当前位置:育文网>教学文档>教案> 平行四边形教案

平行四边形教案

时间:2024-07-17 16:33:43 教案 我要投稿

精选平行四边形教案范文合集七篇

  作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以有效提升自己的教学能力。优秀的教案都具备一些什么特点呢?以下是小编整理的平行四边形教案7篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

精选平行四边形教案范文合集七篇

平行四边形教案 篇1

  教学目标

  1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.

  2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.

  教学重点

  掌握平行四边形的意义及特征.

  教学难点

  理解平行四边形与长方形、正方形的关系.

  教学过程

  一、复习准备.

  我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

  在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.

  教师提问:我们学过哪些四边形呢?

  学生举例.

  说说哪些物体表面是平行四边形?

  教师出示下图,让学生初步感知平行四边形.

  二、学习新课.

  1.理解平行四边形的意义.

  首先出示一组图形.

  教师提问:这些图形是什么形?它们有什么特征?

  (1)看到这个名称你能想到什么?(板书:平行、四边形)

  教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

  (2)动手测量.

  指名到黑板上用三角板检验一下,每个图形的对边怎样.

  (3)抽象概括.

  根据你测量的结果,能说说什么叫平行四边形吗?

  小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)

  教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.

  (4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

  2.平行四边形的特征和特性.

  (1)教师演示.

  教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

  学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.

  (2)动手操作.

  学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.

  (3)归纳平行四边形特性.

  根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)

  (4)对比.

  三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.

  这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?

  (如汽车间的保护网,推拉门、放缩尺等.)

  3.学习平行四形的底和高.

  (1)认识平行四边形的底和高.

  教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.

  (2)找出相应的底和高.【继续演示课件“平行四边形”】

  引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

  使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

  (3)画平行四边形的高.【继续演示课件“平行四边形”】

  教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.

  ①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)

  引导学生比较长方形和平行四边形的异同点,使学生明确:

  相同点是两组都分别平行,所以长方形也具有平行四边形的.特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.

  ②引导学生比较正方形和平行四边形的相同点和不同点.

  使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.

  ③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

  三、巩固练习.【继续演示课件“平行四边形”】

  1.判断下列图形哪些是平行四边形?

  2.指出平行四边形的底,并画出相应的高.

  3.在钉子板上围出不同的平行四边形.

  4.数一数下图中有( )个平行四边形.

  四、教师小结.

  1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

  2.组织学生对所学知识提出质疑,并解疑.

  3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)

  五、布置作业.

  1.用一套七巧板拼出不同的平行四边形.

  2.在下面每个平行四边形中分别画出两条不同的高。

平行四边形教案 篇2

  教学内容:课本第73-74页练习十七第4-9题

  教学要求

  1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

  2、养成良好的审题习惯,树立责任感。

  教学重点:能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

  教具准备:口算卡片。

  教学过程

  一、复习

  1、平行四边形的面积计算公式是什么?

  2、口算:

  4.9÷0.75.4+2.64×0.250.87-0.49

  530+2703.5×0.2542-986÷12

  3、求平行四边形的面积。

  (1)底12米,高是7米;(2)高13分米,底长6分米;

  (3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米

  4、出示课题。

  二、新授

  1、补充例题

  一块平行四边形的.麦地底长125米,高24米,它的面积是多少平方米?

  (1)独立列式后,指名口述,教师板书。

  (2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

  让学生议一议,然后自己列式解答,最后评讲。

  (3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

  与上题比较,从数量关系上看,什么是相同的?什么是不同的?

