步感知平行四边的基础上,探索平行四边形与长方形的联系和区别,帮助学生建立平行四边形的模型。)

  2.猜一猜:[课件出示如果这些图形都是可活动的,估计哪些能拉成平行四边形,哪些不能拉成平行四边形,为什么?

  让学生安安静静的思考后,交流看法。平行四边形有四条边,所以三角形和五边形不能拉成。普通四边形的对边不相等,也不能拉成。正方形能拉成特殊的平行四边形:菱形。长方形可以拉成平行四边形。

  请在导入时得到学具奖励的学生上台利用学具拉一拉,验证大家的猜测)

  3.认一认:

  让学生判断大屏幕上的图形是平形四边形吗?[课件出示]

  学生逐一回答。教师随即追问为什么第三、第五个图形不是平形四边形?)

  4.找一找:

  给出一幅画,让学生从这幅画中找到平行四边形

  课件出示画面:在小花园里,有菱形的瓷砖、伸缩们、回廊……图中蕴含着各种各样的平行四边形。学生汇报后,让他们数一数中有几个平行四边形。

  师:除此之外,你还能从生活中找到它吗?

  二、动手操作拓展延伸:

  1.画一画:

  (1)生利用尺子、铅笔在点子图上画平形四边形。画好后,在小组里互相交流。

  (2)利用展台展示学生作品。如果出现错误,让学生当“小老师”互相纠正。

  2.拼一拼:

  用七巧板拼成一个平行四边形,同桌两人一组,比一比,哪个组拼的`方法最巧妙。

  (1)请三组同桌在黑板上拼,其余学生分组在下面拼。教师巡视,发现巧妙的拼法,让其展示在黑板上。

  (2)选择一个你最喜欢的平行四边形,说一说它是用什么形状的七巧板拼成的。

  三、课堂

  1.这节课你有什么收获?

  2.师:只要注意积累,你们的知识会越来越多!

平行四边形教案 篇2

  一、 教学目标:

  1.掌握用一组对边平行且相等来判定平行四边形的方法.

  2.会综合运用平行四边形的四种判定方法和性质来证明问题.

  3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.

  二、 重点、难点

  1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

  2.难点:平行四边形的判定定理与性质定理的综合应用.

  三、例题的意图分析

  本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.

  四、课堂引入

  1. 平行四边形的性质;

  2. 平行四边形的判定方法;

  3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?

  结论:一组对边平行且相等的`四边形是平行四边形.

  五、例习题分析

  例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.

  分析:证明BE=DF,可以证明两个三角形全等,也可以证明

  四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.

  证明:∵ 四边形ABCD是平行四边形,

  AD∥CB,AD=CD.

  ∵ E、F分别是AD、BC的中点,

  DE∥BF,且DE= AD,BF= BC.

  DE=BF.

  四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).

  BE=DF.

  此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

  例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.

  分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.

  证明:∵ 四边形ABCD是平行四边形,

  AB=CD,且AB∥CD.

  BAE=DCF.

平行四边形教案 篇3

  教学目标:

  知识技能:认识平行四边形,能在方格纸上画平行四边形。

  过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。

  情感态度:鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。

  教学过程:

  一、 创设情境

  1、认识平行四边形

  (1)出示下图,认真观察。94页的一组图形,让学生仔细观察,然后提出分类的要求。

  (2)在交流的'基础上,让学生了解什么样的图形叫做平行四边形。

  (3)引导学生从自动拉门、篱笆中找出平行四边形。

  2、感悟平行四边形的特征

  ⑴学会画平行四边形。

  教师掩饰在方格纸上画一个平行四边形。

  ⑵引导学生找到平行四边形的不稳定性。

  二、实践与应用

  1.下面哪些图形是平行四边形?把它涂上色。

  2.在方格纸上画一个大一点的平行四边形。

  三、全课小结

  学生汇报本节课的收获。

平行四边形教案 篇4

  《平行四边形的初步认识》第1课时教案分析

  备课时间:20xx年9月5日

  上课时间: 年 月 日

  教学内容:教材第12~16页例1和“想想做做”第1~5题。

  教学目标:

