当前位置:育文网>教学文档>教案> 平行四边形教案

平行四边形教案

时间:2023-05-21 15:41:02 教案 我要投稿

有关平行四边形教案四篇

  作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?以下是小编收集整理的平行四边形教案4篇,欢迎大家借鉴与参考,希望对大家有所帮助。

有关平行四边形教案四篇

平行四边形教案 篇1

  一、 教学目标:

  1.掌握用一组对边平行且相等来判定平行四边形的方法.

  2.会综合运用平行四边形的四种判定方法和性质来证明问题.

  3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.

  二、 重点、难点

  1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

  2.难点:平行四边形的判定定理与性质定理的综合应用.

  三、例题的意图分析

  本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.

  四、课堂引入

  1. 平行四边形的性质;

  2. 平行四边形的`判定方法;

  3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?

  结论:一组对边平行且相等的四边形是平行四边形.

  五、例习题分析

  例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.

  分析:证明BE=DF,可以证明两个三角形全等,也可以证明

  四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.

  证明:∵ 四边形ABCD是平行四边形,

  AD∥CB,AD=CD.

  ∵ E、F分别是AD、BC的中点,

  DE∥BF,且DE= AD,BF= BC.

  DE=BF.

  四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).

  BE=DF.

  此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

  例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.

  分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.

  证明:∵ 四边形ABCD是平行四边形,

  AB=CD,且AB∥CD.

  BAE=DCF.

平行四边形教案 篇2

  教材分析

  1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

  2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。

  学情分析

  五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的.作用。

  教学目标

  (1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  (2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  (3)培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点和难点

  教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。

  教学过程

  一、情感交流

  二、探究新知

  1、旧知铺垫

  (1)、说出平面图形名称并对它们进行分类。

  (2)、计算正方形、长方形的面积。(强调长方形面积计算公式)

  设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。

  2、 导入新课

  3、 探究平行四边形面积计算方法。

  (1)、在方子格中数出长方形的面积。

  (2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。

  (3)、通过观察表格,试着猜测平行四边形的面积计算方法。

  (4)、共同探讨如何计算平行四边形的面积。

  ①出示平行四边形,引导学生明确其底和高。

  ②学生在学具上标明其底并画出对应的高。

  ③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)

  ④小组交流如何操作的。(割补法)

  ⑤学生代表汇报各组的操作方法以及得到的结论。

  ⑥幻灯片演示割补的过程。

  ⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)

  4、 课堂小练笔。

  设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。

  三、课堂练习

  四、小结本课

  五、课堂作业

  板书设计

  平行四边形 面积 = 底 × 高

  长方形 面积 = 长 × 宽

  S表示平行四边形的面积 a表示底 h表示高

  S=a×h s=a.h S=ah

平行四边形教案 篇3

  教学内容:人教版第九册 64 – 67页

  说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。

  教学重点:平行四边形面积的推导过程。

  本课采用的教法:自学法 、 转化方法、小组合作法、实验法。

  学法:1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景, 为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二、突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的'长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想

  三、小组合作,培养学生的合作精神。

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。

  四例题独立完成,体现学生自己解决问题的能力。

  例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

  s= a h

平行四边形教案 篇4

  教学目标

  教学目标:

  知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。

  能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。

  情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。

  教学重点和难点

  教学重、难点:

  理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。

  培养学生运用公式解决实际问题的能力。

  教学过程

  (一)创设情境,设疑引入

  谈话:出示两个美丽的.花坛(课件呈现)。

  提问:请大家观察一下,这两个花坛哪一个大呢

  然后给出长方形的长和宽让学生计算长方形的面积。

  提问:那平行四边形的面积你会算吗?从而导入新课。

  (二)操作探索,获取新知

  数方格感知平行四边形和长方形之间的关系

  (1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)

  (2)汇报交流自己的发现。

  小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

  2、应用“转化”思想,引入割补、平移法

  (1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)

  (2)精彩展示:要求边讲边操作。

  提问:为什么都要转化成长方形?

  为什么一定要沿着高剪开呢?

  接着电脑演示其它方法,渗透割补、平移法

  3、建立联系,推导公式

  (1)小组合作探索:

  a、原来的平行四边形转化成长方形后,什么变了?什么没变?

  b、拼成长方形的长与原来平行四边形的底有什么关系?

  c、拼成长方形的宽与原来平行四边形的高有什么关系?

  d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )

  (2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

  提问:用字母怎么表示呢?自学课本。

  学生回答s=ah(板书)

  提问:s、a、h分别表示什么呢?

  提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

  (三)巩固应用,内化新知

  前面的花坛题

  课本第2题:你能想办法求出下面两个平行四边形的面积吗?

  拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?

  (四)课堂总结,深化新知

  师:同学们,通过今天的学习,你有什么收获呢?

【平行四边形教案】相关文章:

平行四边形教案04-01

平行四边形的特征教案02-27

平行四边形面积教案02-09

平行四边形的面积教案04-07

认识平行四边形教案08-26

《认识平行四边形》教案03-30

《平行四边形的认识》教案03-15

平行四边形的面积教案03-28

《平行四边形的面积》教案06-01

《平行四边形的判定》教案06-03