  让学生自己列式。

  辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

  A900×(125×24÷10000)

  B900÷(125×24)

  C900÷(125×24÷10000)

  2、小结(略)

  三、巩固练习

  练习十七第6、7题

  四、课堂作业

  练习十七第8、9题

  ⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

  ⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

  板书设计:

  平行四边形面积的计算

  教后感:

平行四边形教案 篇3

  教学目标

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的.特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

平行四边形教案 篇4

  教学内容:

  教科书数学第八册第22~26页

  教学目标:

  1.通过观察操作认识平行四边形的特征,使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2.经历探索平行四边形面积计算公式的过程,使学生初步认识转化的思考方法在研究平行四边形面积时的运用。

  3.培养观察、比较、推理和概括能力,渗透转化思想的空间观念。

  教学重难点:

  探索平行四边形面积计算公式的推导过程。

  教具准备:

  1.课件

  2.教师准备一个平行四边形的纸片。

  3.学生准备好学具

  教学过程:

  活动一:认识平行四边形的特征。

  信息窗1,学生观察。

  师:你发现了什么信息?你想提一个什么数学问题?学生以小组为单位讨论。

  (生交流讨论的情况)

  平行四边形的特征:对边平行且相等,对角相等。

  师:什么叫平行四边形?(两组对边分别平行的四边形叫做平行四边形。)

  师:先领学生复习平行四边形的`底和高。再让学生指出平行四边形的底,指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

  活动二:学习平行四边形面积的计算公式。

  师:解决1号虾池的面积是多少。

  我们已经知道1号虾池的形状是平行四边形的,要求1号虾池的面积,就是求平行四边形的面积,那么怎样求平行四边形的面积?请大家猜测一下。

  学生活动:用手中的学具操作一下。

  师:现在交流你们想出的方法。

  师:同学们有各自的猜想,到底谁的对呢?用什么办法来验证。

  师:哪个小组来汇报一下你们是怎样来验证的 ,你们的结论是什么?

  提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?

  启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  通过操作总结平行四边形面积的计算公式。

  (1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。

  (2)教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在演示。

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  教学用字母表示平行四边形的面积公式。

  板书:S=ah,

  S=ah,或者S=ah。

  应用总结出的面积公式计算平行四边形的面积。

  师:现在来求:1号虾池的面积是多少?

  学生列式:90X60=5400(平方米)

  活动三:

  解决2号虾池能放养多少尾虾苗?

  交流答案,交流解题思路。

  活动四:巩固练习

  自主练习的1、2、5

  活动五:

  课堂小结:

  这节课我们共同研究了什么?

  怎样求平行四边形的面积?

  平行四边形的面积计算公式是怎样推导出来的?

平行四边形教案 篇5

  【教学目标】

  1、知识与技能:

  探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。

  2、过程与方法:

  经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。

  3、情感态度与价值观:

  在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。

  【教学重点】:

  探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。

  【教学难点】:

  发展合情推理及逻辑推理能力

  【教学方法】:

  启发诱导法,探索分析法

  【教具准备】:多媒体课件

  【教学过程设计】

  第一环节回顾思考,引入新课

  什么叫平行四边形?

  平行四边形都有哪些性质?

  利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?

  [学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到合适的解决办法.

  [教学内容]教师乘机引出课题,明确学习任务.

  第二环节探索发现,应用深化

  1、做一做:(电脑显示P100“做一做”的内容)

  如图4-2,□ABCD的两条对角线AC,BD相交于点O,

  (1)图中有哪些三角形是全等的?有哪些线段是相等的'?

  (2)能设法验证你的猜想吗?

  [教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.

  2、观察、讨论:(小组交流)

  通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。

  [教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.

  结论:平行四边形的对角线互相平分。

  [教师活动]“实验都是有误差的,我们能否对此进行理论证明?”

  [学生活动]此问题难度不大.

  [教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.

  活动二

  刚才财主巴依提出的问题你能解决吗?

  学生口述过程,教师最后给出规范的解题过程。

  练一练:

  财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?

  [教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.

  活动三

  电脑显示P101关于铁轨的图片

  提出问题:“想一想”

  已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,

  (1)线段AC,BD所在直线有什么样的位置关系?

  (2)比较线段AC,BD的长。

  引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。

  (让学生进一步感知生活中处处有数学)

  A.(学生思考、交流)

  B.(师生归纳)

  解(1)由AC⊥b,BD⊥b,得AC//BD。

  (2)a//b,AC//BD,→四边形ACDB是平行四边形

  →AC=BD

  归纳:

  若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。

  即平行线间的距离相等。

  [议一议]:

  举你能举出反映“平行线之间的垂直段处处相等实例吗”?