  1、使学生通过观察、比较、分类,认识四边形、五边形、六边形等平面图形,能判断一个由线段围成的图形是几边形,能按要求围出或剪出多边形。

  2、使学生经历从实际中抽象出图形,以及观察、实践操作等数学活动,进一步感受分类的思想,积累学习平面图形的.初步经验;体会不同图形边数的特点,发展相应的空间观念。

  3、使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。

  教学重点:

  认识四边形、五边形、六边形等平面图形。

  教学难点:

  能根据要求把一个多边形分成不同的图形或者是数图形的个数。

  教具或学具准备:

  师生每人准备小棒若干根,钉子板1个,四边形纸片2张,正方形纸片1张,剪刀1把。

  教学过程:

  一、初步感知

  1.回顾已知图形。

  今天,老师带大家到有趣的“图形王国”去游一游、看一看。(出示如下图形)请看,这里有一些我们学过的图形。你能说出它们的名称吗?

  (1)让学生明确第(1)题的要求。

  出示两张四边形纸片,让学生想想怎样剪成两个三角形,怎样剪成一个三角形和一个四边形。

  学生操作剪图形,教师巡视。

  (2)让学生明确第(2)题的要求。

  出示正方形纸片,要求学生想想怎样可以剪下一个三角形。

  学生操作剪下一个三角形。

  展示交流:你是怎样剪的?剩下的部分是什么图形?

  6、做“想想做做”第5题。

  让学生找一找、数一数,能找到几个就找几个;然后交流自己找到了几个四边形。

  四、总结评价

  交流:今天我们又去了图形王国,你有哪些新收获?你是怎样学习这些知识的?

  五、布置作业

  《补充习题》第 页。

  板书设计:

  课后笔记:

平行四边形教案 篇5

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  【教学目标】

  1、通过操作和讨论掌握平行四边形和梯形的特征。

  2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

  3、注意培养学生的空间观念和想像力。

  【教学重点】

  通过操作和讨论掌握平行四边形和梯形的特征。

  【教学难点】

  了解平行四边形与长方形和正方形的关系。

  【教学准备】

  教师准备:直尺,三角板,课件。

  学生准备:直尺,三角板,白纸,铅笔。

  【教学过程】

  一、通过观察,加深学生对四边形特点的了解。

  1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

  (1) (2) (3)

  (4) (5) (6)

  师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

  生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

  师:你知识三角形和四边形有什么特点吗?

  生1:三角形有三条边,三个角。

  生2:四边形有四条边,四个角。

  师:对,今天我们来学习两种特殊的四边形。

  [设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]

  二、通过观察讨论,让学生发现平行四边形和梯形的特点。

  1、通过让学生观察讨论,认识平行四边形和长方形的定义。

  出示课件:在电脑上出示一组四边形。

  (1) (2) (3)

  (4) (5) (6)

  师:电脑上的这组图形都是什么图形?

  生:四边形。(有前面的知识作铺垫,学生很容易回答出来)

  师:你能把它们分类吗?

  生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)

  生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

  师:你能说说把图(1)、(3)、(6)分为一组道理吗?

  生1:因为图(1)、(3)、(6)有两组平行线。

  师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)

  生:确实有两组平行线。

  师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)

  师:谁能说说把图(2)、(4)、(5)分为一组的道理?

  生2:它们只有一组平行线。

  师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)

  2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

  师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?

  生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

  生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

  生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,

  师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

  师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

  师:你们能说说长方形和正方形特殊的地方吗?

  生:它的四个角都是直角。

  师:对,这说是平行四边形特殊的地方。

  (通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的.定义。)

  3、进一步认识平行四边形和梯形的特点。

  师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)

  生1:我发现平行四边形对边是相等的。

  师:请同学们用尺子量一量。

  生2:我发现平行四边形的对角相等。

  师:请同学们用量角器量一量。

  师:这两位同学的发现正确吗?