  活动目的:

  通过生活中的实例的应用,深化对知识的理解。

  第三环节巩固反馈,总结提高

  1、说一说下列说法正确吗

  ①平行四边形是轴对称图形()

  ②平行四边形的边相等()

  ③平行线间的线段相等()

  ④平行四边形的对角线互相平分()

  2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=

  3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为

  4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?

  5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  第四环节评价反思,目标回顾

  活动内容:

  本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?

  [布置作业]:

  P102习题4.21,2,3

  探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF

平行四边形教案 篇6

  学习目标:

  1、理解并掌握平行四边形的定义

  2、掌握平行四边形的性质定理1及性质定理2

  3、提高综合运用知识的能力

  预习指导:

  1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。

  2、____________________________________是平行四边形。

  3、平行四边形的性质是:_________________________________________.

  学习过程:

  一、学习新知

  1、平行四边形的定义

  (1)定义:________________ ________________________叫做平行四边形。

  (2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

  (3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,

  反过来,平行四边形就一定具有性质。

  (4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.

  2、平行四边形的性质

  平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

  已知:如图 ABCD,

  求证:AB=CD,CB=AD.

  分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.

  证明:

  总结:本题提供了证明线段相等的方法,也体现了数学中的'转化思想。

  在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。

  证明:

  通过上面的证明,我们得到了:

  平行四边形的性质定理1是_______________________________________.

  平行四边形的性质定理2是_______________________________________.

  二、应用举例:

  例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。

  例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。

  三、随堂练习

  1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。

  2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。

  四、课堂小结 :

  1、平行四边形的概念。

  2、平行四边形的性质定理及其应用。

  五、当堂检测

  1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).

  (A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是

  2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,

  EF与GH相交与点O,那么图中的平行四边形一共有( ).

  (A)4个 (B)5个 (C)8个 (D)9个

  3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.

平行四边形教案 篇7

  教学内容:课本第72页。

  教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。

  教学过程:

  一、复习。

  1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)

  2.填空。

  0.28平方米=()平方分米=()平方厘米

  32000平方米=()公顷

  0.5平方千米=()公顷。

  3.求下面平行四边形的面积。(口答)

  (1)底18厘米,高10厘米

  (2)底25分米,高4分米

  (3)底12.5米,高8米

  (4)底16米,比高多6米

  (5)底和高都是30厘米

  二、新授。

  1.揭示课题。

  师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)

  2.出示例题。

  一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

  学生口述解题思路:求钢板的面积就是求平行四边形的面积。

  学生独立解答

  4.8×3.5?17(平方米)

  答:它的面积约是17平方米

  补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?

  总重量=每平方米重量×平方米数

  学生试做。

  集体评讲。

  钢板重量:3.9×17=66.3(千克)

  三、巩固练习。

  1.P72页做一做。

  通过书面练习第1题达到巩固求平行四边形面积的计算能力。

  指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的`底和高的数值即可求出它的近似面积。

  2.练习十七第6题。

  先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)

  学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)

  得出:底和高分别相等的平行四边形,面积也相等。

  判断:下面的平行四边形面积相等吗?

  3.练习十七第7题。

  学生独立完成。集体核对。

  4.练习十七第8题。

  先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。

  四、作业。

  练习十七第9题。

  五、补充练习。

  已知一个平行四边形的面积是28平方米,底是7米,求高是多少?

  引导学生思考:因为:a·h=S

  所以:h=S÷a

【平行四边形教案】相关文章:

平行四边形教案08-10

平行四边形的面积教案07-17

《平行四边形的认识》教案09-30

平行四边形教案优秀08-29

平行四边形面积教案02-29

平行四边形的认识教案07-30

《平行四边形的认识》教案07-09

平行四边形的判定教案07-08

平行四边形的面积教案06-18

《认识平行四边形》教案05-28