  生:完全正确。

  师:梯形有这些特点吗?请同学们量一量。

  生:没有,梯形的对边不相等,对角也不相等。

  (通过学生的操作,进一点了解平行四边形和梯形的特点)

  师:下面我们可以用图表表示平行四边形和梯形的特点。

  图形对边平行对边对角

  平行四边形有两组对边平行相等相等

  梯形只有一组对边平行不相等不相等

  (用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)

  三、认识四边形之间的关系。

  师:同学们,平行四边形和梯形是不是四边形?

  生:是。

  师:我们可以用这个图来表示:

  平行四边形

  梯形

  四边形

  师:长方形和正方形应怎样表示呢?

  生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

  师:对,应这样表示:

  平行四边形

  长方形 梯形

  正方形

  四边形

  四、巩固练习。

  1判断下面那些图形的平行四边形,那些图形的梯形。

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (7)

  (使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)

  2填空。

  1、两组对边( )的四边形叫做平行四边形。

  2、( )的四边形叫做梯形。

  3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。

  4、平行四边形和梯形都是( )形,它们都有( ),( )个角。

  (通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)

  五、全课小结。

  师:今天你们学到了什么?

  生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

  [设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]

平行四边形教案 篇6

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

  一、导入新课

  根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、讲授新课

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的.宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的“填空”。

  7、验证公式

  学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  (四)应用

  1、学生自学例1后,教师根据学生提出的问题讲解。

  3、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  4、做书上82页2题。

  三、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  四、作业

  练习十五第1题。

  五、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽 平行四边形的面积=底×高

  S=a×hS=ah或S=ah

平行四边形教案 篇7

  学习目标:

  1.能运用综合法证明正方形性质定理。

  2.体会证明过程中所运用的归纳概括以及转化等 数学思想方法

  课前热身:

  矩形、菱形有哪些性质和判别方法?

  正方形有哪些性质?你能证明吗?

  自主学习

  1.证明有一个角是直角的菱形是正方形

  2.证明对角线相等的菱形是正方形

  4.议一议

  ①依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。

  ②依次连接特殊平行四边形 四边中点呢?

  课堂小结

  1、顺次连接任意四边形各边的中点得到的'四边形是

  2、顺次连接矩形各边的中点得到的四边形是

  3、顺次连接菱形各边的中点得到的四边形是

  4、顺次连接正 方形各边的中点得到的四边形是

  反馈检测:

  1.正方形的边长为 ,则它的对角线长 ,若正方形的对角线长为 ,它的边长为 。

  2.边长为 的正方形,在一个角 剪掉一 个边长为的 正方形,则所剩余 图形的周长为 。

  3.已知:如图 Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F。

  求证:四边形CEDF是正方形。

  布 置作业:

  A组:习题 4、2 创新设计 B 组 习题4.、2 C 组 背定义

平行四边形教案 篇8

  【当堂检测】

  1.(20xx 年永州市).下列命题是假命题的是( )

  A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.

  C.一组对应边相等的两个等边三角形全等; D.对角线相等的四边形是矩形.

  2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )

  A. B. C. D.都不对

  3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的周长为( )

  A. B. C. D.

  4.(20xx年南宁市)如图(1),在边长为5的`正方形 中,点 、 分别是 、 边上的点,且 , .

  (1)求 ∶ 的值;

  (2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;

  (3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由.

【平行四边形教案】相关文章:

平行四边形教案08-10

平行四边形的面积教案07-17

《平行四边形的认识》教案09-30

平行四边形教案优秀08-29

平行四边形面积教案02-29

平行四边形的认识教案07-30

《平行四边形的认识》教案07-09

平行四边形的判定教案07-08

平行四边形的面积教案06-18

《认识平行四边形》教案05-28